新生仔猪小肠发育及胎儿宫内发育迟缓对其的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为研究胎儿宫内发育迟缓(IUGR)对新生仔猪肠道组织生长和功能成熟的影响以及IVGR仔猪在生后一周内的补偿生长,本试验利用自然选择法选择了宫内发育迟缓仔猪,比较了新生及母乳自然哺乳3天或7天后正常仔猪和IUGR仔猪间消化器官重量,小肠的重量和长度,小肠组织形态学结构,小肠粘膜DNA、RNA和蛋白质含量,及小肠粘膜中乳糖酶、麦芽糖酶、氨基肽酶和碱性磷酸酶活性。
     试验从14窝三元杂交猪(长×大·米)中选择14头正常仔猪和14头IUGR仔猪,随机分成三组:初生组(D0,5头正常仔猪和5头IUGR仔猪)、母乳饲喂3天组(D3,5头正常仔猪和5头IUGR仔猪)和母乳饲喂7天组(D7,4头正常仔猪和4头IUGR仔猪)。试验一比较了正常仔猪和IUGR仔猪0~7日龄消化器官与肠道的生长。正常仔猪和IUGR仔猪0~7日龄消化器官重量、肠道重量、长度以及DNA、RNA和蛋白质的含量都快速显著增加。新生正常仔猪大部分消化器官重量显著高于IUGR仔猪,小肠长度和重量也高于IUGR仔猪,这与正常仔猪中蛋白质含量显著高(517±85mgVs382±63mg,P<0.05)有关。IUGR仔猪小肠相对长度高于正常仔猪和单位长度重量又低于正常仔猪同时表明宫内发育迟缓仔猪小肠吸收面积明显降低。3日龄正常猪包括小肠在内的绝大部分消化器官重量明显高于IUGR猪。IUGR猪小肠相对长度的显著升高(368.48±64.56cm/kg Vs 273.13±48.40cm/kg,P<0.05)和单位长度重量的显著降低(106.29±10.28mg/cm Vs 132.41±22.64mg/cm,P<0.05)表明3日龄宫内发育迟缓仔猪小肠吸收面积仍小于正常仔猪。两处理间DNA、RNA和蛋白质含量没有显著差异(P>0.05)。7日龄正常猪的体重和胰腺重仍显著高于IUGR猪(P<0.05),正常猪小肠粘膜RNA含量显著大于IUGR猪(112.7±25.6mg Vs 82.2±11.0mg,P<0.05)。但观察的大部分指标在正常猪和IUGR猪间没有显著差别(P>0.05)。
     试验二比较了正常仔猪和IUGR仔猪0~7日龄肠道的组织形态学。正常仔猪和IUGR仔猪生后0~7日龄肠道组织形态学都发生明显变化,特别是肠壁厚度和绒毛高度显著增加。新生IUGR仔猪小肠的肠壁厚度、绒毛高度和隐窝深度显著低于正常仔猪。3日龄时,正常仔猪部分肠段的肠壁厚度和绒毛高度显著高于IUGR仔猪。7日龄时,正常仔猪和IUGR仔猪小肠的肠壁厚度、绒毛高度等组织形态学指标没有显著差异。
     试验三比较了正常仔猪和IUGR仔猪0~7日龄肠道酶活性的发育。正常仔猪和新生仔猪生后1周内乳糖酶、麦芽糖酶、氨基肽酶和碱性磷酸酶活性都显著增加。新生正常仔猪小肠乳糖酶的总活性(106.4±18.9Units Vs 65.8±15.9Units,P<0.01)和比活
    
    硕兰·学位论文:新生仔猪小肠发育及胎儿宫内发育迟缓对其的影响
    性(8.7士4.gUnits/mgDNA Vs 5.1土3.oUnits/mgDNA,p<0.05)都显著高于IUGR仔猪.
    川GR仔猪小肠氨基肤酶的总活性和比活性都低于正常仔猪,其中总活性的差异(25.9
    土5.gUnits Vs 14.0士4.IUnits,P<0 .01)达到极显著.IuGR仔猪小肠的麦芽糖酶总活性
    要显著低于正常仔猪(3.4土0.SUnits Vs 2.2士0.6Units,p<0.05),但比活性在两组间没
    有显著差异,而两组间碱性磷酸酶的比活性和总活性都没有显著差异(P>0 .05).生
    长至3日龄时,正常仔猪和川GR仔猪间乳糖酶、麦芽糖酶和碱性磷酸酶活性没有显
    著差异(P>0.05),而氛基肤酶总活性的差异仍显著(46.0土9.2Units vs 30.9士4.IUnits,
    P<0 .01).7日龄正常仔猪和IUGR仔猪乳糖酶、麦芽糖酶、氛基肤酶和碱性磷酸酶活
    性均没有显著差异(P>0.05).
     结果表明,正常仔猪和IUGR仔猪生后1周内肠道生长发育模式类似,肠道组织
    生长和功能发育迅速.宫内发育迟缓导致新生仔猪消化器官重量和肠道长度重量的降
    低,这与组织蛋白质含量降低有关.同时,宫内发育迟缓降低新生仔猪小肠肠壁厚度、
    绒毛高度和隐窝深度以及小肠吸收面积,抑制了小肠乳糖酶和氨基肤酶的成熟,而麦
    芽粉醉和碱性磷酸酶表现出早熟.试验结果又表明,胎儿宫内发育迟缓仔猪在生后1
    周内能部分实现补偿生长,而且IUGR仔猪实现补偿生长是随着日龄增加逐步完全的.
To find out the impact of intrauterine growth retardation on the tissue growth and functional maturation in the small intestine of newborn pigs, and the catch-up growth of intrauterine growth retarded pigs during postnatal 1 week, we selected the intrauterine growth retarded piglet using natural select, and compared digestive organ weight, small intestinal tissue mass, length, tissue structure, mucosal DNA, RNA and protein contents, and mucosal lactase, maltase, aminopeptidase and alkaline phosphatase activities between normal piglets and piglets with IUGR at birth, or after naturally suckled with their dams for 3 days and 7 days.
    In the experiment, 14 normal piglets and 14 piglets with IUGR were selected from 14 litters of Large White, Landrace and Mi crossed sows. And they were randomly assigned to three groups: Newborn group (D0, 5 NW and 5 IUGR), Group naturally suckled for 3 days(D3, 5 NW and 5 IUGR) and group naturally suckled for 7 days (D7, 4 NW and 4 IUGR). In the first experiment, the growth of the small intestine and the digestive organ were compared between normal piglets and intrauterine growth retarded piglets from newborn to 7 days age after birth. The weight of digestive organ, the weight and length of the small intestine, the mucosal contents of DNA, RNA and protein in both of normal piglets and piglets with IUGR were increased significantly from newborn to 7 days age after birth. The weight of major digestive organ, small intestinal length and weight in newborn normal piglets were larger than those in IUGR, which was related to obvious higher protein contents in normal piglets (517±85 mg Vs 382±63 mg, P<0.05). Higher
     relative length and lower relative weight of small intestine in piglets with IUGR compared to those in normal piglets suggested that intrauterine growth retardation reduced the surface absorption area of small intestine. After piglets were naturally suckled with dam for 3 days, the weights of major digestive organ include small intestine in piglets with normal weight were obviously larger than those in piglets with IUGR. Higher relative length (368.48± 64.56cm/kg Vs 273.13±48.40cm/kg, P<0.05) and lower relative weight (106.29± 10.28
    
    
    mg/cm Vs 132.41 ± 22.64mg/cm, P<0.05) of small intestine in IUGR piglets compared to those in normal piglets suggested that the surface absorption area of small intestine in intrauterine growth retarded piglets is still lower than that in normal piglets. The differences of mucosal DNA, RNA and protein contents between normal piglets and piglets with IUGR after naturally suckled with their dams for 3 days were all not clear (P>0.05). In postnatal y days age, the body weight and the weight of pancreas in normal piglets were still highei than those in piglets with IUGRC P<0.05) .The content of mucosal RNA of small intestine in piglets with normal weight (112.7±25.6mg Vs 82.2±11.0mg, P<0.05) was markedly higher than that in piglets with IUGR. But there were not significant difference in most of observed parameters between them.
    In the second experiment, the morphology of the small intestine was compared between normal piglets and intrauterine growth retarded piglets from 0 to 7 days age. The morphology of the small intestine in both of normal piglets and piglets with IUGR were markedly changed from newborn to 7 days age after birth, especially the wall thickness and villus height were significantly increased. Small intestinal wall thickness, villus height and crypt depth in newborn intrauterine growth retarded piglets were markedly lower than those in normal piglets. In 3 days age, Small intestinal wall thickness and villus height in part intestinal regions of normal piglets were significantly higher than those in piglets with IUGR. In 7 days age. the difference of the morphology between normal piglets and piglets with IUGR were not significant.
    In the third experiment, the enzyme activities in mucous membrane of small intestine were compared between normal piglets and intrauterine growth retarded piglets from 0 to 7 days age. During the pos
引文
[1] Xu R J, Mellor D J, Tungthanathanich P, et al. Growth and morphological changes in the small and the large intestine in newborn pigs during the first three days after birth [J]. J Dev Physiol, 1992, 18: 161~172.
    [2] Zhang H Z, Malo C, Buddington R K. Suckling induces rapid intestinal growth and changes in brush border digestive functions of newborn pigs [J]. J Nutr, 1997, 127: 418~426.
    [3] Guesry P R. Foreword [M]. In: Senterre J. Intrauterine growth retardation. New York: Raven Press, 1989, 7.
    [4] Terry L B, Jeffrey P G, Francisco A R, et al. Delayed disaccharidase development in a rabbit model of intrauterine growth retardation [J]. Pediatr Res, 2001, 50: 520~524.
    [5] 毛淑芳,李文华,尹长恒.胎儿宫内生长发育迟缓的远期不良影响[J].承德医学院学报,2001,18(12):66~68.
    [6] Behrman K J. Nelson textbook of pediatrics [M], 16th edition. W. B. Saunders Company 2000: 477~485
    [7] Xu R J, Mellor D J, Brittles M J, et al. Impact of intrauterine growth retardation on the\ gastrointestinal tract and the pancreas in newborn pigs [J]. J Pediatr Gastroenterol Nutr, 1994, 18: 231~240.
    [8] Younoszai M K, Ranshaw J. Gastrointestinal growth in the fetus and suckling rat pups: Effects of maternal dietary protein [J]. J Nutr, 1973. 103: 454~461.
    [9] Reeds P J, Burrin D G, Davis T A, et al. Growth, development and nutrient metabolism in piglets and infants [J]. In: Cranwell P D. Manipulating pig Production Ⅵ. APSA, 1997: 1~32.
    [10] Shrader R E, Zeman F J. Effect of maternal protein deprivation on morphological and enzymatic development of neonatal rat tissue [J]. J Nutr, 1969, 99:401~421.
    [11] Lebenthal E, Nitzan M, Lee P C, et al. Effect of intrauterine growth retardation on the activity, of fetal intestinal enzymes in rats [J]. Biol Neonate, 1981, 39: 14~21.
    [12] Avila C G, Harding R, Rees S, et al. Small intestinal development in growth-retarded fetal sheep [J]. J Pediatr Gastroenterol Nutr, 1989, 8: 507~515.
    [13] Guo W H, Jeffrey P G, Eric W F. Effect of maternal ethanol intake on fetal rabbit gastrointestinal development [J]. J Pediatr Surg, 1994.29: 1030~1034.
    [14] Rosso P. Morbidity and mortality, in intrauterine growth retardation [M]. In: Senterre J. Intrauterine growth retardation, New York: Raven Press, 1989, 123~142.
    [15] Steven H G. Definition of fetal growth: normal and abnormal [M]. In: Thomas L G, Robert J S.
    
    Intrauterine Growth Retardation: A Practical Approach, 1989, 1~7.
    [16] William W H, Charlotte S C, Gilman D G, et al. Workshop summary: fetal growth: its regulation and disorders [J]. Pediatr, 1997, 99:585~591
    [17] Hartmut A W. Intrauterine growth restriction: definition and etiology [J]. Horm Res, 1998, 49:1~6.
    [18] Kliegman R M, Johnston V L. The metabolism and endocrinology of intrauterine growth retardation [M]. In: William W H. Neonatal Nutrition and Metabolism, 1991,392~418.
    [19] Bernstein P S, Divon M Y. Etiologies of fetal growth restriction [J]. Clin Obstet Gynecol, 1997,40: 723~729.
    [20] Milner R D G. Prenatal growth control [M]. In: Gluckman P D, Heyrnann M A. Perinatal and Pediatric pathophysiology: A Clinical Perspective, 1993, 162~169.
    [21] Philip S. Fetal growth [J]. Br J Obstet Gynaecol, 1998, 105:1133~1135.
    [22] Evalin B D. Hormonal regulation of fetal growth [J]. Horm Res, 1994, 42: 207~214.
    [23] Peter D G., Jane E D. The physiology and pathophysiology of intrauterine growth retardation [J]. Horm Res, 1997, 48: 11~16.
    [24] Terry H, Mary. E D. A rat model for the study of intrauterine growth retardation [J]. Am J Obstet Gynecol. 1988,158:1203.
    [25] Vogt E, Ng A K, Rote N S. A model for the antiphospholipid antibody syndrome: monoclonal antiphosphatidylserine antibody induces intrauterine growth restriction in mice [J]. Am J Obstet Gynecol, 1996, 174: 700~707.
    [26] Rockwell L C, Keyes L E, Moore L G. Chronic hypoxia diminishes pregnancy associated DNA synthesis in guinea pig uteroplacental arteries [J]. Placenta. 2000, 21: 313~319.
    [27] Hohmann M, Kunzel W. Dihydroergotamine causes fetal growth retardation in guinea pigs [J]. Arch Gynecol Obstet. 1992, 251: 187~192.
    [28] Bassan H, Trejo L L, Kariv N, et al. Experimental intrauterine growth retardation alters renal development [J]. Pediatr Nephrol, 2000, 15: 192~195.
    [29] 张秀泉,严隽鸿,洪素英,等.被动吸烟对胎兔组织细胞周期改变的影响[J].中华妇产科杂志.1993,28:720.
    [30] Greenwood P L, Slepetis R M, Hermanson J W, et al. Intrauterine growth retardation is associated with reduced cell cycle activity, but not myofibre number, in ovine fetal muscle [J]. Reprod Fertil Dev. 1999,11: 281~291.
    [31] Phillips I D, Anthony R V, Simonetta G, et al. Restriction of fetal growth has a differential impact on fetal prolactin and prolactin receptor mRNA expression [J]. J Neuro, 2001, 13: 175-181.
    [32] Yarantal A F, Martha M L, Gargosky S E, et al. Effects of viral virulence on intrauterine growth
    
    in SIV-infected fetal rhesus macaques (Macaca mulatta) [J]. J Acqu Imm Deft Syn Hum Retrovirol, 1995, 10: 129~138.
    [33] Hein P R, Schatorje J S, Frencken H J, et al. The effect of chronic oral methadone treatment on monkey chorionic gonadotropin, estradiol, dehydroepiandrosterone sulfate, progesterone, prolactin and cortisol levels during pregnancy in the cynomolgus monkey (Macaca fascicularis) [J]. Eur J Obstet Gynecol Reprod Biol. 1991, 38: 145~150.
    [34] Kliegman R M. Alterations of fasting glucose and fat metabolism in intrauterine growth retarded newborn dogs [J]. Am J Physiol, 1989, 256: E380~E385.
    [35] Wu G, Pond W G, Flynn S P, et al. Maternal dietary protein deficiency decreases nitric oxide synthase and ornithine decarboxylase activities in placenta and endometrium of pigs during early gestation [J]. J Nutr. 1998, 128: 2395~2402.
    [36] Bauer R, Walter B, Zwiener U. Comparison between inulin clearance and endogenous creatinine clearance in newborn normal weight and growth restricted newborn piglets [J]. Exp Toxicolog Pathol, 2000, 52: 367~372.
    [37] William O H. Intrauterine growth retardation [M]. In: Lebenthal E. Textbook of Gastroenterology and Nutrition in Infancy, 1981, 25~37.
    [38] Wigglesworth J S. Experimental growth retardation in the fetal rat [J], J Pathol Bacteriol, 1964, 88: 1~13.
    [39] 柯志勇,刘军,丘小汕.三种宫内发育迟缓大鼠模型方法的比较[J].中国当代儿科杂志,2000.2:24~26.
    [40] Roy-Clavel E, Picard S, St-Louis J. et al. Induction of intrauterine growth restriction with a low-sodium diet fed to pregnant rats [J]. Am J Obstet Gynecol. 1999, 180: 608~613.
    [41] Roecklein B, Levin S W. Intrauterine growth retardation induced by thiamine deficiency and pyrithiamine during pregnancy in the rat [J]. Am J Obstet Gynecol. 1985, 151 : 455~460.
    [42] Salas S P, Altermatt F, Campos M, et al. Effects of long-term nitric oxide synthesis inhibition on plasma volume expansion and fetal growth in the pregnant rat [J]. Hypertension, 1995, 26: 1019~1023.
    [43] Hayakawa M, Mimura S, Sasaki J, et al. Neuropathological changes in the cerebrum of IUGR rat induced by synthetic thromboxane A_2 [J]. Early Hum Dev. 1999, 55: 125~136.
    [44] 张为远,谷丽萍,阎国来.胎儿宫内生长迟缓动物模型的建立[J].中华医学杂志,1989,69:629.
    [45] Younoszai M K, et al. Fetal growth retardation in rat exposed to Cigarette smoke during pregnancy [J]. Am J Obstet Gynecolo, 1969, 104: 1207.
    [46] Buddington R K. Intestinal amino acid and monosaccharide transport in suckling pigs fed milk replacers with different sources of carbohydrate [J]. J Nutr, 1992, 122: 2430~2439.
    
    
    [47] Henning S J. Ontogeny of enzymes in the small intestine [J]. Annu Rev Physiol, 1985, 47: 231~245.
    [48] Cranwell, P D. Development of the neonatal gut and enzyme systems [M]. In: Varley M A. The neonatal pig development and survival, Wallingford: CAB International, 1995, 99~153.
    [49] Lecce J G, Broughton C W. Cessation of uptake of macromolecules by neonatal guinea pig, hamster and rabbit intestinal epithelium (closure) and transport into blood [J]. J Nutr, 1973, 103: 744~750.
    [50] Tarvid I, Cranwell P D, Ma L, et al. The early postnatal development of protein digestion in pig: Ⅱ. Small intestinal enzymes [C]. In: Souffrant W B, Hagemeister H. Proceedings of the Ⅵth international symposium on digestive physiology in pigs, Rostock, Germany: EEAP publication, No 80, 1994,181~184.
    [51] Burrin D G, Shulman R J, Reds P J, et al. Porcine colostrums and milk stimulate visceral organ and skeletal muscle protein synthesis in neonatal piglets [J]. J Nutr, 1992, 122 (6): 1205~1213.
    [52] Eastwood G L. Gastrointestinal epithelial renewal: implications for mucosal protection and carcinogenesis [M]. In: Yoshida Y, Murata Y. Current advances in digestive disease, Tokyo: Churchill Livingstone, 1994, 143~163.
    [53] Johnson L R. Regulation of gastrointestinal mucosal growth [J]. Physiol Rev, 1988, 68: 456~502.
    [54] Smith M W, Jarvis L G. Growth and cell replacement in the newborn pig intestine [J]. Proc Royal Coc London Ser B, 1978, 203B: 69~89.
    [55] Moon H W. Epithelial cell migration in the small intestine of sheep and calves [J]. Am J Vet Res, 1971, 36: 187~189.
    [56] Payne L C, Marsh C L. Absorption of gamma globulin by small intestine [J]. Fed Proc, 1962, 21: 909~912.
    [57] Kelly D, Mcfadyen M, King T P, et al. Characterization and autoradiographic localization of the epidermal growth factor receptor in the jejunum of neonatal and weaned pigs [J]. Reprod Fertil Dev, 1992, 4: 183~191.
    [58] Payne L C, Marsh C L. Gamma globulin absorption in the baby pig: the nonselective absorption of heterologous globulins and factors influencing absorption time [J]. J Nutr, 1962a, 76: 151~158.
    [59] Westrom B R, Svendsen J, Ohlsson B G, et al. Intestinal transmission of macromolecules (BSA and FITC-labelled dextran) in the neonatal pig [J]. Biol Neonate, 1984, 46: 20~26.
    [60] Lecce J G. Effect of dietary regimen on cessation of uptake by piglet intestinal epithelium (closure) and transport to the blood [J]. J Nutr, 1973, 103: 751~756.
    [61] Smith M W. Postnatal development of transport function in the pig intestine [J]. Comp Biochem Physiol, 1988, 90A(4): 577~582.
    
    
    [62] Leary H L, Lecce J G. Effect of feeding on the cessation of transport of macromolecules by enterocytes of neonatal piglet intestine [J]. Biol Neonate, 1978, 34:174~176.
    [63] Torp N, Rossi M, Troelsen JT, et al. Lactase-phlorizin hydrolase and aminopeptidase N are differentially regulated in the small intestine of the pig [J]. Biochem J, 1993, 295: 177~182.
    [64] James P S, Smith M W, Tivey D R, et al. Epidermal growth factor selectively increases maltase and sucrase activity in neonatal piglet intestine [J]. J Physiol, 1987, 393: 583~594.
    [65] Shulman R J, Henning S J and Nichols B L. The miniature pig as an animal model for the study of intestinal enzyme development [J]. Pediatr Res, 1988, 23(3): 311~315.
    [66] Buddington R K, Malo C. Intestinal brush-border membrane enzyme activities and transport functions during prenatal development of pigs [J]. J Pediatr Gastroenterol Nutr, 1996, 23: 51~64.
    [67] Henning S J. Rubin D C. Shulman R J. Ontogeny of the intestinal mucosal [M]. In: Johnson L R. Physiology of the Gastrointestinal Tract (Third Edition). New York: Raven Press, 1994. 571~610.
    [68] Aumaitre A, Corring T, Development of digestive enzymes in the piglet from birth to 8 weeks. Ⅱ. Intestine and intestinal disaccharidases [J]. Nutr Metab, 1978, 22: 244~255.
    [69] Hampson D J. Kidder D E. Influence of creep feeding and weaning on brush border enzyme activities in the piglet small intestine [J]. Res Vet Sci, 1986, 40: 24~31.
    [70] Kidder D E. Manners M J. The level and distribution of carbohydrases in the small intestine mucosal of pigs from 3 weeks of age to maturity [J]. Br J Nutr, 1980. 43:141~153
    [71] Kelly D. Smyth J A. McCracken K J. Digestive development of the early-weaned pig. 1. Effect of continuous nutrient supply on the development of the digestive tract and on changes in digestive enzyme activity during the first week post-weaning [J]. Br J Nutr, 1991, 65:169~180.
    [72] Lacroix B. Kedinger M. Simon-Assmann P. et al. Early organogenesis of human small intestine: scanning electron microscopy and brush border enzymology [J]. Gut. 1984.25: 925~930.
    [73] Young G P. Friedman S, Vedlin S T, et al Effect of fat feeding on intestinal alkaline ptosphatase activity in tissue and serum [J]. Am J Physiol. 1981.241: G461~G468.
    [74] Lindberg T. Karlsson B W. Changes in intestinal dipeptidase activities during fetal and neonatal development of the pig as related to the ultrastructure of mucosal cells [J]. Gastroent. 1970.59(2): 247~256.
    [75] Sangild P T, Cranweil P D. Sorensen H. er al. Development of intestinal disaccharidases. intestinal peptidases and pancreatic proteges in suckling pigs. The effects of age and ACTH treatment [M]. In: Verstegen M W A, Huisman J. den Hartog L. A. Digestive Fhysioiogy in pigs. Pudoc. Wageningen, 1991.73~78.
    [76] Tivey D R. Smith M W. Cytochemical analysis of single villus peptidase activities in pig intestine during neonatal dexelopment [J]. Histochemical Journal 21. 1989, 601~608
    
    
    [77] Puchal A A, Buddington R K. Postnatal development of monosaccharide transport in pig intestine [J]. Am J Physiol, 1992, 262: G895-G902.
    [78] Crissinger K D, Burney D L. Postprandial hemodynamics and oxygenation in developing piglet intestine [J]. Am J Physiol, 1991,260:G951~G957.
    [79] Shanklin D R, Cooke R J. Effects of intrauterine growth on intestinal length in the human fetus [J]. Biol Neonate, 1993, 64:76~81.
    [80] 张庆,黎海芪,郑惠连.宫内生长迟缓对新生幼鼠胃肠发育的影响[J].中华儿科杂志,1997,35:567~570.
    [81] Gavin C E, Kates B, Gerken L A, et al. Patterns of growth deficiency in rats exposed in utero to undernutrition, ethanol, or the neuroteratogen nethylazoxymethanol [J]. Teratol, 1994, 49:113~118.
    [82] Ebner S, Schokenecht P, Reeds P, et al. Growth and metabolism of gastrointestinal and skeletal muscle tissues in protein-malnourished neonatal pigs [J]. Am J Physiol, 1994, 266: R1736~R1741.
    [83] Maruyama K, Koizumi T. Superior mesenteric artery blood flow velocity in small for gestational age infants of very low birth weight during the early neonatal period [J]. J Perinat Med, 2001, 29: 64~70.
    [84] Buchmiller T L, Shaw K S, Lam M L, et al. Effect of prenatal dexamethasone administration: fetal rabbit intestinal nutrient uptake and disaccharidase development [J]. J Surg Res, 1994, 57: 274~279.
    [85] Sase M, Lee J J, Park J Y, et al. Gastrointestinal motility in a rabbit model of intrauterine growth retardation [J]. Am J Obstet Gynecol, 2000, 182: S194.
    [86] Lowry O H, Rosebrough N J, Farr A L, et al. Protein measurement with the folin phenol reagent [J]. J Biol Chem, 1951, 1193: 265~275.
    [87] Johnson L R, Chandler A M. RNA and DNA of gastric and duodenal mucosa in antractomized and gastrin-treated rats [J]. Am J Physiol, 1973, 224: 937~940.
    [88] Giles K W, Myers A. An improved diphenylamine method for the estimation for deoxyribonucleic acid [J]. Nature, 1965, 206: 93.
    [89] Fleck A, Begg D. The estimation of ribonucleic acid using ultraviolet absorption measurements [J]. Biochemica Biophysica Acta, 1965, 108: 333~339.
    [90] Dahgvist A. Assay of intestinal disaccharidases [J]. Anal Biochem, 1968, 22: 99~107.
    [91] Tarvid I, Kushak R. The determination of aminopeptidase, carboxypeptidase and dipeptidase activities with the help of L-amino acid oxidase [J]. Lab Delo, 1987, 3: 227~229.
    [92] Moughan P J, Birtles M J, Cranwell P D, et al. The piglet as a model animal for studying aspects of digestion and absorption in milk-fed human infants [J]. World Rev Nutr Diet, 1992, 67:
    
    40~113.
    [93] Widdowson E M. Intra-uterine growth retardation in the pig Ⅰ. Organ and cellular development at birth and after growth to maturity [J]. Biol Neonate, 1971, 19:329~340
    [94] 周小秋,杨凤,陈可容,等.营养水平对猪胎儿器官发育和初生仔猪血液生化指标的影响[J].四川农业大学学报,1994,12(2):253~258.
    [95] Wang T, Xu R J. Effects of Colostrum Feeding on Intestinal Development in Newborn Pigs [J]. Biol Neonate, 1996, 70: 339~348.
    [96] First milk. Pig International, 1990, 3: 20~21.
    [97] Marchini G, Lagercrantz H, Milerad J, et al. Plasma levels of somatostatin and gastrin in sick infants and small for gestational age infants [J]. J Pediatr Gastroenterol Nutr 1988, 7:641~644
    [98] Robinson J S, Hart I C, Kingston E J, et al. Studies on the growth of the fetal sheep: the effect of reduction of placental size on hormone concentration in fetal plasma [J]. J Dev Physiol, 1980, 2: 239~248.
    [99] 姚裕家,白波,李炜如,等.鼠血清胰岛素样生长因子水平改变与追赶生长的关系研究[J].中华围产医学杂志,2001,4(1):42~44.
    [100] Daniel S S, Guck T O, Craig C. O, et al. Expression of the genes for insulin-like growth factor-Ⅰ (IGF-Ⅰ), IGF-Ⅱ, and IGF-Ⅰ binding proteins-1 and -2 in fetal rat under conditions of intrauterine growth retardation caused by maternal fasting [J]. Endocrinol, 1991, 128(1): 518
    [101] Schoknecht P A, Ebner S, Skottner A, et al. Exogenous insulin-like growth factor-Ⅰincreases weight gain in intrauterine growth-retarded neonatal pigs [J]. Pediatr Res, 1997, 42(2): 201~207
    [102] Wayne A P, Alan D S, Billie M M, et al. Gene expression of Insulin-like growth factors (IGFs), the type Ⅰ IGF receptor, and IGF-binding proteins in dexamethasone- induced fetal growth retardation [J]. Endocrinol, 1992, 130(3): 1424.
    [103] 杨凡,姚裕家,李炜如,等.胎鼠胰岛素样生长因子Ⅰ受体与宫内生长迟缓的关系研究[J].华西医科大学学报,2001,32(3):402~404.
    [104] Schanbacher F L, Talhouk R S, Murray F A. Biology and origin ofbioactive peptides in milk [J]. Livest Prod Sci, 1997, 50: 105~123.
    [105] McMeekan C P. Growth and development in the pig, with special reference to carcass quality characters [J]. J Agric Sci, 1940, 30: 276~348.
    [106] Fitzhardinge P M, Inwood S. Long-term growth in small-for-date children (discussion) [J]. Acta Paediatr Scand, 1989, 75:31~35.
    [107] Barros F C, Huttly S R A, Victora C G, et al. Comparison of the cause and consequences of prematurity and intrauterine growth retardation: a longitudinal study in Southern Brazil [J]. Pediatr. 1992, 90: 238~244.
    [108] Merlet B C, Gilbert T, Muffat J M, et al. Intrauterine growth retardation leads to a permanent
    
    nephron deficit in the rat [J]. Pediatr Nephrol, 1997, 8:175~180.
    [109] Bell A W. Foetal growth and its influence on postnatal growth and development [M]. In: Boorman K N, Buttery P J, Lindsay D B. The control of fat and lean deposition. Butterworth-Heinemann, Oxford, U.K. 1992, 111~127.
    [110] Handel S E, Strickland N C. The growth and differentiation of porcine skeletal muscle fiber types and the influence of birthweight [J]. J Anat, 1987, 152: 107~119.
    [111] Muaku S M, Thissen J P, Gerard G, et al. Postnatal catch-up growth induced by growth hormone and insulin-like growth factor-Ⅰ in rats with intrauterine growth retardation caused by maternal protein malnutrition [J]. Pediatr Res, 1997, 42(3): 370~377.
    [112] Albanese A, Stanhope R. Persistent short stature in children with intrauterine growth retardation: use of growth hormone treatment [J]. Horm Res, 1997, 48 (suppl): 63~66.
    [113] Rochiccioli P, Tauber M, Noisan V, et al. Investigation of growth hormone secretion in patients with intrauterine growth retardation [J]. Acta Paediatr Stand (Suppl), 1989, 349: 42~46, 53-54.
    [114] Thierior-Prevost G, Boccara J F, Francoual C, et al. Serum insulin-like growth factor 1 and serum growth-promoting activity during the first postnatal year in infants with intrauterine growth retardation [J]. Pediatr Res, 1988, 24: 380~383.
    [115] Boguszewski M, Bjarnason R, Jansson C, et al. Hormonal status of short children born small for gestational age [J]. Acta Paediatr, 1997, 423:189~192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700