USF1下调结直肠癌中FHL2基因转录调控的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     FHL2(four and a half LIM domain protein 2)是一种多功能蛋白。不同的亚细胞器中FHL2可能参与不同的生物学过程。FHL2能够与integrin、presenilin-2以及电压门控K~+通道受体相互作用,从而与信号转导蛋白(包括ERK2、FAPp175和腺苷酸环化酶)发生相互作用,影响转录因子和辅助因子的信号传导,进而影响基因表达。FHL2还可以调节剪接、DNA复制和修复过程。另外,FHL2可以与结构蛋白如β-actinin、肌动蛋白和肌联蛋白结合。
     最初发现FHL2基因在肌原细胞中表达,但是在恶性横纹肌肉瘤细胞中下调。后来的研究发现FHL2除了在骨骼肌和平滑肌中不表达,在脑、肝脏和肺中低表达之外,在其余组织中均表达,而且与肿瘤关系密切。在鳞癌、恶性胶质瘤、黑色素瘤、髓系白血病、宫颈癌、结直肠癌、肺癌、肝癌和肾癌中FHL2的转录活性明显增高,而在淋巴细胞白血病、Burkitt's中FHL2的转录活性极低甚至缺乏。肺癌标本中FHL2重度核染,而在正常肺组织中FHL2无表达,且高表达FHL2的非癌病人1年生存率明显低于不表达FHL2的病人。与正常卵巢组织相比,在人卵巢癌的上皮细胞FHL2表达增高。与正常肝脏组织相比,10例肝癌标本中8例标本的FHL2mRNA表达水平明显增高。
     本课题组的前期工作已经完成以下内容:1、胃肠道肿瘤组织中FHL2的表达明显高于配对的正常组织。反义FHL2稳定转染胃结肠肿瘤细胞后发现细胞变长或者成为梭状,胞浆变长或者成为树枝状且核浆比例变小。反义FHL2可以诱导CEA、E-cadherin和F-actin的成熟,且抑制包括cox-2、survivin、c—jun和hTERT等癌基因的表达,抑制AP-1和hTERT的启动子活性。抑制FHL2可以抑制血清依赖、锚定依赖和非依赖的细胞生长,并且抑制裸鼠成瘤实验中肿瘤的形成。因此抑制FHL2基因可以诱导胃肠道肿瘤细胞的分化并且抑制胃肠道肿瘤的形成;2、免疫组化发现FHL2蛋白在结直肠癌组织中高度表达,但其表达程度与癌症病理分级无明显相关;3、已经成功制备并鉴定了兔抗人的FHL2多克隆抗体。
     FHL2由4个半LIM结构域组成,其中半个LIM结构域位于N端,属于LIM蛋白。人类FHL2基因定位在人染色体2q12-q14,由7个外显子组成,其中前3个是非编码序列。对该基因的启动子进行生物信息学分析,发现其启动子序列上存在着多个潜在的转录因子结合位点,包括p53、SRF、Nkx2.5、MEF-2、E2F、E-box、AP1等。尽管特定转录因子的实际作用还未完全明确,但有证据支持p53、SRF、Nkx2.5、MEF-2、E2F、AP1等参与了FHL2基因的转录。虽然在FHL2启动子中发现含有多个E-box位点,但至今尚无关于E-box位点介导FHL2转录水平调控机制研究的报道。根据启动子序列预测软件,我们推测USF1可能通过结合FHL2基因启动子上的E-box位点,从而调控FHL2基因的转录。
     E-box位点是USF1、USF2、TFE3等多个bHLH-zip(basic helix-loop-helixleucine zipper)转录因子家族成员的结合位点。1985年,Sawadogo等人首次从Hela细胞核内提取物中部分纯化出一种称为USF(上游刺激因子,后来命名为USF1)的序列特异性转录因子,并在体外实验发现,加入USF可以使腺病毒Majorlate promoter的转录活性增强10~20倍。随后的研究证实了USF是进化高度保守的bHLH-zip转录因子家族的成员,能通过结合DNA上的E-box位点(核心序列为5'CANNTG 3')发挥作用。
     USF是细胞内普遍存在的转录因子,其细胞特异性的表达是由于与之发生相互作用的转录调节因子及其转录后激活和翻译后修饰均具有细胞特异性。USF1具有类似于Myc蛋白的bHLH-LZ结构,可竞争性结合相同的靶DNA序列,从而拮抗Myc促进细胞增殖与转化的功能,为正常胚胎发育所必需。Hela细胞中过表达USF可引起生长抑制,然而由于Saos-2细胞缺乏USF的转录活性,在该细胞中并未发现该现象。6种乳腺癌细胞中3种USF转录活性缺失。USF转录活性在肿瘤细胞中缺失或者降低,这可能与E-box位点的突变或者甲基化修饰而终止蛋白质-DNA的相互作用,以及翻译后修饰和蛋白质-蛋白质的相互作用的改变,而抑制USF的转录活性,最终下调P53的表达。DNA损伤时,激活的USF1可通过调节P53和BRCA2基因参与DNA的修复。在永生化的肿瘤细胞中USF1通过与hTERT结合,参与肿瘤的进程。
     因此,我们推测USF1可能通过结合FHL2基因启动子上的E-box位点,从而调控FHL2基因的转录。
     研究目的:
     探讨USF1在结直肠癌发生中的作用及其对FHL2基因的转录调控作用与机制。
     研究内容、方法:
     一、利用RT-PCR和Western blot方法检测不同的人胃肠道肿瘤细胞中USF1的表达情况;
     二、利用免疫组化方法检测不同分期的人结直肠肿瘤组织中USF1的表达情况;
     三、利用EMSA和ChIP方法检测USF1蛋白与FHL2基因启动子的结合情况;
     四、利用基因克隆技术构建FHL2启动子的真核表达载体,利用定点突变技术构建FHL2启动子的突变载体;
     五、利用双荧光素酶报告基因系统检测定点突变FHL2启动子的E-box位点后,突变载体荧光素酶活性的变化;
     六、利用基因克隆技术构建并鉴定重组质粒pcDNA3.1(+)-USF1;
     七、利用RT-PCR和Western blot方法检测过表达或者干扰USF1后FHL2的表达情况;
     八、利用双荧光素酶报告基因系统检测过表达或者干扰USF1后FHL2启动子的荧光素酶活性。
     结果:
     一、USF1在不同的人胃肠道肿瘤细胞株中具有不同的表达水平8株人胃肠道肿瘤细胞均表达USF1蛋白。USF1在蛋白水平的表达量以SW480、SW620和LoVo细胞最高,而在KATOⅢ细胞中的含量最低;USF1在mRNA水平的表达量以SW480、SW620、LoVo和HCT116细胞最高,而在KATOⅢ细胞中的含量最低。
     二、USF1在人结直肠肿瘤组织的表达显著增强USF1在人正常结直肠黏膜中蛋白呈低表达;在有不典型增生的人腺瘤组织中,USF1的表达相对于正常人结直肠黏膜开始增强;而在人结直肠癌组织中其表达显著增强,差别有统计学意义(P=0.0018)。USF1蛋白的表达在不同Dukes'分期、不同分化程度的结直肠癌组织之间无明显差异(P>0.05)。
     三、USF1对FHL2基因的转录具有调控作用
     1、USF1能够与FHL2启动子的上游E-box位点特异性结合EMSA实验证实了SW480细胞的核蛋白与-817bp/-812bp处E-box位点结合形成了DNA-核蛋白复合物,且竞争性探针可以抑制此复合物的形成。ChIP实验证实了SW480细胞中USF1蛋白能与FHL2基因DNA结合。
     2、定点突变FHL2启动子的E-box位点后,突变载体的荧光素酶活性较未突变组明显升高
     双荧光素酶报告基因系统证实在SW480细胞和LoVo细胞中4个FHL2基因启动子报告载体的转录活性不同,其中pluc595的荧光素酶活性值最高。
     对FHL2启动子区域-817/-812bp处的E-box进行定点突变,使其由CAGCTG序列变为TAATTG,从而破坏E-box位点的序列,使其不能与USF1结合。定点突变FHL2启动子后,突变载体荧光素酶活性较未突变组明显升高(p<0.05)。
     3、构建重组质粒pcDNA3.1(+)-USF1,并筛选出USF1高表达的SW480细胞和LoVo细胞,将其命名为SW480USF1和LoVoUSF1。
     4、在SW480USF1和LoVoUSF1中,FHL2表达水平显著降低(P<0.05)。
     5、在SW480细胞和LoVo细胞中采用USF1 siRNA干扰USF1的表达后,FHL2表达水平显著增高(P<0.05)。
     6、在SW480USF1和LoVoUSF1中,FHL2基因启动子的转录活性下降。
     7、在SW480细胞和LoVo细胞中,采用USF1 siRNA干扰USF1的表达后,FHL2基因启动子的转录活性上调。
     结论:
     1、USF1在结直肠癌组织中高度表达,但其表达程度与结直肠癌病理分期、分化程度无明显相关;
     2、USF1蛋白同FHL2基因启动子具有直接相互作用;
     3、USF1对内源性FHL2表达存在着负性调控作用;
     4、USF1对FHL2启动子存在反式抑制作用。
Background
     FHL2(4-1/2 LIM protein 2),also known as DRAL(down-regulated in rhabdomyosarcoma LIM protein),was initially cloned by its abundant expression in the human heart.It is the second member of a small family of proteins with 4-1/2 LIM domains.The acronym LIM is derived from the names of 3 transcription factors, Lin-11,Isl-1,and Mec-3,in which such a domain was first identified.
     FHL2 expression is abundant in the heart,but FHL2 is also observed in several other organs,such as brain,liver,lung,cortex et al.FHL2 is not expressed in spleen, thymus,blood leukocytes,skin,skeletal muscle or the stromal smooth muscle cells of the prostate.It exerts different functions in different types of cells.We first showed that FHL2 expression is elevated in gastrointestinal cancer cell lines and cancer tissues.We firstly showed that FHL2 expression is elevated in gastrointestinal cancer cell lines and cancer tissues.
     The human FHL2 gene maps to 2q12-q14 and consists of seven exons,of which the first three are non-coding.Computer analysis of the promoter reveals a plethora of putative transcription factor binding sites p53,Nkx2.5,SRF,MEF-2,E-box et al. Although the actual contribution of particular transcription factors has not been scrutinized,some evidence exists that p53,Nkx2.5,SRF,MEF-2 may be involved in the transcription of the FHL2 gene.Yet there is no evidence that E-box regulates the FHL2 gene expression.We speculate that USF1 bind to E-box motif of FHL2 gene promoter by computer analysis of the promoter.
     USF is a group of basic helix-loop-helix(bHLH) transcription factors encoded by two distinct genes whose products correspond to 43 kDa USF1 and 44 kDa USF2. USF in the expression of several tissue-specific or developmentally regulated genes, including human growth 2,hormone,mouse metallothionein I,rat gamma,fibrinogen and Xenopus TFⅢA Cox-2、Osteopontin、IL-10、PAI-1、BRCA2、surfactant protein A、calcyclin、MHC I gene、OPN、BMP-4、TGF-β_2、CyclinB1、TGF-βⅡreceptor et al.
     Objective
     1.To investigate the role of USF 1 in human colorectal cancer.
     2.To indentify the role of USF1 in the regulation of FHL2 gene Transcription.
     Methods
     1.RT-PCR and immunoblotting methods were performed to detect USF 1 expression in two gastric cancer and six colorectal cancer cell lines.
     2.USF1 expression was assessed by Immunohistochemistry in human colorectal cancer tissues.
     3.USF1 binding to the FHL2 promoter were indentified by EMSA and ChIP assay in the SW480 human colorectal cancer cell line in vivo and in vitro.
     4.The activity of FHL2 gene promoter and the mutant FHL2 gene promoter were investigated by dual luciferase reporter assay.
     5.Genetic manipulation was performed to up-regulate of knock down expression of USF1,and followed by RT-PCR,western blot and dual luciferase repoter assay to research the effect of USF1 genes on FHL2.
     Result
     1.All of the gastric cancer cells and six colon cancer cells expressed differernt level of USF1.
     2.The role of USF1 in human colorectal cancer progression was assessed by immunohistochemistry.USF1 immunoactivity was lower in normal colorectal mucosa.USF1 expression increased in adenoma with atypical hyperplasia.An even stronger expression of USF1 was found in all of colorectal cancer samples.In colorectal cancer on different Dukes'stage,USF1 expression was no difference.These data demonstrated that upregulation of USF1 protein occurs in most colorectal cancer tissues,implying that USF1 may play a role in colorectal cancer progression.
     3.EMSA showed that USF1 recognized the E-box motif located within -817/-812 bp of the FHL2 promoter.ChIP revealed in vivo USF1 binded to the FHL2 promoter in the SW480 human colorectal cancer cell line.
     4.The E-Box mutation increased the FHL2 promoter activity.
     5.Overexpression of USF1 down-regulated the expression of FHL2 and the activity of FHL2 gene promoter.Transfection of USF1-siRNA enhanced the expressions of FHL2 and the activity of FHL2 gene promoter.
     Conclusion
     1.USF1 expression had no correlaion with colorectal cancer progression.
     2.USF1 protein interacts with FHL2 promoter in the SW480 human colorectal cancer.
     3.USF1 and FHL2 expressions had negative correlation with colon cancer cells.
     4.USF1 mediated the down-regulation of FHL2 transcription.
引文
[1]Samson T.,Smyth N.,Janetzky S,et al.The LIM-only proteins FHL2 and FHL3 interact with alpha-and beta-subunits of the muscle alpha7-betal integrin receptor.J Biol.Chem.[J].2004.279:28641-28652
    [2]Tanahashi H.and Tabira T.Alzheimer's disease-associated presenilin 2 interacts with DRAL,a LIM-domain protein.Hum.Mol.Genet.[J]2000.9:2281-2289
    [3]Kang D.E.,Yoon I.S.,Repetto E,et al.(2005) Presenilis mediate PI3K/Akt and ERK activation via select signaling receptors:selectivity of PS2 in PDGF signaling.J.Biol.Chem[J].280:31537-31547
    [4]Purcell N.H.,Darwis D,Bueno O.F,et al.Extracellular signal-regulated kinase 2 interacts with and is negatively regulated by the LIMonly protein FHL2 in cardiomyocytes.Mol.Cell.Biol.[J]2004.24:1081-1095
    [5]Lange S.,Auerbach D,McLoughlin P,et al.Subcellular targeting of metabolic enzymes to titin in heart muscle may be mediated by DRAL/FHL-2.J.Cell.Sci.[J].2002.115:4925-4936
    [6]Morgan M.J.and Whawell S.A.The structure of the humanLIM protein ACT gene and its expression in tumor cell lines..Biochem.Biophys.Res.Commun.[J]2000 273:776-783
    [7]Yan J.H.,Ye Q.N,Fang Yet al.Mapping of FHL2 Transcription Activation Domain.Acta Biochim.Biophys.Sin.[J].2003 35:643-648
    [8]Sanchez-Garcia I,Rabbitts TH,et al.LIM domain proteins in leukaemia and development.Semin Cancer Biol[J].1993.4:349-358.
    [9]Wei Y,Renard CA,Labalette C,et al.Identification of the LIM proteinFHL2 as a coactivator of beta-catenin.J Biol Chem[J].2003.278:5188-5194.
    [10]Gabriel B,Mildenberger S,Weisser CW,et al.Focal adhesion kinase interacts with the transcriptional coactivator FHL2 and both are overexpressed in epithelial ovarian cancer.Anticancer Res[J].2004.24:921-927.
    [11]Labalette C,Renard CA,Neuveut C,et al.Interaction and functional cooperation between the LIM protein FHL2,CBP/p300,and beta-catenin.Mol Cell Biol[J]. 2004.24:10689-10702.
    [12]Morion A,Sassone-Corsi P,et al.The LIM-only protein FHL2 is a serum in ducible transcriptional coactivator of AP-1.ProcNatl Acad Sci USA[J].2003.100:3977-3982.
    [13]Martin B,Schneider R,Janetzky S,et al.The LIM-only protein FHL2 interacts with beta-catenin and promotes differentiation of mouse myoblasts.J Cell Biol[J].2002.159:113-122.
    [14]Canault M,Tellier E,Bonardo B,et al.FHL2 interacts with both ADAM-17 and the cytoskeleton and regulates ADAM-17 localization and activity.J Cell Physiol[J].2006.208:363-372.
    [15]McLoughlin P,Ehler E,Carlile G,et al.The LIM-only protein DRAL/FHL2 interacts with and is a corepressor for the promyelocytic leukemia zinc finger protein.J Biol Chem[J].2002.277:37045-37053.
    [16]Scholl F.A,McLoughlin P,Ehler E,et al.DRAL is a p53-responsive gene whose four and a half LIM domain protein product induces apoptosis.J Cell.Biol[J].2000.151:495-506.
    [17]Kong Y,Shelton J.M,Rothermel B,et al.Cardiac-specific LIM proteinFHL2 modifies the hypertrophic response to beta-adrenergic stimulation.Circulation[J]2001.103:2731-2738
    [18]Borczuk A.C,Shah L,Pearson G.D.N,et al.Molecular signatures in biopsy specimens of lung cancer.Am.J.Respir.Crit.Care Med.[J]2004 170:167-174
    [19]Gabriel B,Mildenberger S,Weisser C.W,et al.Focal adhesion kinase interacts with the transcriptional coactivator FHL2 and both are overexpressed in epithelial ovarian cancer.Anticancer Res.[J].2004.24:921-927
    [20]Wei Y,Renard C.A,Labalette C,et al.Identification of the LIM protein FHL2 as a coactivator of beta-catenin.J.Biol.Chem.[J]2003 278:5188-5194
    [21]Ng EK,Chan KK,Wong CH,et al.Interaction of the heart-specific LIMdomain protein,FHL2,with DNA-binding nuclear protein,hNP220.J Cell Biochem[J].2002.84:556-566.
    [22]Genini M,Schwalbe P,Scholl FA,et al.Subtractive cloning and characterization of DRAL,a novel LIM-domain protein down-regμlated in rhabdomyosarcoma.DNA Cell Biol[J].1997.16:433-442.
    [23]Ingolf Bach,et al.The LIM domain:regulation by association.Mech Dev[J].2000.91:5-17.
    [24]Kadrmas JL,Beckerle MC.The LIM domain:from the cytoskeleton to the nucleus.Nat Rev Mol Cell Biol[J].2004.5:920-931.
    [25]Retaux S,Bachy I,et al.A short history of LIM domains (1993-2002):fromprotein interaction to degradation.Mol Neurobiol[J].2002.26:269-281.
    [26]Heinemeyer T,Wingender E,Reuter I,et al.Databases on transcriptional regulation:TRANSFAC,TRRD and COMPEL.Nucleic Acids Res[J].1998.26:364-370.
    [27]Schug J.Using TESS to predict transcription factor binding sites in DNA sequences.In:Current protocols in bioinformatics.2003.chapter 2,unit 2.6.
    [28]Amaar Y.G,Thompson G.R,Linkhart T.A,et al.Insμlin-like growth factor binding protein 5 (IGFBP-5) interacts with a four and a half LIM protein 2 (FHL2).J Biol.Chem[J].2002.277:12053-12060.
    [29]Kang C.M,Park K.P,Song J.E,et al.Possible biomarkers for ionizing radiation exposure in human peripheral blood lymphocytes.Rad.Res[J].2003.159:312-319.
    [30]Tanahashi H and Tabira T,et al.Alzheimer's disease-associated presenilin 2 interacts with DRAL,a LIM-domain protein.Hum.Mol.Genet[J].2000.9:2281-2289.
    [31]Philippar U,Schratt G,Dieterich C,et al.The SRF target gene FHL2 antagonizes RhoA/MAL-dependent activation of SRF.Mol.Cell[J].2004.16:867-880.
    [32]Kong Y,Shelton J.M,Rothermel B,et al.Cardiac-specific LIM protein FHL2 modifies the hypertrophic response to beta-adrenergic stimulation.Circμlation[J].2001.103:2731-2738.
    [33]Schafer K,Neuhaus P,Kruse J,et al.The homeobox gene Lbxl specifies a subpopμlation of cardiac neural crest necessary for normal heart development.Circ.Res[J].2003.92:73-80.
    [34]Schlisio S,Halperin T,Vidal M,et al.Interaction of YY1 with E2Fs,mediated by RYBP,provides a mechanism for specificity of E2F function.EMBO J[J].2002.21:5775-5786.
    [35]Morion A,Sassone-Corsi P,et al.The LIM-only protein FHL2 is a serum inducible transcriptional coactivator of AP-1.Proc.Natl.Acad.Sci.[J].2003.100:3977-3982.
    [36]Coser K R,Chesnes J,Hur J,et al.Global analysis of ligand sensitivity of estrogen inducible and suppressible genes in MCF7/BUS breast cancer cells by DNA microarray.Proc.Natl.Acad.Sci.[J].2003.100:13994-13999.
    [37]Moens U,Van Ghelue M,Johansen B,et al.Concerted expression of BK virus large T-and small tantigens strongly enhances oestrogen receptor-mediated transcription.J.Gen.Virol[J].1999.80:585-594.
    [38]Boissel J P,Bros M,Schrock A,et al.Cyclic AMP-mediated upregllation of the expression of neuronal NO synthase in human A673 neuroepithelioma cells resμlts in a decrease in the level of bioactive NO production:analysis of the signaling mechanisms that are involved.Biochemistry[J].2004.43:7197-7206.
    [39]Johannessen M,Moens U,et al.Transcription of genes in response to activated cAMP/protein kinase A signalling pathway:there is more to it than CREB.In:Trends in Cellular Signaling,Caplin D.E.2006.Nova Science Publishers,New York.
    [40]Nahm O,Woo S.K,Handler J.S,et al.Involvement of multiple kinase pathways in stimulation of gene transcription by hypertonicity.Am.J.Physiol.Cell Physiol[J].2002.282:C49-C58.
    [41]Kawahara N,Wang Y,Mukasa A,et al.Genome-wide gene expression analysis for induced ischemic tolerance and delayed neuronal death following transient global ischemia in rats.J.Cerebr.Blood Flow Metab[J].2004.24:212-223.
    [42]http://www.uchsc.edu/sm/neurobiol/tylerlab/
    [43]Sawadogo M,Roeder RG.Interaction of a gene-specific transcription factor with the adenovirus major late promoter upstream of the TATA box region.Cell[J].1985.43(1):165-175.
    [44]Meisterernst M,Horikoshi M,Roeder R G,et al.Recombinant yeast TFIID,a general transcription factor,mediates activation by the gene-specific factor USF in a chromatin assembly assay.Proc.Natl.Acad.Sci.USA[J].1990.87:9153-9157.
    [45]Al-azzeh E,Dittrich O,Vervoorts J,et al.Gastroprotective peptide trefoil factor family 2 gene is activated by upstream stimulating factor but not by c-Myc in gastrointestinal cancer cells.Gut[J].2002.51(5):685-90.
    [46]Jide W,Yi Y,Harry H,et al.Suppression of FHL2 Expression Induces Cell Differentiation and Inhibits Gastric and Colon Carcinogenesis.Gastroenterology[J].2007.132:1066-1076.
    [47]Yibing Qyang,Xu Luo,Tao Lu,et al.Cell-Type-Dependent Activity of the Ubiquitous Transcription Factor USF in Cellular Proliferation and Transcriptional ActivationMolecular and Cellular Biology,[J]1999,19.1508-1517,
    [48]Ismail PM,Lu T,Sawadogo M.Loss of USF transcriptional activity in breast cancer cell lines.Oncogene[J].1999.18:5582-5591.
    [49]David Reisman and Varda Rotter.The helix-loop-helix containing transcription factor USF binds to and transactivates the promoter of the p53 tumor suppressor gene.Nucleic Acids Research[J].1993.21(2):345-350.
    [50]Davis,PL.,Miron,A.,Andersen,L.M,et al.Isolation and initial characterization of the BRCA2 promoter.Oncogene[J].1999.18,6000-6012.
    [51]Hale,T.K,and Braithwaite,A.W.Identification of anupstream region of the mouse p53 promoter critical for transcriptionalexpression.[J]Nucleic Acids Res.(1995).23,663-669.
    [52]Yago,M.,Ohki,R,Hatakeyama,S,et al.Variant forms of upstream stimulatory factors (USFs) control the promoter activity of hTERT,the human gene encodingthe catalytic subunit of telomerase.FEBS Lett.[J]2002.520,40-46.
    [53]Glen K.Andrews.Regulation of Metallothionein Gene Expression by Oxidative Stress and Metal Ions.Biochemical Pharmacology[J],2000.59.95-104.
    [54]Guillemin G J,Brew BJ,Microglia,et al.macrophages,perivascular macrophages, and pericytes:a review of function and identification.J.Leukoc.Biol[J].2004.75:388-397.
    [55]Moore S,Thanos S.The concept of microglia in relation to central nervous system disease and regeneration.Prog.Neurobiol[J].1996.8:441-460.
    [56]Leying Zhang,Michelle Van Handel,Jill M.Schartner et al.Regμlation of IL-10expression by upstream stimμlating factor(USF-1) in glioma-associated microglia.Journal of Neuroimmunology[J].2007.184:188-197.
    [57]Zhongcai Ma,BongSook Jhun,Chad K.Oh et al.Upstream stimμlating factor-1mediates the E-box-dependent transcriptional repression of the plas分钟ogen activator inhibitor-1 gene in human mast cells.FEBS Letters[J].2007.581:4485-4490.
    [58]Maria E.C.B,Ryan B.W b,Tracey Aet al.Upstream stimμlatory factor but not c-Myc enhances transcription of the human polymeric immunoglobμlin receptor gene.Molecμlar Immunology[J].2004.40(10):695-708.
    [59]Sohei E,Satoshi K,Isao N et al.Transcriptional Regμlation of the mBMP-4 Gene through an E-Box in the 5'-Flanking Promoter Region Involving USF.BBRC[J].1997.240:136-141.
    [60]Davis,P.L,Miron,A,Andersen,L.M,et al.Isolation and initial characterization of the BRCA2 promoter.Oncogene[J].1999.18:6000-6012.
    [61]Le(?)niak W,Jezierska A,Ku(?)nicki J.et al.Upstream stimμlatory factor is involved in the regμlation of the human calcyclin(S100A6) gene.Biochim Biophys Acta[J].2000.1517(1):73-81.
    [62]Le(?)niak W,Ku(?)nicki J.Binding and functional characteristics of two E-box motifs within the S100A6(calcyclin) gene promoter.J Cell Biochem[J].2006.97(5):1017-24.
    [63]Howcroft TK,Raval A,Weissman JD et al.Distinct transcriptional pathways regμlate basal and activated major histocompatibility complex class I expression.Mol Cell Biol[J].2003.23(10):3377-91.
    [64]Ebara S,Kawasaki S,Nakamura I,et al.Transcriptional regμlation of the mBMP-4 gene through an E-box in the 5'-flanking promoter region involving USF.Biochem Biophys Res Commun[J].1997.240(1):136-141.
    [65]Nagavarapu U,Danthi S,Boud RT.Characterization of a rat neuronal nicotinic acetylcholine receptor alpha7 promoter.J Biol Chem[J].2001.276(20):16749-16757.
    [66]Qyang Y,Luo X,Lu T,et al.Sawadogo M.cell-type-dependent activity of the ubiquitous transcription factor USF in cellμlar proliferation and transcriptional activation.Mol Cell Biol[J].1999.19:1508-1517.
    [67]Luo X,Sawadogo M.Antiproliferative properties of the USF family of helix-loop-helix transcription factors.Proc Natl Acad Sci USA[J].1996.93(3):1308-1313.
    [68]Hei Sook Sul and Dong Wang.Nutritional and hormonal tegulation of enzymes in fat synthesis:Studies of Fatty Acid Synthase and Mitochondrial Glycerol-3-Phosphate Acyltransferase Gene Transcription.Annual Review of Nutrition[J],1998.18:331-351
    [69]Hiromi Yamashita,Makoto Takenoshita,Masaharu Sakurai,et al.A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver.PNAS[J]2001.98:9116-9121.
    [70]Marie-Dominique Galibert,Suzanne Carreira and Colin R.Goding.The Usf-1 transcription factor is a novel target for the stress-responsive p38 kinase and mediates UV-induced Tyrosinase expression The EMBO Journal.[J]2001 20,5022-5031.
    [71]N Chen,M N Szentirmay,S APawar,et al.Tumor-suppression function of transcription factor USF2 in prostate carcinogenesis Oncogene[J]2006 25:579-587.
    [72]Viollet B,Lefrancois-MartinezAM,HenrionA,et al.Immunochemical characterization and transacting properties of upstream stimulatory factor isoforms.J Biol Chem[J].1996.271(3):1405-1415.
    [73]Xiao,Q.,Kenessey,A,and Ojamaa,K..Role of USF1 phosphorylation on cardiac alpha-myosin heavy chain promoter activity.Am.J.Physiol.Heart Circ.Physiol[J].2002.283,H213-H219.
    [74]Cheung,E,Mayr,P,Coda-Zabetta,F.et al.DNA-binding activity of the transcription factor upstream stimulatory factor 1 (USF-1) is regulated by cyclindependent phosphorylation.Biochem.J.[J]1999:344,145-152.
    [75]Nowak,M,Helleboid-Chapman,A,Jakel,H.et al.Insulinmediated down-regulation of apolipoprotein A5 gene expression through the phosphatidylinositol 3-kinase pathway:role of upstream stimulatory factor.Mol.Cell.Biol.[J]2005.25,1537-1548.
    [76]Andrews G K,Lee D K,Ravindra R,et al.The transcription factors MTF-1 and USF1 cooperate to regulate mouse metallothionein-Ⅰ expression in response to the essential metal zinc in visceral endoderm cells during early development.Embo.J[J].2001.20:1114-1122.
    [77]Ge Y,Jensen T L,Matherly L.H,et al.Physical and functional interactions between USF and Spl proteins regulate human deoxycytidine kinase promoter activity.J.Biol.Chem[J].2003.278:49901-49910.
    [78]Liu C,Sista N.D,and Pagano J.S,et al.Activation of the Epstein-Barr virus DNA polymerase promoter by the BRLF1 immediate-early protein is mediated through USF and E2F.J.Virol[J].1996.70:2545-2555.
    [79]Firlej V,Bocquet B,Desbiens X,et al.Pea3 transcription factor cooperates with USF-1 in regulation of the murine bax transcription without binding to an Ets-binding site.J.Biol.Chem[J].2005.280:887-898.
    [80]Bungert J,Kober I,During F,et al.Transcription factor eUSF is an essential component of isolated transcription complexes on the duck histone H5 gene and it mediates the interaction of TFIID with a TATA-deficient promoter.J.Mol.Biol[J].1992.223:885-898.
    [81]Chiang C.M and Roeder R G.Cloning of an intrinsic human TFIID subunit that interacts with multiple transcriptional activators.Science[J].1995.267:531-536.
    [82]Sawadogo M,Van Dyke M W,Gregor PD,et al.Multiple forms of the human gene-specific transcription factor USF.I.Complete purification and identification of USF from HeLa cell nuclei.J.Biol.Chem[J].1988.263:11985-11993.
    [83]Du H,Roy AL,and Roeder R G,et al.Human transcription factor USF stimulates transcription through the initiator elements of the HIV-1 and the Ad-ml promoters.Embo.J[J].1993.12:501-511.
    [84]Roy AL,Meisteremst M,Pognonec P,et al.Cooperative interaction of an initiator-binding transcription initiation factor and the helix-loop-helix activator USF.Nature[J].1991.354:245-248.
    [85]Smale S T and Baltimore D.The 'initiator' as a transcription control element.Cell[J].1989.57:103-113.
    [86]West A G,Huang S,Gaszner M,et al.Recruitment of histone modifications by USF proteins at a vertebrate barrier element.Mol.Cell[J].2004.16:453-463.
    [87]Vettese-Dadey M,Grant P A,Hebbes T R,et al.Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro.Embo.J[J].1996.15:2508-2518.
    [88]Han S Y,Kim J C,Suh J M,et al.Cell typedependent regulation of human DNA topoisomerase III alpha gene expression by upstream stimulatory factor 2.FEBS Lett[J].2001.505:57-62.
    [89]Atchley,WR,and Fitch,WM A natural classification of the basic helix-loop-helix class of transcription factors.Proc.Natl.Acad.Sci.USA[J].1997.94,5172-5176.
    [90]Ferre-D Amare,A.R,Pognonec,P,Roeder,R.G.et al.Structure and function of the b/HLH/Z domain of USF.Embo.J[J].1994.13:180-189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700