欧拉型藏羊消化系统发育和肌肉H-FABP基因表达规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了探讨藏羊消化系统发育和肌肉H-FABP基因表达规律,本研究选择分布于青藏高原东部黄河第一大弯处甘肃省玛曲县的欧拉型藏羊为研究对象,将60只公羔分别于0、2、7、14、21、28、42、56、72、84、98和112日龄屠宰,采用大体解剖技术、酶活性分析法、生长曲线拟合方程及real time PCR技术等研究了0~112d(哺乳期)欧拉型藏羊羔羊消化道的发育规律及其瘤胃内主要消化酶活性的发育性变化,羔羊不同生理时期皱胃、小肠内容物及黏膜消化酶、胰腺消化酶活性的变化;羔羊消化器官的生长曲线拟合;H-FABP基因在欧拉羊心脏组织和肌肉组织中的发育性表达,以及与IMF含量的相关性,结果如下:
     1欧拉型藏羊消化器官的生长发育及瘤胃内主要消化酶活性的变化
     测定了各日龄欧拉型藏羊羔羊体重,肝脏、胰腺重量,复胃及内容物重量,复胃净重,小肠、大肠、盲肠净重、相对重,胃容积及肠长度;测定了瘤胃内容物微生物酶活及各胃室pH。结果表明:(1)欧拉型藏羊羔羊在0~112d的消化道发育迅速,消化道各部位增重明显,容积和长度等指标都显著增加,尤其瘤胃和小肠的增重明显高于其他部位的增重速度;(2)欧拉型藏羊羔羊跟群放牧食入部分牧草可明显刺激瘤胃的发育,70d时,瘤胃pH已接近成年羊水平,并维持在相对恒定的范围内,皱胃pH维持较低水平,呈强酸性;(3)瘤胃微生物酶活性随着日龄增长而提高,其中淀粉酶和木聚糖酶活性增加显著,纤维素酶和果胶酶增加较缓慢,蛋白酶缓慢降低,且纤维素酶活性维持在较低水平,112d时羔羊的消化道及其功能已接近成年水平;(4)在欧拉型藏羊生产实践中,70d断奶较适宜,56d是可接受的最早断奶日龄。
     2欧拉型藏羊羔羊消化器官发育的生长曲线拟合分析
     采用CurveExpert1.3和SPSS11.5分析软件对不同日龄欧拉型藏羊羔羊各消化器官进行四种曲线拟合。结果表明:欧拉型藏羊早期生长过程中体重、体尺及消化器官的变化符合生物自然生长规律,Richards曲线模型是拟合欧拉型藏羊羔羊体重和胸围早期生长的最优模型,R~2分别为0.9900858和0.9956355;Exponential Association是拟合欧拉型藏羊羔羊体高和体长早期生长过程的最优模型,R~2分别为0.9958635和0.9989817;Gompertz Relation模型是拟合羔羊瘤胃、网胃和瓣胃重量生长曲线的最优模型,R~2分别为0.9969633、0.9990474和0.9991166;4th Degree Polynomial Fit模型是皱胃、十二指肠、回肠和盲肠以及肝脏和胰脏重量变化拟合的最优模型,R~2分别为0.9982634、0.9995719、0.9993717、0.9993425、0.9982556和0.9987633;Logistic模型是空肠和直肠重量变化拟合的最优模型,R~2分别为0.9993071和0.9995853;4th Degree Polynomial Fit模型是羔羊各胃室容积变化拟合的最优模型,瘤胃、网胃、瓣胃和皱胃的R~2分别为0.9998086、0.9960602、0.9979316和0.9843221;4th Degree Polynomial Fit模型是拟合羔羊肠道长度生长曲线的最优模型,十二指肠、空肠、回肠、盲肠、结肠和直肠的R~2分别为0.9989660、0.9986684、0.9962898、0.9986193、0.9972662和0.9982142。
     3欧拉型藏羊羔羊消化道pH及主要消化酶发育规律
     取羔羊皱胃粘膜、内容物,小肠粘膜、内容物等以及胰腺,测定其pH和消化酶活性。结果表明:(1)随着欧拉型藏羊羔羊日龄增大,皱胃(内容物、不同部位黏膜)pH呈现下降趋势,均呈强酸性。初生羔羊皱胃(内容物、不同部位黏膜)pH均显著高于其他日龄(P<0.05)。羔羊到42d后,皱胃内pH变化基本不大(P>0.05);(2)初生羔羊皱胃凝乳酶比活性较高,随着羔羊日龄的增长,酶比活性在迅速降低,在羔羊42d前,皱胃凝乳酶比活性的变化幅度很大,42d后变化幅度较小。皱胃内容物蛋白水解酶比活性相对最低,羔羊皱胃幽门腺区蛋白水解酶比活性低于胃底中部和皱胃贲门腺区(P<0.05),胃底中部和皱胃贲门腺区蛋白水解酶比活性无显著差异(P>0.05)。42d后皱胃胃底中部黏膜蛋白水解酶比活性基本稳定。初生羔羊有较高的胃前脂酶比活性;(3)羔羊胰腺、小肠pH随日龄变化不大:胰腺均大于7,呈弱碱性。回肠pH高于空肠(P<0. 05),空肠的pH高于十二指肠(P<0. 05),十二指肠最低。羔羊十二指肠段pH呈弱酸性,空肠和回肠pH呈弱碱性;(4)羔羊出生后小肠内就存在较高的胰蛋白酶和糜蛋白酶活性。空肠胰蛋白酶和糜蛋白酶活性最高,回肠次之,十二指肠最低。随着羔羊日龄的增长,小肠胰蛋白酶和糜蛋白酶活性呈现为增加趋势,70d后羔羊小肠内容物胰蛋白酶和糜蛋白酶活性基本保持在相对稳定状态;(5)羔羊小肠不同部位淀粉酶活性不同,空肠段淀粉酶活性显著高于十二指肠和回肠(P<0.05)。随着羔羊日龄的增长,小肠淀粉酶活性持续增加,到84d后小肠各段淀粉酶活性基本处于稳定状态。初生羔羊小肠乳糖酶活性较高,小肠不同部位乳糖酶活性不同,空肠段内容物和粘膜乳糖酶活性最高,十二指肠次之,回肠最低;羔羊小肠粘膜乳糖酶活性显著高于其内容物乳糖酶活性;随着羔羊日龄的增长,小肠乳糖酶活性降低,70d后酶活恒定;(6)不同日龄羔羊小肠不同部位内容物和粘膜脂肪酶活性不同,空肠段脂肪酶活性最高,回肠次之,十二指肠最低,且羔羊小肠内容物脂肪酶活性显著高于其粘膜脂肪酶活性;随着羔羊日龄的增长,小肠脂肪酶活性逐渐升高,到84d后小肠各段粘膜脂肪酶活性基本呈稳定趋势;(7)羔羊胰脏主要消化酶活性随日龄变化不大。
     4羔羊肌肉H-FABP基因表达的发育性变化及其对肌内脂肪含量的影响
     取2、21、56、84和112日龄欧拉型藏羊公羔(各日龄5只)背最长肌、股二头肌和心脏样品,测定肌内脂肪含量和肌肉H-FABP mRNA表达量。结果表明:(1)随着羔羊日龄的增长,欧拉型臧羊肌肉IMF含量持续上升,不同部位组织IMF含量存在差异;(2)随着羔羊日龄的增长,其肌肉H-FABP mRNA的表达不同,并存在组织差异性,2~21d降低,21d后持续上升,各日龄间差异显著;H-FABP mRNA表达量在21~112d羔羊生长期间与IMF含量呈正相关,表明H-FABP基因在生长发育早期就影响IMF含量,可以作为影响欧拉型臧羊IMF含量的候选基因之一。
In order to explore the development of digestive system and expression rule of H-FABP gene in muscle for Tibetan sheep, Oula Tibet sheep that distributed over Maqu County of Gansu Province where located in east Qinghai-Tibet plateau were used as the study objects. 60 male lambs were slaughtered at 0, 2, 7, 14, 21, 28, 42, 56, 72, 84, 98, and 112 daily age respectively. In the study, main technology included dissection technique, active analysis of enzyme, growth curve model, real time PCR and so forth. The important research contents were developmental changes of digestive system, microbe enzyme activity in rumen, digestive enzyme activity in abomasum and small intestine as well as pancreas, growth curve model for digestive organs, expression of H-FABP gene and its correlation with intramuscular fat (IMF) in muscle. The main results are as follows.
     1 Developmental changes of digestive enzyme activity in rumen and digestive organs in Oula Tibetan sheep
     The determined index were body weight, body measurements, liver weight, pancreas weight, weight of stomach and its content, net weight and relative weight of small intestine and large intestine and cecum, stomach capacity and intestine length, pH in stomachs and digestive enzyme activity in rumen. The results indicated: first, with age increasing, weight, capacity and length of all parts of digestive system were increasing obviously, especially the weight of rumen and small intestine was quicker than that of other parts. Second, due to grazing pasture activate development of rumen, at the age of 70 days, pH in rumen of Oula sheep reached the level of adult sheep and kept relative stability, in addition, the pH in abomasum was lower and showed strong acidity. Third, with age increasing, Oula Tibetan sheep digestive enzyme activity in rumen increased, in which, activity ofα-amylase and xylanase increased obviously, activity of cellulose and pectinase increased slowly, while, activity of protease decreased slowly, activity of cellulose kept lower level. At the age of 112 days, digestive system and function of Oula sheep reached the level of adult sheep. Fourth, in productive practice of Oula sheep, lambs can be weaned at the age of 70 days, 56 daily age is the earliest weaning time which can be accepted.
     2 Fitting analysis of growth curve for digestive organs in Oula Tibetan sheep
     Fitting growth curve of different digestive organs in Oula sheep was analyzed in CurveExpert 1.3 and SPSS 11.5 software. The results showed: in early age, body weight, body measurements and digestive organs of Oula sheep accord with the natural law of biological growth. Richards model was the best model fitting early growth of body weight and heart girth of Oula sheep, R~2 was 0.9900858 and 0.9956355 respectively. Exponential Association model was the best model fitting early growth of body height and body length of Oula sheep, R~2 was 0.9958635 and 0.9989817 respectively. Gompertz Relation model was the best model fitting growth of rumen, recticulum and omasum weight of Oula sheep, R~2 was 0.9969633, 0.9990474 and 0.9991166 respectively. 4th Degree Polynomial Fit model was the best model fitting growth of abomasum, duodenum, ileum, cecum, liver and pancreas weight of Oula sheep, R~2 was 0.9982634, 0.9995719, 0.9993717, 0.9993425, 0.9982556 and 0.9987633 respectively. Logistic model was the best model fitting growth of jejunum and restum weight of Oula sheep, R~2 was 0.9993071 and 0.9995853 respectively. 4th Degree Polynomial Fit model was the best model fitting growth of stomachs cubage of Oula sheep, as to R~2 of rumen, recticulum, omasum and abomasum, R~2 was 0.9998086, 0.9960602, 0.9979316 and 0.9843221 respectively. 4th Degree Polynomial Fit model was the best model fitting growth of intestine length of Oula sheep, as to R~2 of duodenum, jejunum, ileum, cecum and rectal, R~2 was 0.9989660, 0.9986684, 0.9962898, 0.9986193, 0.9972662 and 0.9982142 respectively.
     3 Change of main digestive enzyme and pH in digestive system of Oula sheep
     Mucosa and content of abomasum and small intestine as well as pancreas were sampled to determine their pH and activity of digestive enzymes. The results indicated: first, with age increasing, pH of content and mucosa in abomasum of lambs decreased, appearing strong acidity. At birth, pH of content and mucosa in abomasum were significantly higher than that of other daily age (P<0.05)After d42,pH of content and mucosa in abomasum of lambs almost not changed (P>0.05). Second, chymosin activity in abomasum of lambs was higher at birth.With age increasing, chymosin activity decreased quickly. Before d42 chymosin activity in abomasum of lambs changed to large extent,but after d42 chymosin activity in abomasum of lambs almost not changed. Protease activity in abomasums contents was lower.Protease activity in pyloric gland region of abomasum was lower than that of fundic gland region and cardic gland region(P<0.05) protease activity in fundic gland region and cardic gland region was insignificantly(P>0.05). Afte d42 protease activity of fundic gland region in abomasums mucosa kept stability. Pregastric esterase activity in abomasums contents of lambs was higher at birth. Third, with age increasing, pH of pancreas and small intestine almost not changed. pH of pancreas was above 7, appearing alkalescence. pH of ileum was higher than that of jejunum (P<0. 05), pH of jejunum was higher than that of duodenum (P<0. 05), pH of duodenum was lowest. In addition, pH of duodenum appeared feeble acidity, pH of jejunum and ileum appeared alkalescence. Fourth, trypsinase and chymotrypsin activity in small intestine of lambs were higher at birth.Trypsinase and chymotrypsin activity in jejunum were highest, next in ileum, the lowest in duodenum. With age increasing, trypsinase and chymotrypsin activity in small intestine of lambs increased. After d70, trypsinase and chymotrypsin activity in small intestine of lambs kept relatively stable. Fifth,α-amylase activity in different parts of small intestine was different,α-amylase activity in jejunum was significantly higher than that in duodenum and ileum(P<0.05). With daily age of Oula sheep growing,α-amylase activity in small intestine increased continually, after 84 daily age,α-amylase activity in small intestine kept relative stabilization.Lactase activity in small intestine of lambs were higher at birth.Lactase activity in different parts of small intestine was different, lactase activity in jejunum content and mucous was highest, next was duodenum, and ileum was the lowest. Lactase activity in small intestine mucosa was significantly higher that in content. With age increasing, lactase activity in small intestine of lambs decreased. After d70 ,lactase activity in small intestine of lambs kept relatively stable. Sixth, lipase activity in different parts of content and mucosa in small intestine was different for different daily lambs, lipase activity in jejunum was highest, next was ileum, the lowest was duodenum. Lipase activity in small intestine content was significantly higher than that in mucosa(P<0.05). With age increasing, lipase activity in small intestine increased gradually.After d84 lipase activity in small intestine kept relatively stable. Seventh, with age increasing, digestive enzyme in pancreas almost not changed.
     4 Developmental change H-FABP gene expression and its effect on IMF in lamb muscle
     Longissimus thoracis, biceps femoris muscle and heart of male lambs at the age of 2, 21, 56, 84 and 112 days were sampled respectively. IMF and H-FABP mRNA expression in muscle were analyzed. The results indicated: first, with age increasing, IMF in muscle was increasing continually, in addition, IMF in different tissue was different; second, with age increaing, H-FABP mRNA expression in muscle changed, H-FABP mRNA expression in different tissue was different. From 2 to 21 daily age, H-FABP mRNA expression in muscle decreased, after d21, H-FABP mRNA expression in muscle was increasing continually, the difference at different daily age was significant. From 21 to 112 daily age, H-FABP mRNA expression in muscle and IMF appeared the positive correlation, so, H-FABP gene affected IMF in early growth and development of lambs, H-FABP gene can be used as the candidate gene controlling IMF in Oula Tibetan sheep.
引文
[1] Alais C.Etude de la secretion d'enzymes coagulant dans la caillette de l'agneau[J]. Ann. Biol. Anita. Biochim. Biophys. 1963,3:65.
    [2] Anderson KL,Nagaraja TG,and Momll JL.Ruminal metabolic development in calves weaned conventionally or early[J]. J. Dairy Sci. 1987,70:1000.
    [3] Anderson KL,Nagaraja TG,Morrill JL,et al.Ruminal microbial development in conventionally or early weaned calves[J].J.Anim. Sci. 1987,64:1215-1226
    [4] Andren A,Bjorck L and Claesson O.Quantification of chymosin (rennin) and pepsin in bovine abomasa by rocket immuno-electrophoresis[J]. Swed. J. Agric, Res. 1980,10:123.
    [5] Arai K.Growth curves of spotbill ducks,anas poecilorncha zonorhyncha swinhoe,in caplivity[J].Japanese Poultry Science,1983,25(4):253-258.
    [6] Arias JL, Vial E, Cabrera R. Observations on the histogenesis of bovine ruminal papillae[J]. Am J Vet Res. 1980,Feb; 41(2):174-8
    [7] Arima K.Milk-clotting enzyme from microorganism,part I,screening test and identification of the potent fungus[J].Agric Biol Chem.1967,31:540-545.
    [8] Arnyas M,Grindflek E,JavorA,et al.Investigation of two candidate genes formeat quality traits in a quantitative trait locus region on SSC6:the porcine short heterodimer partner and heart fatty acid binding protein genes [J]. Journal ofAnimal Breeding and Genetics,2006,123(3):198-203.
    [9] Asari M,et al.Histological development of bovine abomasums[J].Anat Anz.1985;159(1-5):1-11.
    [10] Attaix D, Meslin JC. Changes in small intestinal mucosa morphology and cell renewal in suckling, prolonged-suckling, and weaned lambs[J]. Am J Physiol. 1991 Oct;261(4 Pt 2):R811-8.
    [11] Aumaitre A,Corring T.Development of digestive enzymes in the piglet from birth to 8 weeks [J] .Nutrition and Metabolism,1978,22:244-255.
    [12] Aumaitre A.Development of enzyme activity in the digestive tract of the suckling pig:Nutrition significative and implications for weaning[J].World Rev.Anim.Prod.1972,8:54.
    [13] Avila CG,Harding R.The development of the gastrointestinal system in fetal sheep in the absence of ingested fluid[J].Pediatr Gastr Nutr,1991,12:96-104.
    [14] Bahary N,Zorich G,Pachter JE,et al.Molecular genetic linkage maps of mous chromosomes 4 and 6[J].Genomics.1991,11(1):33-47.
    [15] Baldwin RL.Sheep gastrointestinal development in response to different dietary treatments [J].Small Ruminant Res,2000,35:39-47.
    [16] Billich S,Wissel T,Kratzin H,et al. Cloning of a full length complementary DNA for fatty acid-binding protein from bovine heart [J]. Eur J Biochem,1988,175(3):549-556.
    [17] Binas B, Danneberg H, McWhir J, et al. Requirement for the heart-type fatty acid binding protein in cardiac fatty acid utilization [J].FASEB,1999,13(8):805-812.
    [18] Bomba A, Zitnan R, KoniarováI, et al. Rumen fermentation and metabolic profile in conventional and gnotobiotic lambs[J]. Arch Tierernahr.1995;48(3):231-43.
    [19] Braude R,Dollar AM,Mitchell KG and I.W.A. Clotting of milk in the stomach of the young pig. Proc. Nutr.Soc.1958,17.
    [20] Brody S.Bioenergetics and Growth[M].Reinhold.New York.1945.1023
    [21] Brown JJ and Perry TW.Trypsin and chymotrypsin development in the neonatal lamb[J].J Anim Sci.1981,52:359-362
    [22] Brown JJ.The quantitative analysis of alpha amylase,trypsin,chymotrypsin,lactase,sucrase and maltase in feeder lambs under various diet regimens[D].Thesis.Purdue Univ,West Lafayette,IN.1978.
    [23] Brownlee A.The development of rumen papillae in cattle fed on different diets[J]. Brit. Vet.J, 1956, 112 :369.
    [24] Buddington RK,Elnif J,Malo C,Donahoo JB.Activities of gastric,pancreatic,and intestinal brush-border membrane enzymes during postnatal development of dogs[J]. Am J Vet Res.2003 May;64(5):627-34.
    [25] Calvo J H,Vaiman D,Saydi-Mehtar N.Characterization,genetic variation and chromosomal assignment to sheep chromosome 2 of the ovine heart fatty acid-binding protein gene(FABP3) [J].Cytogenet Genome Research,2002,98:270-273.
    [26] Caneque V,Diaz MT,Alvarez I,Lauzurica S,et al.The influences of carcass weight and depot on the fatty acid composition of fats of suckling Manchego lambs[J]. Meat Science,2005,70:373-379.
    [27] Cera KR,Malian DC,Reinhart GA. Effect of week postweaning and diet composition on pancreatic and small intestinal luminal lipase response in young swine[J].J Anim.Sci,1990,68:384-391.
    [28] Corring T,Chayvialle JA. Diet composition and the plasma levels of some peptides regulating pancreatic secretion in the pigs[J].Reproduction,Nutrition and Development,1987,27:967-977
    [29] Corring T,Saucier R.Secretion pancreatique exocrine sUr pore fistule adaptation a la teneur en proteins du regime[J].Ann.Biol.Anim.Bioch.Biophys,1972,12:223-241
    [30] Corring T,Aumaitre A,and Durand G.Development of digestive enzymes in the piglet from birth to 8 weeks. I. Pancreas and pancreatic enzymes[J]. Nutr. Metab.1978, 22:231.
    [31] Depassille AM,Pelletier BG,Menard J,et al. Relationship of weight gain and behavior to digestive organ weight and enzyme activities in piglets [J].Animal Science, 1989, 670: 2921-2929.
    [32] Dinsdale D,Cheng KJ,Wallace RJ,et al. Digestion of epithelial tissue of the rumenwall by adherent bacteria in infused and conventionally fed sheep[J]. Appl Environ Microbiol. May;1980 39(5):1059-66.
    [33] Dodenhoff J,Van Vleck LD,Gregory KE.Estimation of direet,maternal and grand maternal genetic effeets for weaning weight in several breeds of beef cattle[J].J AnimSci.1999,77:840-845.
    [34] Era Berinkovd,Jiri Sajdok,Pavel Rauch and Jan Kag.Determination of chymosin and bovine pepsin content of bovine rennets by high performance liquid chromatography[J].Neth Milk Dairy.1988,42:337
    [35] Fischer H, Gustafsson T, Sundberg C J, et al. Fatty acid binding protein 4 in human skeletal muscle [J].BBRC,2006,346:125-130.
    [36] Flatt WP,Warner RG,and Loosli JK.Influence of purified materials on the development of the ruminant stomach[J]. J. Dairy Sci.1958,41:1593.
    [37] Foltmann B,Jensen AL,Lonblad P,et al. A developmental analysis of the production of chymosin and pepsin in pigs[J]. Comp.Biochem.Physiol.1981,68:9.
    [38] Fonty G.et al.Development of the rumen digestive functions in lambs placed in a sterile isolator a few days after birth[J].Reprod Nutr Dev.1991;31(5):521-8.
    [39] Franco A,et al.Histomorphometric analysis of the abomasum of the sheep during development[J]. Ann Anat. 1993 Apr,175(2):119-25.
    [40] Galand G.Brush border membrane sucraseisomaltase,maltase-glucoamylase and trehalase in mammals[J].Comp.Biochem.Physiol. B Comp. Biochem.1989,94:1.
    [41] Garnot P,Toullec R,Thapon JL,Martin TP,Hoang MT.Influence of age,dietary protein and weaning on calf abomasal enzymic secretion[J].J Dairy Res.1977 Feb,44(1):9-23.
    [42] Gerbens FJ,Verburg HT,Van Moerkerk,et al. Associations of heart and adipocyte fatty acid-binding protein gene expression with intramuscular fat content in pigs [J]. Animal Science,2001,(79):347-354.
    [43] Gerbens F, DJ de Koning, Handers FL,et al.The effect of adipocyte and heart fatty acid-binding protein genes on intramuscular fat and backfat content in Meishan crossbred pigs[J].Anim Sci,2000,78(3): 552-559.
    [44] Gerbens F,Rettenberger G,Lenstra JA,et al. Characterization,chromosomal localization, and genetic variation of the porcine the porcine heart acid-binding protein gene[J].Mamm Genome,1997,8(5): 328-332.
    [45] Gerbens F,Verburg FJ,Van HT Moerkerk,et al.Associations of heart and adipocyte fatty acid-binding protein gene expression with intramuscular fat content inpigs[J]. Anim Sci,2001,79(2):347-354.
    [46] Gerbens F,Handers F L,Verburg F J,et al.Effect of genetic variants of the heart fatty acid-binding protein gene on intramuscular fat and performance traits in pig[J].Anim Sci,1999,77(4):846-852.
    [47] Gorrill ADL,Thomas JW. Body weight changes,pancreas size activity,and proteolytic enzyme activity and protein digestion in intestinal calves fed soybean and milk protein diets [J].Nutrition,1961,92:215-33.
    [48] Gorrill ADL,and Thomas JW.Trypsin,chymotrypsin and total proteolytic activity of pancreas,pancreatic juice and intestinal contents from the bovine[J]. Anal. Biochem.1967,19:211.
    [49] Greenwood RH, Morrill JL, Titgemeyer EC,et al. A new method of measuring diet abrasion and its effect on the development of the forestomach[J].J Dairy Sci.1997,Oct;80(10):2534-41.
    [50] Grossman M,et al. Comparison of proposed growth curves functions in chickens Growth[J]. 1982, 46: 259 -274
    [51] Grossman M,et al.Logistic growth curve of chickens:heritability of parameters[J]. Heredity, 1985, 76: 459 -462
    [52] Guilloteau PCT,Chayvialle JA,Bernard C,et al. Effect of soya protein on digestive enzyme,gut hormone and anti-Soya antibody plasma levels in the prerumimant calf[J] .Repord. Nutr.Develp.1982, 26:717-728.
    [53] Guilloteau P,Corring T,Toullec R,et al.Enzyme potentialities of the abomasum and pancreas of the calf. I.--Effect of age in the preruminant[J]. Reprod Nutr Dev.1984,24(3): 315-325.
    [54] Guilloteau P.Effects of age and weaning on enzyme activities of abomasum and pancreas of the lamb[J].J Dairy Sci.1983,66:2373-2385
    [55] Harrison HN,Warner RG,Sander EG,et al. Changes in the tissue and volume of the stomach of calves following the removal of dry feed or consumption of inert bulk[J].J.Dairy Sci,1960,43:1301.
    [56] Hartman PA,Hays VW,Baker RC,et al. Digestive enzyme development in the young pig[J].J. Anim. Sci. 1961,20:114.
    [57] Haunerland NH, Spener F.Fatty acid-binding proteins-insights from genetic manipulations [J]. Prog Lipid Res,2004,43(4):328-349.
    [58] Haunerland NH.Fatty acid binding protein in locust and mammalian muscle. Comparison of structure, function and regulation [J].Comp Biochem PHysio1,1994,109(2-3):199-208.
    [59] Henschel MJ.Comparison of the development of proteolytic activity in the abomasums of the preruminant calf with that in the stomach of the young rabbit and guinea-pig[J]. Br.J.Nutr,1973,30:285.
    [60] Hetty MG.Weaning and the weanling diet influence the villous height and crypt depth in the small intestine of pigs and alter the concentrations of short-chain fatty acids in the large intestine and blood [J].J Nutr,1988,76:947-953.
    [61] Hibbard B,Peters JP,Shen RYW,et al.Effect of recombinant porcine somatotropin and dietary protein on pancreatic digestive enzyme in the pig[J]. Journal of Animal Science,1992,70:2188-2194.
    [62] Hicks C,Schinckel AP,Forrest JC,et al.Biases associated with genotypes and sex in prediction of fat-free lean mass and carcass value in hogs[J].J. Anim.Sci.1998,76:2221-2234
    [63] Hoover WH,Stocks SR.Balancing carbohydrates and protein for optimum rumen microbial yield[J].J Dairy Sci,1991,74(10):3630-3644
    [64] Huang Zhi-guo,Xiong Li.The developmental changes and effect on IMF content of H-FABP and PPAR mRNA expression in sheep muscle[J]. Acta Genetica Sinica,June 2006,33(6):507-514.
    [65] Hube JT.Relation of age and diet to digestive enzyme activity in the calf.[J] Nutrition,1961,107: 87
    [66] Huber JT,Jacobson NL,Allen RS,et al. Digestive enzyme activities in the young calf[J].J. Dairy Sci. 1961,44:1494.
    [67] Huber JT,Jacobson NL,Mc-Gilliard AD,et al. Utilization of carbohydrates introduced directly into the omaso-abomasai area of the stomach of cattle of various ages[J]. J. Dairy Sci.1961,44:321.
    [68] Huber JT.Calf Nutrition and rearing.Development of the digestive and metabolic apparatus of the calf[J].J. Dairy Sci.1969,52:1303.
    [69] Isabelle LE,Guilloteau PAUL,Catherine Wicker-Planquart,et al. Gastric and pancreatic enzyme activities and their relationship with some gut regulatory peptides during postnatal development and weaning in calves[J]. J.Nutr.1992,122:1434-1445.
    [70] Jesen. Effect of age, weaning and diet on digestive enzyme levels in the piglet[J]. Animal Science, 1997,52:1098-1107
    [71] Kirton AH,Paterson DJ and Clarke NH.Slaughter information and rennin production from bobby calves[J]. New Zealand J.Agric. Res.1971,14:397.
    [72] Kmet V,Boda K,Javorsky P,et al.Dynamics of enzymatic activity development in the adherent rumen microflora[J]. Arch Tierernahr.1986 Jul,36(7):621-8.
    [73] Kreikemeier KK and Harmon DL.Effect of abomasal carbohydrate infusion on ileal digesta oligosaccharide flow in steers[J]. J. Anim. Sci.1991,69(Suppl. 1):517.(Abstr.)
    [74] Kreikemeier KK,Harmon D L,Peters JP,et al.Influence of dietary forage and feed intake oncarbohydrase activities and small intestinal morphology of calves[J].J. Anim. Sci. 1990,68: 2916-2929.
    [75] Kwakkel RP,Dacro BJ,Koops WJ.Multiphasic analysis of growth of the body and its chemical components in white leghorn pullets[J].Poult Sci,1993,72(8):1421
    [76] Lane MA,Baldwin RL & Jesse BW.Sheep rumen metabolic development in response to age and dietary treatments[J]. J. Anim. Sci.2000,78:1990-1996.
    [77] Lane MA and Jesse BW.Effect of volatile fatty acid infusion on development of neonatal sheep rumen epithelium[J]. J. Dairy Sci.1997,80:740-746.
    [78] Lesmeister KE and Jeinrichs AJ.Effects of adding extra molasses to a texturized calf starter on rumen development,growth characteristics,and blood parameters in neonatal dairy calves[J].J Dairy Sci,2005, 88(1): 411-8.
    [79] Lewis CJ,Hartman PA,Liu CH,et al. Digestive enzymes of the baby pig.Pepsin and trypsin[J].J. Agric. Food Chem.1957,5:687.
    [80] Lhoste EF,Fiszlewicz M,Gneugneau AM,et al.Effect of dietary proteins on some pancreatic mRNA encoding digestive enzymes in the pig [J]. J Nutr Biochem,1993, 4:143-152
    [81] Li CL, Pan YC.Distribution of polymorpHism of H-FABP,MC4R,ADD1 gene,associated with IM and BF in three population in pig[J]. Yi Chuan,2006,25(2):159-164.
    [82] Lindemann MD,Cornelius SG,Kandelgy SM,et al. Effect of age,weaning and diet on digestive enzyme levels in the piglet[J].J Anim Sci,1986 May;62(5):1298-307.
    [83] Lopez V,Martínez-Victoria E,Yago MD,et al.Postnatal development of the exocrine pancreas in suckling goat kids[J].Arch Physiol Biochem.1997 Apr;105(2):210-5.
    [84] Lubis D, O'Shea JD. Development of the omasum in sheep[J]. Acta Anat (Basel).1978,100(4):400-10.
    [85] Makkind,Caroline A,George Puia Negulescu.Effect of dietary protein source on feed intake,growth, pancreatic enzyme activities and jejunal morphology in newly-weaned piglets[J].British journal of Nutrition. 1994,72:353-368
    [86] Mamada T,Maeda S &Kameoka K.Factors influencing growth of rumen,liver,and other organs in kids weaned from milk replacers to solid foods[J].J.Dairy Sci.1976,59:1110-1118.
    [87] Marks HL.Growth curve changes associated with long-term selection for body weight in Japanese quails[J].Growth,1978,42:129
    [88] Morrill JL,Stewart WE,Mccormick RJ,et al.Pancreatic amylase secretion by young calves[J].J .Dairy Sci.1970,53:72-78
    [89] Mylrea PJ. Digestion of milk in young calves.1. Flow and acidity of the contents of the small intestine[J]. Res.Vet.Sci.1966,7:333-341.
    [90] Naranjo JA, Martínez-Victoria E,Valverde A,et al. Effect of age on the exocrine pancreatic secretion of the preruminant milk-fed goat[J]. Arch Physiol Biochem.1997 Apr,105(2):144-50.
    [91] Nocek JE,Heald CW,Polan CE.Influence of ration physical form and nitrogen availability on ruminal morphology of growing bull calves[J].J Dairy Sci.1984,Feb; 67(2):334-43.
    [92] Nocek JE,Herbein JH,Polan CE.Influence of ration physical form, ruminal degradable nitrogen and age on rumen epithelial propionate and acetate transport and some enrymatic activities[J].J Nutr.1980,Dec; 110(12):2355-64.
    [93] Norbert H,Haunerland, Friedrich Spener.Fatty acid-binding proteins insights from genetic manipulations [J].Progress in Lipid Research, 2004, 43:328-349.
    [94] Oskov ER,Ryle M著,周建民,张晓明,王加启译.反刍动物营养学[M].北京:中国农业科技出版社,1992
    [95] Pang WJ. Relationship among H-FABP gene polymorpHism,intramuscular fat content, and lipid droplet content in main pig breeds with different genotypes in western China[J].Yi Chuan Xue Bao, 2006, 33(6): 515-524.
    [96] Patrici A. Eating quality of pork in Denmark [J]. Pig Farming(supplement ) ,1985(10):56-57.
    [97] Paulussen RJ,Geelen MJ,Beynen AC,et al.Immunochemical quantitation of fatty-acid-binding proteins.I.Tissue and intracellular distribution, postnatal development and influence of pHysiologyical conditions on rat heart and liver FABP [J]. Biochim BiopHys Acta,1989,1001(2):201-209.
    [98] Peeters RA,Veerkamp JH, Geurts A van Kessel,et al.Cloning of the cDNA encoding human skeletal-muscle fatty-acid-binding protein,its peptide sequence and chromosomal localization [J]. Biochem J.1991,276:203-207.
    [99] Peiniau J,Souffrant WB,Aumaitre A.日粮蛋白质水平对断奶仔猪胰酶和肠肽酶的影响[A].第六届猪消化生理国际学术会议论文集[C].成都:四川科技出版社,1994.
    [100] Profirov Y.Amylolytic activity in the digestive tract of lambs during the first months after birth[J].Arch Tierernahr.1990,Mar,40(3):239-44.
    [101] Qinghua Qian,Lyn Kuo,Yie-Teh Yu,et al.A concise promoter region of the heart fatty acid-binding brotein gene dictates tissue-appropriate expression[J].American Heart Association,Inc.1999,276-289.
    [102] Redondo E,Franco AJ and Masot AJ.Morphometric and immunohistochemical study of the omasum of red deer during prenatal development[J].J.Anat,2005,206:543-555.
    [103] Russell JR.Effect of dietary corn starch intake on ruminal small intestinal and large intestinal starch digestion in cattle[J]. AnimaLScience.1981,52:1170
    [104] Russell JR.Effect of dietary corn starch intake on pancreatic amylase and intestinal maltase and pH in cattle [J]. Animal Science,1981,52:1177-1182.
    [105] Sakata T,Tamate H.Rumen epithelial cell proliferation accelerated by rapid increase in intraruminal butyrate[J].J Dairy Sci.1978,Aug; 61(8):1109-13.
    [106] Sakata T,Tamate H.Rumen epithelium cell proliferation accelerated by propionate and acetate[J].J Dairy Sci.1979,Jan;62(1):49-52.
    [107] Sande EG,Warner RG,Harrisoil,et al.The stimulatory effect of sodium butyrate and sodium propionate on the development of rumen mucosa in the young calf[J].J. Dairy Sci,1959,42:1600-1605.
    [108] Sangild PT,Fowden AL,Trahair JF.How does the foetal gastrointestinal tract develop in preparation for enteral nutrition after birth?[J].Livestock Prod Sci,2000,2:141-150.
    [109] Sangild PT,Holtug K.Birth and prematurity influence intestinal function in the new born pig[J].Comp Biochemi Physi,1997,(2):359-361.
    [110] Sangild PT,Westrom B,Fowden AL,et al.Development regulation of the porcine exocrine pancreas by glucocorticoids[J].Journal of Pediatric Gastroenterology and Nutrition,1994,19:204-212.
    [111] Sangild PT,Westrom B,Fowden AL,et al.Stimulation of the perinatal development of the porcine exocrine pancreas by hormones[J]. Acta Physiologica Scandinavica.l992,146 (Supp1.608),158.
    [112] Schaap FG,Binas B,Danneberg H,et al.Impaired long-chain fatty acid utilization by cardiac myocytes isolated from mice lacking the heart-type fatty acid binding protein gene [J].Circ Res,1999,85(4):329-337.
    [113] Schweizer M,Roder K,Zhang L,et al.Transcription factors acting on the promoter of the rat fatty acid synthase gene[J].Biochem Soc Trans.2001,30(6):1070-1072.
    [114] Shirazi-Beechey SP,Kemp RB,Dyer J,et al.Changes in the functions of the intestinal brush border membrane during the development of the ruminant habit in lambs[J].Comp Biochem Physiol B.1989; 94 (4):801-6.
    [115] Siddons RC.Carbohydrase activities in the bovine digestive tract[J].J. Biochem,1968,108:839.
    [116] Simunek J,Skrivanova V,Hoza I,et al.Ontogenesis of enzymatic activities in the gastrointestinal tract of young goats[J]. Small Ruminant Research.1995,17:207-211
    [117] Sissions JW.Digestive enzymes of cattle.[J] Sci.Food.Agri,1981,32:105-114.
    [118] Smith RH.The development and function of the rumen in milk-fed calves.Ⅱ.Effect of wood shavings in the diet[J]. J. Agrie.Sci.1961,56:105-111.
    [119] Smith R,Net H.Exchange of certain in organic ions and water in th ealmentary tract of the milk-fed calf[J].Biochem.J.1962,83,151-163
    [120] Stobo IJF,Roy J, and Gaston HJ.Rumen development in the calf.1.The effect of diets containing different proportions of concentrates to hay on runien development[J]. Br.J.Nutrition,1966, 20:171-192.
    [121] Tamate H,Ishida K,Kondo Y,et al.Studies on the stomach growth of young dairy calves. I.The forestomach growth in young dairy calves fed on hay or dried native grass as roughage and on starter[J]. Tohoku J. Agr.Res.1962,13:351.
    [122] Tamate H,McGilliard AD,Jacobson NL,et al.Effect of various dietaries on the anatomical development of the stomach in the calf[J].J.Dairy Sci,1962,45:408-420.
    [123] Tamate H,McGilliard AD,Jacobson NL,et al.The effect of various diets on the histological development of the stomach in the calf[J]. Tohoku J. Agr.Res.,1964,14:171.
    [124] Temouth JH, Roy JH,Shotton S.Concurrent studies of the flow of digesta in the duodenum and exocrine pancreatic secretion of calves.4.The effect of age[J] .Br.J.Nutr.1976,36:523-535
    [125] Temouth JH,Siddons RC,Toothill J.Pancreatic secretion in the milk-fed calf[J]. Proc. Nutr. Soc, 1971, 30:89
    [126] Temouth JH and Roy JHB.Effect of diet and feeding technique on digestive function in the calf[J]. Ann. Rech. Vet. 1973,4:19.
    [127] Toncheva E,Profirov Y,Voynova R.Disaccharidase activity in intestine epithelium microvilli membranes of lambs during the first month after birth[J]. Arch Tierernahr.1987 Apr,37(4):321-6.
    [128] Toofanian F,Hiii F WG,Kidder DE.The mucosal disaccharidases in the small intestine of the calf[J]. Ann.Rech.1973,Vet.4:57-69
    [129] Tosh JJ,Kemp RA. Estimation of variance components for lamb weights in three sheep Populations[J]. J Anim Sci.1994,72:1184-1190.
    [130] Toullec R,Frantzen JF and Mathieu CM.Influence de la coagulation des proteines du lair sur l'utilisation digestive d'un lait de rereplacement par le veau pr6ruminant[J]. Ann. Zootech.1974,23:359.
    [131] Trahair JF,Sangild PT.Enteral diet composition alters development of the GIT and other fetal organs [J]. Gastroenterology,1999,116:75-82.
    [132] TrahairJF,Avila CG,Robinson PM.Growth of the fetal sheep small intestine[J].Growth.1986 Summer, 50(2):201-16.
    [133] Ulbrich M,Fahmy N,Hakim A,et al.Investigations of the activity of disaccharidases in growing sheep. 1. Suckling lambs from birth to an age of 4 weeks[J]. Arch Tierernahr.1980 Sep,30(9):687-94.
    [134] Ulbrich M,Hoffmann M,Fahmy Abdel Hakim N. Pancreatic lipase activity in growing sheep [J]. Arch Tierernahr.1981,Feb;31(2):171-8.
    [135] Van Hellon RW,Wilson TA. Bovine amylase,insulin and glucose response to high and low concentrate diets[J] .Anim.Sci.1978,47:445
    [136] Veerkamp JH,Maatman RG.Cytoplasmic fatty acid-binding proteins:their structure and genes[J].Prog Lipid Res.1995,34(1):17-52.
    [137] Veerkamp JH,Moerkerk HBT,Prinsen CFM,et al.Structural and functional study on different human FABP types[J].Molecular and Cellular Biochemistry,999,192:137-142.
    [138] Veerkamp JH,TH van Kuppevelt,Maatman RG,et al.Structural and functional aspects of cytosolic fatty acid-binding proteins[J].Prostaglandings Leukot Essent Fatty Acids.1993,49(6):887-906.
    [139] Walker DM.The development of the digestive system of the young animal. III. Carbohydrase enzyme development in the young lamb[J].J. Agric.Sci.1959,53:374.
    [140] Walker DM.The development of the digestive system of the young animal. IV. Proteolytic enzyme development in the young lamb[J]. J. Agric. Sci.1959,53:381.
    [141] Wang XB,Ogawa T,Suda S,et al.Effects of nutritional level on digestive enzyme activities in the pancreas and intestine of calves slaughtered at same body weight[J].Asian-Australian Journal of Animal Science,1998,11(4):375-380.
    [142] Warner RG,Flatt W P and Loosli JK.Dietary factors affecting development of the ruminant stomach[J]. J. Agr. Food Chem.1956,4:788.
    [143] Warner RG.Is hay required to develop rumen capaeity?[J] J. Dairy Sei,1961,44:1177.
    [144] Westrom BR,Ohlsson B and Karlsson BW.Development of porcine pancreatic hydrolases and their isoenzymes from fetal period to adulthood[J].Pancreas,1987,2:589-59
    [145] Whittemore CT.An approach to pig growth modeling[J]Anim.Sci. 1986,63:615-621
    [146] Wise G and Anderson GW.Factors affecting passage of liquids into the rumen of the dairy calf. 1. Method of administering liquids--drinking from an open pail vs. through a rubber nipple[J]. J. Dairy Sci., 1939 22: 697.
    [147] Zschiesche W,Kleine AH,Spitzer E,et al.Histochemical localization of heart-type fatty-acid binding protein in human and murine tissues[J].Histochem Cell Biol.1995.103(2):147-156.
    [148]白纪刚,吕毅,王浩华等.实验用猪胰腺和小肠组织总RNA提取及鉴定[J].陕西医学杂志,2005,34 (10): 1182 -1184.
    [149]包富贵,马登录,王文飙.欧拉羊产肉量测定报告[J].中国草食动物,1999,1(6):40-141.
    [150]包富贵.欧拉羊产皮性能调查报告[J].中国养羊,1998,3:42-42.
    [151]陈才勇.新生仔猪脂类代谢和肝脏发育的动态变化及胎儿宫内发育迟缓对其的影响[D].南京农业大学,2003,6.
    [152]陈杰主编,家畜生理学[M],中国农业出版社,2003.
    [153]陈景仁.雷州山羊体重生长曲线方程的建立及校正方法的探讨[J].广东畜牧兽医科技,1994,19(4):10~11.
    [154]陈景仁.雷州山羊阉羊生长曲线方程的研制及应用[J].草食家畜,1995,(2):4-5.
    [155]邓诗品,凌士希,赵仁璧等等.欧拉羊生产性能的研究[J].中国畜牧杂志,1964,2(4):1-5.
    [156]丁莉.关中奶山羊周岁前消化系统发育规律的研究[D].硕士学位论文.西北农林科技大学,2007
    [157]冯仰廉主编.反刍动物营养学[M].科学出版社,2006.
    [158]高振华.獭兔消化道的酶活变化和组织形态发育规律及外源酶添加效应研究[D].博士学位论文.武汉.华中农业大学,2006
    [159]郭淑珍,牛小莹,格桂花.欧拉羊与乔科羊杂交后代屠宰性能分析[J].畜牧兽医杂志,2010,29(3):6-8.
    [160]韩正康,陈杰著.反刍动物瘤胃的消化和代谢[M].科学出版社.1988
    [161]韩正康.家畜营养生理学[M].北京:农业出版社,1993.
    [162]郝称莉,李齐发等.湖羊肌肉组织H-FABP和PPARY基因表达水平与肌肉脂肪含量的相关研究[J].中国农业科学.2008,41(11):3776-3783.
    [163]郝正里,郭天芬,孙玉国等.采食不同组合全饲粮颗粒料羔羊的瘤胃液代谢参数[J].甘肃农业大学学报,2002,37(2):145-152
    [164]黄治国,谢庄.畜禽脂肪性状相关基因研究进展[J].畜牧与兽医,2004,36(4):41-43.
    [165]黄治国.绵羊生长及肌肉脂肪部分相关基因表达的发育性变化研究[D].南京农业大博士论文,2005.
    [166]吉俊玲,秦豪荣,魏忠义.艾维茵(Avine)父母代母鸡内脏器官生长发育规律研究[J].黑龙江畜牧兽医, 2002, (5):11-12.
    [167]姜勋平,陈圣偶,黄永宏.林肯杂交羊生长发育模型研究[J].云南农业大学学报,1996,11(3):168-171.
    [168]姜勋平,丁家桐,杨利国.肉羊繁育新技术[M].北京:中国农业科技出版社,1999,98-106.
    [169]康康.蒙古羊和滩羊H-PABP基因、PPAR-γ基因与IMF的变化规律及其相关性研究[D].杨凌:西北农林科技大学,2008.
    [170]寇占英.哺乳犊牛消化道主要消化酶发育规律的研究[D].硕士学位论文.北京:中国农业大学,1999.
    [171]郎侠.欧拉型藏羊群体遗传结构的微卫星DNA多态性分析[J].中国草食动物,2010年专辑:194-196.
    [172]郎侠主编.甘肃省绵羊遗传资源研究[M].北京:中国农业科学技术出版社,2009.
    [173]李长龙,潘玉春,孟和等.H-FABP、MC4R、ADD1基因多态性在3个猪群中分布及其与肌内脂肪和背膘的相关研究[J].遗传,2006,28(2):159-164.
    [174]李长忠.断奶日龄对仔猪胰腺和肠道糜蛋白酶和胰蛋白酶比值(C/T)的影响[J].黑龙江畜牧兽医,2000, (9):7-8
    [175]李建柱.淮南麻鸭消化器官发育及其与体重、体尺增长关系研究[D].硕士学位论文.河南农业大学,2008.
    [176]李启鹏.哺乳犊牛胃中主要消化酶发育规律的研究[D].硕士学位论文.北京.中国农业大学,2000.
    [177]李庆岗,陶立,张东红,等.皖系白猪早期生长发育规律的研究[J].安徽农业学报,2005,33(9):1663-1664.
    [178]李伟,苗树君,曲永利.饲料性质对犊牛瘤胃发育及其消化机能的影响[J].草食家畜,2004,(4):50-53.
    [179]李文娟,李宏宾.鸡H-FABP和A-FABP基因表达与肌内脂肪含量相关研究[J].畜牧兽医学报, 2006, 37(5), 417-423.
    [180]李武峰,许尚忠,曹红鹤等.3个杂交牛种H-FABP基因第二内含子的遗传变异与肉品质性状的相关分析[J].畜牧兽医学报,2004,35(3):252-255.
    [181]李兴芳,柏学进,龚宜超等.渤海黑牛H2FABP基因外显子2的序列测定与分析[J].安徽农业科学,2009,37 (10):4436-4438.
    [182]李秀元.用复合函数测定牛累积生长曲线的探讨[J].中国畜牧杂志,1997,33(1):44-45.
    [183]李祯,曹红鹤,储明星等.中外11个猪种H-FABP基因PCR-RFLP的研究[J].畜牧兽医学报,2003,34(4): 313-317.
    [184]李志才,易康乐.湘西黄牛的H-FABP基因对大理石花纹和肌内脂肪含量相关性分析[J].中国牛业科学,2010,36 (1) :1-4.
    [185]林万华,任军,丁能水等.H-FABP基因型对二花脸猪相关性状影响的初步分析[J].畜牧兽医学报,2003, 34(4):318-324.
    [186]刘敏雄主编,反刍动物消化生理学[M].北京农业大学出版社,1991.
    [187]刘旭光,高丽,赵益贤.淮南麻黄鸡生长曲线分析与拟合的研究[J].安徽农业大学学报,1997,24(4):362-365
    [188]吕敏之.北京鸭、樱桃谷鸭与仙湖鸭的生长曲线分析[J].中国家禽,2000,22(2):13~14.
    [189]罗献梅,陈代文,张克英.不同品种猪肌肉组织心型脂肪酸结合蛋白基因的表达差异[J].畜牧兽医学报,2006,37(7),727-730.
    [190]马仲华.家畜解剖学及组织胚胎学(第三版)[M].北京:中国农业出版社,2002.
    [191]毛永江,杨章平,王杏龙等.中国荷斯坦牛早期生长曲线拟合研究[J].中国畜牧杂志,1996,45(3):1-4.
    [192]梅书棋,彭先文,李勇等.心脏型脂肪酸结合蛋白基因多态性在湖北白猪中的初步研究[J].华中农业大学学报,2004,23(2):227-229.
    [193]南京农业大学主编[M].家畜生理学,1996,中国农业出版社.
    [194]潘爱銮,皮劲松,梁振华,等.鸡H-FABP基因多态性研究[J].湖北农业科学,2005,5:20-22.
    [195]庞卫军,杨公社.8个猪种和野猪H-FABP基因分子标记与IMF含量的关系[J].农业生物技术学报,2005, 13 (6):733-738.
    [196]乔海云,赵倩君,姚娜等.绵羊H-FABP基因单核苷酸多态性的研究[J].遗传,2009,31(7): 725-731.
    [197]申小云.欧拉羊血清蛋白含量其与季节变化的相关分析[J].中国草食动物,2003,23(2):9-10.
    [198]沈霞芬.家畜组织学与胚胎学[M].北京:中国农业出版社.2000 (8) :153-154, 277
    [199]盛志廉,吴常信.数量遗传学[M].北京:中国农业出版社,1995,114-115
    [200]施六林,江喜春,朱德建,等.波萨安杂交羊生长发育规律的研究[J].中国农学通报,2005,21(10):5-7.
    [201]宋昌军,杜江,刘博涛,魏锁成.年龄和妊娠状态对欧拉羊血清FSH和LH含量的影响[J].甘肃畜牧兽医, 2009,205(2):2-4.
    [202]宋昌军,刘博涛,杜江等.欧拉羊被毛中七种矿物元素含量的测定[J].西北民族大学学报(自然科学版), 2008,29(4):59-61.
    [203]宋杰.日粮不同能量水平对绵羊羊肉品质及不同组织中H-FABP基因表达的影响[D].保定:河北农业大学,2010.
    [204]孙洪新.羔羊小肠消化酶活性变化规律研究[D].硕士学位论文.保定:河北农业大学,2003.
    [205]佟莉蓉.0-6月龄犊牛胰腺和小肠主要消化酶发育规律的研究[D].硕士学位论文.山西农业大学,2001.
    [206]王宝山.日粮类型对小尾寒羊小肠各段消化酶活性影响的研究[D].硕士学位论文.保定.河北农业大学,2003
    [207]王彩莲.0-56日龄羔羊消化道及其功能的发育性变化[D].博士学位论文.兰州,甘肃农业大学,2009
    [208]王春香,马秀红.欧拉羊血清淀粉酶同工酶多态性的研究[J].青海畜牧兽医杂志,2006,36(1):12-13.
    [209]王存芳.猪H-FABP和A-FABP基因的多态性及其与肌内脂肪性状关系的研究[D].硕士学位论文.泰安:山东农业大学,2002.
    [210]王得前,卢立志,叶伟成等.缙云麻鸭的生长规律研究[J].浙江畜牧兽医,2004,6:3-5.
    [211]王艳红.日粮淀粉水平对山羊α-淀粉酶活性及消化道形态的影响[D].硕士学位论文,西北农林科技大学, 2007.
    [212]王跃忠,卢福山,更尕.青海欧拉羊红细胞钾型的研究[J].畜牧兽医杂志,2003,35(9):48-48.
    [213]魏锁成,宋昌军.欧拉羊血清FSH、LH与年龄及妊娠状态的关系研究[J].中国草食动物,2009,29(2):18-20.
    [214]吴成坤,韩友文.肉用仔鸡能量营养需要的测定[J].东北农学院学报.1982,2:1-6.
    [215]夏来发,卢永红,朱祖明,等.肉鸭消化器官生长发育规律初探[J].上海农业学报, 1994, 10(2): 22~28.
    [216]项云.不同育雏方式下雏鸽的生长曲线[J].浙江农业学报,2000,12(4):213~216.
    [217]杨立彬.生长肥育猪生长模型及主要营养需要参数的研究[D].北京:2005,2-20.
    [218]杨宁.不同品系鹌鹑的生长曲线分析[J].中国家禽,1990,(1):23~26.
    [219]杨勤,郎多勇,杨树猛等.欧拉羊杂交改良甘加羊效果分析[J].畜牧兽医杂志,2008,27(3):20-21.
    [220]杨全明.仔猪消化道酶和组织器官生长发育规律的研究[D].北京:中国农业大学博士学位论文.1999,8-12
    [221]杨永恒,王卫国,王莲娣.早期断奶日龄对欧拉羊羔羊生长的影响[J].畜牧兽医科技信息,2010,3:42-43.
    [222]杨运清.动物生长曲线拟合方法的探讨[J].畜牧兽医学报,1992,23(3):219~224.
    [223]杨子江.日粮精粗比对绵羊小肠消化酶活性影响的研究[D].硕士学位论文.兰州,甘肃农业大学,2007
    [224]叶满红.鸡脂肪酸结合蛋白基因的克隆及其与肌内脂肪含量的关系[D].北京:中国农业科学院,2003.
    [225]于辉.肉兔生长曲线分析[J].草食家畜,2000,(4):18-20
    [226]余忠祥.青海省河南县欧拉羊品种资源调查及研究报告[J].畜牧与饲料科学,2009,30(10):120-123.
    [227]袁正朴,马江,李自直等.欧拉羊现状调查报告[J].中国养羊,1998,2:6-7.
    [228]张才骏,王勇,卢福山.欧拉羊血清酯酶多态性及其与血液指标的联系[J].青海畜牧兽医杂志,2009,39 (1):1-3.
    [229]张春艳,沈忠,周志权,等.波尔山羊羔羊生长发育规律研究[J].华中农业大学学报, 2006, 25(6): 640-644.
    [230]张桂香,曹红鹤,王立贤,等.9个猪种H-FABP基因5’-上游区的第二内含子的遗传变异[J].畜牧兽医学报,2002, 33(4): 340-343.
    [231]张浩,吴常信,李俊英,等.藏鸡和低地鸡种的生长曲线拟合与杂种优势分析[J].中国畜牧杂志, 2005,41(5): 34-37.
    [232]张宏福,李长忠,顾宪红等.断奶日龄对仔猪胰腺和消化道中胰蛋白酶活性的影响[J].动物营养学报,2001,13(1): 25-30.
    [233]张军,郑云,龚道清等.樱桃谷鸭部分内脏器官早期生长发育规律研究[J].中国家禽,2005, 27(23): 16-18.
    [234]张素华,李岩.瘤胃生理与奶牛过饲精料引发疾病的研究.动物科学与动物医学[J].2002,87:19-21.
    [235]张英杰,刘月琴,孙洪新等.羔羊小肠pH及主要消化酶发育规律的研究[J].畜牧兽医学报,2005,36(2), 159-152.
    [236]张英杰.日粮类型对肉牛消化道酶活的影响及饲料小肠消化率评定方法研究[D].博十学位论文.北京:中国农业大学,2000
    [237]张玉珍,郭淑珍,牛小莹.欧拉羊杂交改良乔科羊后代各年龄段生长速度分析[J].畜牧兽医杂志,2010,29(6):36-38.
    [238]张振斌,蒋宗勇,林映才等.超早期断奶应激对仔猪消化酶活性的影响[[J].中国畜牧杂志,1999, 35 (6): 6-8
    [239]赵恒波,罗海玲,徐永锋等.羔羊消化器官的早期生长发育和瘤胃内主要消化酶活性的变化[J].中国畜牧杂志, 2006,42(11): 15-18.
    [240]赵旭庭,董飚,张红等.鸭H-FABP基因的克隆及其组织表达[J].江苏农业学报, 2009, 25(5): 1082-1085.
    [241]周吕主编,胃肠生理学(第一版)[M].科学出版社,1991,9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700