纤维单胞菌Cellulomonas sp.中性β-半乳糖苷酶新基因的克隆、表达及酶学性质分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
β-半乳糖苷酶通常被称为乳糖酶,它广泛存在于植物、细菌、真菌、放线菌以及动物肠道中。该酶能将乳糖水解为半乳糖和葡萄糖,并具有半乳糖苷的转移作用,主要用来治疗乳糖不耐受症,处理加工牛乳、乳清,生产低乳糖牛奶和乳制品。乳糖酶的研究具有重要的实践价值和理论意义。本论文的目的是从特殊环境分离产乳糖酶的菌株,克隆得到具有特殊性质的乳糖酶基因,为进一步的工业化生产提供材料。
     本研究从来源于火焰山的土壤中筛选获得一株产乳糖酶的菌株Dm,通过对菌株生理生化特性的研究及16SrDNA的分子鉴定,初步认为该菌株属于纤维单胞菌属(Cellulomonas sp.)。
     利用PCR(简并PCR,热不对称交错PCR(TAIL-PCR)和反向PCR)的方法,克隆得到乳糖酶基因,命名为galc。galc全长2076bp,(G+C)%含量72.9%,编码692个氨基酸,无信号肽序列。经过序列分析和结构预测,推测galc为属于糖基水解酶第42家族的乳糖酶基因,编码的蛋白GALC含有三个结构域。通过序列比对分析,galc与已报道的乳糖酶的序列相似性都在为40~60%之间,其中与来源于Arthrobacter sp. FB24相似性最高,为59%。可以初步确定galc为新的乳糖酶基因。本研究为首次在Cellulomonas sp.中克隆获得乳糖酶基因。
     将galc分别在大肠杆菌Escherichia coli BL21(DE3)和Pichia pastoris GS115中进行了表达,并对原核表达的乳糖酶进行纯化和酶学性质分析。成熟蛋白的分子量为76kD,最适pH为6.4,最适温度47℃,比活为188.30 u/mg,动力学分析表明其Km为19.33mmol/L,Vmax为416.67nmol/min。
β-D-galactosidase (β-D-galactoside galactohydrolase, EC3.2.1.23) hydrolyzes the dlsaccharide lactose to glucose and galactose, also referred to as lactase. It is widely distributedin various microorganisms such as bacteria, fungi, and also in various Plants and animals’intestine. Lactase can be used for the treatment of‘lactose intolerance’, and the Production of low-lactose milk, whey and other dairy Products. Lactase study has important theoretical and practical value. In this study, novel genes encoding lactase with advantage properties were cloned and expressed from microorganism strains isolated from special enviroments, provide material for the further industrial production.
     We have isolated a strain Dm from soil of The Flaming Mountain. The phylogenetic analysis of the 16s ribosomal DNA sequence from this strain resulted in that it can be classed in the genus cellulomonas sp. .
     A PCR approach including degenerate PCR, thermal asymmetric interlaced (TAIL) PCR and IPCR we used to clone lactase gene galc. Sequences analysis reveals that the lactase gene with the length of 2076bp encoding a polypeptide of 692 amino acid residues. (G+C) % is 72.9%, and no signal peptide. Structure prediction indicated that galc belonged to the glycosyl hydrolase 42 family, and its protein GALC, have three domains. Use BLAST, the deduced amino acid sequence of this lactase showed 40~60% identities to the previously reported genes,and the highest is to Arthrobacter sp. FB24, is 59%. Suggesting the novelty of this lactase, and it is first reported from Cellulomonas sp.
     The lactase gene galc was expressed in Escherichia coli BL21 (DE3) and Pichia pastoris GS115 and the properties of prokaryotic expression lactase was purified and characterized. The purfied recombinant lactase had a molecular mass of 76kD. The optimum pH and temperature were 6.4 and 47℃, respectively. At 47℃and pH6.4, the Km was 19.33mmol/L and the Vmax was 416.67nmol/min. Specific activity of galc was about 188.2954 u/mg.
引文
1. CW 迪芬巴赫,GS 德维克斯勒.PCR 技术实验指南,北京:科学出版社,2002
    2. 东秀珠,蔡妙英.常见细菌系统鉴定手册.北京科学出版社,2001
    3. F 奥斯伯,R 布伦特.精编分子生物学实验指南.北京:科学出版社,1998
    4. G.G.伯奇主编.酶与食品加工.轻工业出版社,1991,93~110
    5. 顾小勇,李强,曹竹安.The Measurement of Intra~cellular AOX in Recombinant Pichia pastoris.Chinese Journal of Biotechnology(生物工程学报),2001,17(4):474~477
    6. 高焕春.乳糖酶的特性及其在乳品工业中的应用,中国乳品工业,1996,24(3):19~21
    7. 高秀荣.乳糖酶基因的克隆[硕士学位论文].成都:西华大学,2006.
    8. 黄北阳.开发低乳制品促进我国乳品产业发展,当代畜牧,2001,3:1~2
    9. 何梅.乳糖酶缺乏和乳糖不耐受.国外医学与卫生学分册,1999,26(6):339~342
    10. 胡继敏.产β-半乳糖苷酶的低温盐碱菌的筛选及酶基因的克隆[硕士学位论文].广州:中山大学,2006.
    11. 胡学智.功能性低聚糖及其制造概要.工业微生物,1997,1:30~39
    12. 蒋爱民,李素简,王增勇.乳糖酶菌在乳制品生产中的应用.中国奶牛,1993,2:56~57
    13. 吕晓华,刘世贵,高荣.生物技术在乳糖不耐受防治中的应用.中国乳品工业,2002,30(1):44~47
    14. 李晶,赵晓祥,沙长清,等.甲醇酵母基因表达系统的研究进展.生物工程进展,1999,19(2):17~20
    15. 刘文,胡巍.酵母表达基因工程产物特性分析.生物工程进展,2001,21(2):74~76
    16. 李育阳.外源基因在酵母中表达产物的分泌.生物工程学报,1987,3(2):81~85
    17. 梁果义,伍宁丰,张伟,杨娇艳,姚斌,范云六.来源于芽孢杆菌(Bacillus circulans)的乳糖酶在毕赤酵母中的表达.高技术通讯,2006,16(1):55~60
    18. 马孟根,王红宁.巴斯德毕赤酵母表达外源蛋白研究进展.四川农业大学学报,2001,19(3):277~280
    19. 聂东宋,梁宋平,李敏.外源蛋白在巴氏毕赤酵母中高效表达的策略.吉林大学学报(自然科学版),2001,22(3):40~44
    20. 欧阳菁,龙綮新,杨林,等.甲基营养型酵母表达载体系统研究进展.应用与环境微生物,2001,7(5):502~506
    21. 秦立虎,韩启文,张洪颖.乳糖酶的作用及其在乳品工业中的应用.中国奶牛,2007,6:46~48
    22. 秦燕,宁正祥,胡新宁.固定化β-半乳糖苷酶催化生成低聚半乳糖.食品与发酵工业,2001, 27(11):12~36
    23. 秦燕,宁正祥.β-半乳糖苷酶的应用研究进展.食品研究与开发,2000,21(2):3~6
    24. R E 布坎南,N E 吉本期.伯杰氏细菌鉴定手册(第八版)北京:科学出版社, 1984
    25. 阮继生.放线菌纲内亚纲、目、亚目、科的16S rDNA/rRNA特征序列简介.微生物学通报,2005,32(3):129~134
    26. 史家辉,徐亚同.环境微生物.上海:华东师范大学出版社,1993
    27. 汤凤霞,葛志军,乔长晟,低乳糖乳制品的生产研究及应用.宁夏农学院院报, 2000,21(4):79~82
    28. 谢明,吴淑华,奕向荣等. 大肠杆菌 M 增强子样序列结构和功能的研究. 中国科学 C 辑,1997,27(2):179~185
    29. 谢毅等.乳酸克鲁维酵母(Kluveromces lactis)β-半乳糖苷酶的稳定性研究.复旦学报(自然科学版),1999,38(5):523~528
    30. 相尺孝亮.酶应用手册.上海科学技术出版社,1989:407~414
    31. 尤新.功能性低聚糖.食品工业科技,2001,22(6):1~4
    32. 姚斌,张春义,王建华,等.高效表达具有生物学活性的植酸酶的毕赤酵母.中国科学(C辑),1998,28(3):237~243
    33. 于成国,曹玲,刑伟等. 关于 alkA 基因启动子不同突变对诱导酶活性的比较研究. 中国医科大学学报,1995,24(4):342~344
    34. 张树政主编.酶制剂工业下册.北京:科学出版社,1984,818~819
    35. 钟燕.乳糖不耐受基础研究进展.国外医学卫生学分册,2000,27:168~172
    36. 周亚凤,张先恩,刘虹,等.黑曲霉葡萄糖氧化酶基因的克隆及其在酵母中的高效表达.生物工程学报,2001,17 (4):400~405
    37. 章如安,杨晟,邱荣德,等.巴斯德毕赤酵母表达体系研究及进展.微生物学报,2000,27(5):371~373
    38. 张伟,范云六,姚斌.亮白曲霉乳糖酶基因在毕赤酵母中的高效分泌表达及酶学性质研究.微生物学报,2005,45(2):247~252
    39. 张伟,姚斌,王磊,等.来源于Aspergillus candidus的乳糖酶基因的克隆及序列分析,生物工程学报,2002,18(5):566~571
    40. 赵翔,霍克克,李育阳.毕赤酵母的密码子用法分析.生物工程学报,2000,16(3):308~311
    41. 赵翔,李至,陆身枫,霍克克,李育阳.酵母Yarrowia lipolytica 的密码子用法分析.复旦学报(自然科学版),1999,38(5):510~516
    42. ALEJANDRO VIAN, ALFONSO V.CARRASCOSA, JOSE′ L.GARCI′A, et al. Structure of theβ-Galactosidase Gene from Thermus sp. Strain T2: Expression in Escherichia coli and Purification in a Single Step of an Active Fusion Protein. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1998, 64(6): 2187–2191.
    43. A.L.Rojas, R.A.P.Nagem, K.N.Neustroev, M.Arand, M.Adamska, E.V.Eneyskaya, A.A.Kulminskaya, R.C.Garratt, A.M.Golubev and I.Polikarpov. Crystal Structures of β-Galactosidase from Penicillium sp. and its Complex with Galactose. J.Mol.Biol, 2004, 343: 1281~1292
    44. Barr KA, Hopkins SA, Sreekrishna K. Protocol for efficient secretion of HAS developed from Pichia pastoris. Pharm Eng, 1992, 12: 48~51
    45. Berka, Randy M., Hucul, John A., Ward, Michael. Increased production of beta-galactosidase inAspergillus oryzae. US patent, 5736374, 1998, 4~7
    46. Buckholz R G. Yeast systems for the commercial production of heterologous proteins Gleeson M A G. Bio/Technology, 1991, 9: 1067~1072
    47. Clare J J, Rayment F B, Ballantine S P, et al. High-level expression of tetanus toxin fragment c in Pichia pastoris strains containing multiple tandem integrations of the gene. Bio/technology, 1991, 9: 455~460
    48. Creeg JM, Vedvick TS, Raschke WC. Recent advances in the expression of foreign genes in Pichia pastoris. Biotechnology (N Y), 1993, 11(8): 905~10.
    49. Davies, G., Henrissat, B.. Structures andmechanisms of glycosyl hydrolases. Structure, 1995,3:853~859
    50. Devrese M, Keller B, Barth CA. Enhancement of intestinal hydrolysis of lactose by microbial beta-galactosidase (EC 3.2.1.23) of kefir. Br J Nutr, 1992, 67(1): 67~75
    51. Frank D, Majak, Stephan T. Use of the glyceraldehyde-3-phosphate dehydrogenase promoter for production of functional mammalian membrane transport proteins in the yeast Pichia pastoris. Biochem Bio-phy Res Commun, 1998, 250: 531~536
    52. Fukui T,Hayasli Y, Kagami H, et al. Suicide gene therapy for human oral seqamous cell carcinoma cell lines with adeno-assiated virus vector. Oral Oncol, 2001, 37(3):211~215
    53. Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Bairoch A.. Protein Identification and Analysis Tools on the ExPASy Server. John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press. 2005, 571-607
    54. Hans P.S?rensen. Tania K.Porsgaard. Rachel A.Kahn. Peter Stougaard.Kim K. Mortensen . Mads G.Johnsen. Secretedβ-galactosidase from a Flavobacterium sp. isolated from a low-temperature environment.Appl Microbiol Biotechnol, 2006, 70: 548~557
    55. Henrissat, B.. A classification of glycosylhydrolases based on amino acid sequence similarities. Biochem, 1991, 280: 309~316
    56. Henrissat, B., Bairoch, A.. New families in theclassification of glycosyl hydrolases based on aminoacid sequence similarities. Biochem, 1993, 293: 781~788
    57. Henrissat, B., Bairoch, A.. Updating thesequence based classification of glycosyl hydrolases. Biochem, 1996, 316: 695~696
    58. Henrissat, B., Davies, G.. Structural andsequence-based classification of glycoside hydrolases.Curr. Opin. Struct. Biol. 1997, 7: 637~644
    59. Hockem a A, Kastellin R A, V asserM, et al.Codon replacement in the PGK 1 gene of S.cerevisiae:Experimental approach to study the role of biased codon usage in gene exp ression.MolCell Biol, 1987, 7: 2914~2924.
    60. Ikemura T. Codon usage and tRNA content in unicellular and multicellular organism.Mol Biol Evol, 1985, 2 (1): 13~34
    61. Jacobson, R. H., Zhang, X-J. , DuBose, R. F. &Matthews, B. W.. Three-dimensional structureof b-galactosidase from E. coli. Nature, 1994,369:761~766
    62. James A. Coker, Jean E.Brenchley. Protein engineering of a cold-active b-galactosidase from Arthrobacter sp. SB to increase lactose hydrolysis reveals new sites affecting low temperature activity .Extremophiles, 2006, 10: 515~524
    63. James A.Coker, Peter P.Sheridan, Jennifer Loveland-Curtze, Kevin R.Gutshall, Biochemical Characterization of a β-Galactosidase with a Low Temperature Optimum Obtained from an Antarctic Arthrobacter Isolate. JOURNAL OF BACTERIOLOGY, 2003, 185(18): 5473–5482
    64. James M.Cregg, Kevin J. Barringer, Anita Y. Hessler, et al.Pichia pastoris as a host system for transformations.Molecular and Cellular Biology, 1985, 5(12): 3376~3385
    65. James M.Cregg, Knut R. Madden, Kevin J. Barringer, et al.Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris. Molecular and Cellular Biology, 1989, 9(3): 1316~1323
    66. Jannick Dyrl?v Bendtsen, Henrik Nielsen, Gunnar von Heijne and S?ren Brunak. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol., 2004, 340: 783-795
    67. Jeffrey L B, Benjam in D H.Codon selection in yeast. J B io Chem, 1982, 257 (6): 3026~3031
    68. J.T.ULRICH, G.A.McFETERS, AND K.L.TEMPLE. Induction and Characterization of β-Galactosidase in an Extreme Thermophile. Biol.Chem, 1972, 110(2): 691~698
    69. Juers, D. H., Huber, R. E. Matthews, B. W.. Structural comparisons of TIM barrel proteins suggestfunctional and evolutionary relationships betweenb-galactosidase and other glycohydrolases. ProteinSci, 1999,8: 122~136
    70. Juers, D. H., Jacobson, R. H., Wigley, D., Zhang, X. J., Huber, R. E., Tronrud, D. E., Matthews, B.W.. High resolution refinement of b-galactosidase in anew crystal form reveals multiple metal-binding sitesand provides a structural basis for a-complementation. Protein Sci, 2000, 9: 1685~1699
    71. MARCO MORACCI, ADRIANA LA VOLPE, JOHN F.PULITZER, et al. Expression of the Thermostable β-Galactosidase Gene from the Archaebacterium Sulfolobus solfataricus in Saccharomyces cerevisiae and Characterization of a New Inducible Promoter for Heterologous Expression. JOURNAL OF BACTERIOLOGY, 1992, 174(3): 873~882
    72. Masafumi Hidaka, Shinya Fushinobu, Naomi Ohtsu, Hidemasa Motoshima, Hiroshi Matsuzawa, Hirofumi Shoun and Takayoshi Wakagi. Trimeric crystal structure of the glycoside hydrolasefamily 42 beta-galactosidase from Thermus thermophilus A4 and the structure of its complex with galactose. 2002, J.Mol.Biol. 322: 79~91
    73. Masami HaradaS, Misa Inoharag, Masahiro Nakao, et al. Divalent Metal Ion Requirements of a Thermostable Multimetal β-Galactosidase from Saccharopolyspora rectivirgula. Biol.Chem, 1994, 269(35): 22021~22026
    74. Marta Wanarska, Józef Kur, Rados?aw Pladzyk, et al. Thermostable Pyrococcus woesei β-D-galactosidase high level expression, purification and biochemical properties.ActaBiochimica Polonica . 2005, 52(4): 781~787
    75. M.Becerra, E.Cerdan, M.I.Gonzalez Siso. Heterologous Kluyveromyces lactics β-galactosidaseproduction and released by Saccharomyces cerevisiae osmotic-remedial thermosensitive autolytic mutants. Biochimica et Biophysica Acta, 1997, 1335: 235~241
    76. McGrew JT, Leiske D, Dell B, et al. Expression of trimeric CD40 ligand in Pichia pastoris: use of a rapid method to detect high-level expressing transformants. Gene, 1997, 187(2): 193~200
    77. Mei M, Whittaker, James W.Expression of recombinant galactose oxidase by Pichia pastoris. Protein Expression and Purification, 2000, 20: 105~111
    78. PETER L.M?LLER, FLEMMING J?RGENSEN, OLE C.HANSEN, S?REN M.MADSEN. AND PETER STOUGAARD. Intra-and Extracellular β-Galactosidases from Bifidobacterium bifidum and B.infantis: Molecular Cloning, Heterologous Expression, and Comparative Characterizatio. Appliedand Environmental Microbiology, May 2001, 67(5): 2276–2283
    79. R.H.Jacobson, X-J.Zhang, R.F.DuBose, B.W.Matthews. Three–dimensional structure of β-galactosidase from E. coli. Nature, 1994, 369(30), 761~766
    80. Robert C.Dikson, Lesley R.Dickson, Jennifer S.Markin. Purification and properties of an inducible β-galactosidase isolated from the yeast Kluyveromyces lactis. Journal of Bacteriology, 1979, 1: 51~61
    81. Romanos MA, Clare JJ, Beesley KM, et al. Recombinant Bordetella pertussis pertactin (P69)from the yeast Pichia pastoris:high-level production and immunological properties.Vaccine, 1991, 9(12): 901~906
    82. Rusynyk RA, Still CD.Lactose intolerance. J Am Osteopath Assoc, 2001, 101(4 Suppl Pt 1): 10~12
    83. Scorer CA, Buckholz RG, Clare JJ, et al. The intracellular production and secretion of HIV-1 envelope protein in the methylotrophic yeast Pichia pastoris. Gene, 1993, 136(1~2): 111~119
    84. Shen S, Sulter G, Jeffries TW, et al. A strong nitrogen source~regulated promoter for controlled expression of foreign genes in the yeast Pichia Pastoris. Gene, 1998, 216: 93~102
    85. Siegel.R S, Buckolz RG, Thill GP, et al. Production of epidermal growth factor in methylotrophic yeasts.International Patent, Punl No.WO 90/10697, 1990
    86. Singh A, Lugovoy JM, Kohr WJ, et al. Synthesis, secretion and processing of alpha-factor-interferon fusion proteins in yeast. Nucleic Acids Res, 1984, 12(23): 8927~8938
    87. Sreekrishna K, Brankamp RG, Kropp KE, et al. Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast Pichia pastoris. Gene, 1997, 190(1): 55~62
    88. Sreekrishna K, Nelles L, Potenz R, et al. High-evel expression, purification, and characterization of recombinant human tumor necrosis factor synthesized in the methylotrophic yeast Pichia pastoris.iochemistry, 1989, 28(9): 4117~4125
    89. Stackebrandt E, Rainey FA, ward~Rainey N L. International Journal of Systematic and Evolutionary Microbiology, 1997, 47(2): 479
    90. Takeda S, Toyoda Y. Expression of SV40-lacZ gene in mouse preimplantation enbryos sfter pronuclear microinjection. Mol Reprod Dev, 1991,30(2): 90~94
    91. Tomoyuki Nakagawa, Yuji Fujimoto, Ryoko Ikehata, Tatsuro Miyaji, NoboruTomizuka.Purification and molecular characterization of cold-active β -galactosidase from Arthrobacter psychrolactophilus strain F2.Appl Microbiol Biotechnol. 2006, 72: 720~725
    92. Van Den Eijnden DH, Blanken WM, Van Vliet A.Branch specificity of beta-D-galactosidase from Escherichia coli, Carbohydr Res, 1986, 151(15): 329~335
    93. Veenhuis M, Van Dijken JP, Harder W. The significance of peroxisomes in the metabolism of one-carbon compounds in yeast. Adv Microbiol Physiol, 1998, 24: 1~82
    94. Waterham HR, Digan ME, Koutz PJ, et al. Isolation of the Pichia pastoris glyceraldehyde-phosphate dehydrogenase gene and regulation and use of its promoter. Gene, 1997, 186(1): 37~44
    95. W.Chen, H.Chen, Y.Xia, J.Zhao, F.Tian and H.Zhang.Production, Purification, and Characterization of a Potential Thermostable Galactosidase for Milk Lactose Hydrolysis from Bacillus stearothermophilus.J.Dairy Sci. 2008, 91: 1751~1758
    96. Wegner G H. Biochemical conversions by yeast fermentation at high cell dendities. USA Patent, No.4414329, 1983
    97. Yang ST, Tang IC.Lactose hydrolysis and oligosaccharide formation catalyzed by beta-galactosidase Kinetics and mathematical modeling. Ann N Y Acad Sci, 1988, 542: 417~422
    98. Y.C.Lee, Victoria Wacek.Galactosidase from Aspergillus niger.Archives of Biochemistry and Biophysics, 1970, 138: 264~271

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700