MED1在乳腺癌治疗中的作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳腺癌是最常见的恶性肿瘤之一,严重威胁女性的健康与生命,而近年来我国乳腺癌发病率快速上升,在全国多数大城市中乳腺癌已占据女性恶性肿瘤之首。以雌激素受体(ER)为靶点的纯抗雌激素内分泌治疗药物Fulvestrant(氟维司群)在乳腺癌临床控制中发挥着重要作用,然而随之而来的耐药性问题大大减弱了其治疗效果;同时,远端的侵袭转移更是导致乳腺癌患者死亡的最大诱因。内分泌治疗耐药和侵袭转移已成为乳腺癌临床治疗面临的两大难题。转录中介体亚基1(MED1)作为ER关键的共激活因子,在ER依赖的基因表达和雌激素依赖的乳腺癌生长过程中起到关键性作用,而且参与了另一类内分泌治疗药物Tamoxifen的耐药形成过程,与乳腺癌患者的不良预后有着高度相关性。针对上述乳腺癌治疗的两大难题,并鉴于已报道的MED1在乳腺癌中贡献作用,本论文对MED1在乳腺癌治疗时Fulvestrant耐药及侵袭转移中的作用进行了较系统的科学分析,并对其分子机理做了较深入的机制研究。
     1、成功建立了可稳定表达萤火虫荧光素酶和诱导型MED1shRNA的可诱导型MED1沉默乳腺癌细胞株(MCF7-tet-shMED1、BT474-tet-shMED1ZR75-1-tet-shMED1)。在确保doxycycline(Dox)诱导MED1表达确实明显下调的同时,验证分析了MED1对乳腺癌细胞生长增殖中的关键作用:MED1沉默明显抑制细胞生长增殖、贴壁克隆及非贴壁软琼脂克隆形成。这些诱导型细胞株的建立,为后续试验提供了可靠的实验材料保障。
     2、首次对MED1在乳腺癌内分泌治疗药物Fulvestrant耐药性中的贡献作用做了较为系统的科学分析及机制研究。体外、体内实验研究揭示,沉默MED1增强了Fulvestrant耐药乳腺癌细胞株BT474、ZR75-1和MCF7-F细胞(体外实验)以及BT474细胞裸鼠原位移植瘤(体内实验)对Fulvestrant药物处理的敏感性。机制研究初步阐明:沉默MED1联合Fulvestrant处理协同抑制了乳腺癌细胞的细胞周期进程及ERa靶基因表达;染色质免疫沉淀(ChIP)实验揭示,协同影响ERα、RNA聚合酶Ⅱ及转录共抑制因子HDAC1在启动子上的招募是MED1参与Fulvestrant抑制ER靶基因表达及耐药形成的主要分子机理;HER2与MED1的相互调控环也参与了Fulvestrant耐药机制的形成。这些结果提示,MED1对乳腺癌细胞体外、体内Fulvestrant耐药形成起着关键性作用。
     3、首次建立了MED1与乳腺癌细胞侵袭转移能力的机制性联系。通过体外、体内实验研究发现,MED1通过调控MMP9表达在ER阳性乳腺癌细胞侵袭转移进程中发挥着决定性的作用。沉默MED1能有效地抑制诱导型乳腺癌细胞体内外的侵袭转移以及MMP9的表达;外源性MMP9过表达质粒可以挽救重建这种被MED1沉默所抑制的细胞侵袭能力;而过表达MED1则可以通过上调MMP9来有效增强乳腺癌细胞的侵袭性。MED1调控MMP9转录的分子机制研究初步揭示:MED1通过调节启动子近端AP-1位点上AP-1、共抑制因子HDAC1和共激活因子CBP的招募,参与AP-1转录复合体的组装以及染色质构象重组过程,从而完成对MMP9的转录调控。总之,这些结果表明,MED1通过对MMP9的转录调控在乳腺癌侵袭转移进程中扮演着非常重要的角色。
     综上所述,本论文研究初步揭示了MED1在乳腺癌的Fulvestrant治疗耐药和侵袭转移中的贡献作用,并较深入地阐明了其可能涉及的分子机理。MED1可以作为一个很有前景的潜在的乳腺癌分子治疗靶点,通过靶向沉默MED1来克服乳腺癌临床内分泌治疗耐药、控制远端复发转移。
Breast cancer is the most common malignancy and one of the leading causes of cancer-related mortality amongst female worldwide. The incidence of breast cancer in China, especially in most big cities, is dramatically increasing nowadays. Pure anti-estrogen fulvestrant has been shown to be a promising estrogen receptor (ER) antagonist for locally advanced and metastatic breast cancer. Unfortunately, a significant proportion of patients developed resistance to this type of endocrine therapy but the molecular mechanisms governing cellular responsiveness to this agent remain poorly understood. Meanwhile, metastasis is the major cause of death associate with breast cancer, and the molecular mechanisms of metastasis of breast cancer also remain unclear. MED1(Mediator subunit1), as a known ER coactivator, plays a crucial role in ER-dependent gene expression and estrogen-dependent breast cancer cell growth, and is associated with the resistance of tamoxifen, another class of endocrine therapy agent, and poor outcome of breast cancer patients. Here, this study investigated the role of MED1in the processes of fulvestrant resistance and metastasis of breast cancer.
     1. This study successfully constructed Tet-inducible MED1shRNA lentiviral system using pLKO-Tet-On vector and generated breast cancer cell sublines that stably express firefly luciferase and Tet-inducible MED1shRNA (MCF7-tet-shMED1, BT474-tet-shMED1and ZR75-1-tet-shMEDl). The expressions of MED1in all these Tet-inducible cells were significantly down-regulated after Dox (doxycycline) treatment. Consistent with the previous reports, MED1knockdown induced by Dox strongly inhibited the cell proliferation, anchorage-dependent and anchorage-independent colony formation. In a word, these inducible cells are reliable and useful for further studies.
     2. This study first investigated the role of MEDl on fulvestrant resistance. It was revealed that knockdown of MED1sensitized fulvestrant resistance breast cancer cells (BT474, ZR75-1, MCF7-F) to fulvestrant treatment in vitro. MED1knockdown further promoted cell cycle arrest induced by fulvestrant. Using an orthotopic BT474xenograft mouse model, it was found that knockdown of MED1further significantly potentiated tumor growth inhibition by fulvestrant. Mechanistic studies indicated that combination of fulvestrant treatment and MED1knockdown was able to cooperatively inhibit the expression of ER target genes. Chromatin immunoprecipitation (ChIP) assays further supported a role for MED1in regulating the recruitment of RNA polymerase II, ER and transcriptional corepressor HDAC1on endogenous ER target gene promoter in the presence of fulvestrant. Furthermore, there is a regulator loop between HER2and MED1in controlling fulvestrant resistance of human breast cancer cells. These results demonstrate a role for MED1in mediating resistance to the pure anti-estrogen fulvestrant both in vitro and in vivo.
     3. This study first established the relationship between MED1and the aggressiveness of ER-positive breast cancer cells. Using Tet-inducible MED1knockdown cells, it was revealed that silencing MED1efficiently blocks the abilities of cell migration and invasion in vitro, as well as the metastasis of breast carcinoma in vivo using orthotopic or i.v. xenograft mice models. Meanwhile, the expression of matrix metalloproteinase9(MMP9) was down-regulated by silencing MED1. Exogenous restoration of MMP9can rescue cell migration and invasion decreased by MED1knockdown. Whereas, over-expression of MED1significantly enhances the migration and invasion of MCF7and BT474cells through increasing MMP9expression. Mechanistically, promoter reporter assays indicated that the proximal AP-1binding site is required for MED1-modulated transcriptional regulation of MMP9. ChIP assays further supported that MED1regulated the assembly of AP-1complex and chromatin remodeling through modulating the recruitment of AP-1, transcriptional corepressor HDAC1and coactivator CBP on the proximal AP-1binding site of endogenous MMP9promoter. This perhaps is the main mechanism for MED1activating MMP9transcription. Collectively, our results reveal that MED1plays a key role on invasion and metastasis of ER-positive breast carcinoma through transcriptional regulation of MMP9.
     Taken together, this study has demonstrated the key role of MED1on modulating fulvestrant resistance and metastasis of breast cancer. MED1therefore may offer advantageous therapeutic outcome by overcoming both fulvestrant resistance and metastasis of breast cancer. Targeted intervention of MEDl expression may provide a novel therapeutic strategy to inhibit breast cancer endocrine resistance and distant metastasis.
引文
[1]JEMAL A, BRAY F, CENTER M M, et al. Global cancer statistics [J]. CA Cancer J Clin,2011,61(2):69-90.
    [2]PARKIN D M, FERNANDEZ L M. Use of statistics to assess the global burden of breast cancer [J]. Breast J,2006,12 Suppl 1:S70-80.
    [3]GERMAIN D. Estrogen carcinogenesis in breast cancer [J]. Endocrinol Metab Clin North Am,2011,40(3):473-84, vii.
    [4]郑艳敏,沈月平,刘银梅,等.中国女性乳腺癌危险因素Meta分析[J].中国公共卫生,2012,28(12):1645-7.
    [5]郑飞,姜达.乳腺癌内分泌治疗研究进展[J].肿瘤基础与临床,2012,01):84-8.
    [6]Comprehensive molecular portraits of human breast tumours [J]. Nature,2012, 490(7418):61-70.
    [7]PEROU C M, SORLIE T, EISEN M B, et al. Molecular portraits of human breast tumours [J]. Nature,2000,406(6797):747-52.
    [8]IHEMELANDU C U, NAAB T J, MEZGHEBE H M, et al. Basal cell-like (triple-negative) breast cancer, a predictor of distant metastasis in African American women [J]. Am J Surg,2008,195(2):153-8.
    [9]FOULKES W D, SMITH I E, REIS-FILHO J S. Triple-negative breast cancer [J]. N Engl J Med,2010,363(20):1938-48.
    [10]连臻强,何洁华,王曦,等.乳腺癌不同分子亚型的临床特点和生存分析[J].中华乳腺病杂志(电子版),2009,02):139-46.
    [11]ARIAZI E A, ARIAZI J L, CORDERA F, et al. Estrogen receptors as therapeutic targets in breast cancer [J]. Curr Top Med Chem,2006,6(3):181-202.
    [12]KEY T J, VERKASALO P K, BANKS E. Epidemiology of breast cancer [J]. Lancet Oncol,2001,2(3):133-40.
    [13]ALI S, BULUWELA L, COOMBES R C. Antiestrogens and their therapeutic applications in breast cancer and other diseases [J]. Annual review of medicine,2011, 62:217-32.
    [14]YAGER J D, DAVIDSON N E. Estrogen carcinogenesis in breast cancer [J]. N Engl J Med,2006,354(3):270-82.
    [15]SHAO W, BROWN M. Advances in estrogen receptor biology:prospects for improvements in targeted breast cancer therapy [J]. Breast Cancer Res,2004,6(1): 39-52.
    [16]KUMAR R, ZAKHAROV M N, KHAN S H, et al. The dynamic structure of the estrogen receptor [J]. Journal of amino acids,2011,2011:812540.
    [17]SCHIFF R, MASSARWEH S, SHOU J, et al. Breast cancer endocrine resistance: how growth factor signaling and estrogen receptor coregulators modulate response [J]. Clin Cancer Res,2003,9(1 Pt 2):447S-54S.
    [18]SMITH C L, NAWAZ Z, O'MALLEY B W. Coactivator and corepressor regulation of the agonist/antagonist activity of the mixed antiestrogen, 4-hydroxytamoxifen [J]. Mol Endocrinol,1997,11(6):657-66.
    [19]SONG R X, CHEN Y, ZHANG Z, et al. Estrogen utilization of IGF-l-R and EGF-R to signal in breast cancer cells [J]. J Steroid Biochem Mol Biol,2010,118(4-5): 219-30.
    [20]SARAMAKI A, DIERMEIER S, KELLNER R, et al. Cyclical chromatin looping and transcription factor association on the regulatory regions of the p21 (CDKN1A) gene in response to lalpha,25-dihydroxyvitamin D3 [J]. J Biol Chem,2009,284(12): 8073-82.
    [21]BAUMANN C K, CASTIGLIONE-GERTSCH M. Estrogen receptor modulators and down regulators:optimal use in postmenopausal women with breast cancer [J]. Drugs,2007,67(16):2335-53.
    [22]RENOIR J M, MARSAUD V, LAZENNEC G. Estrogen receptor signaling as a target for novel breast cancer therapeutics [J]. Biochem Pharmacol,2013,85(4): 449-65.
    [23]RIGGS B L, HARTMANN L C. Selective estrogen-receptor modulators mechanisms of action and application to clinical practice [J]. N Engl J Med,2003, 348(7):618-29.
    [24]JOHNSTON S R, MARTIN L A, HEAD J, et al. Aromatase inhibitors: combinations with fulvestrant or signal transduction inhibitors as a strategy to overcome endocrine resistance [J]. J Steroid Biochem Mol Biol,2005,95(1-5): 173-81.
    [25]HO WELL A, ABRAM P. Clinical development of fulvestrant ("Faslodex") [J]. Cancer Treat Rev,2005,31 Suppl 2:S3-9.
    [26]HO WELL A. Fulvestrant ('Faslodex'):current and future role in breast cancer management [J]. Crit Rev Oncol Hematol,2006,57(3):265-73.
    [27]程少萍,韦伟.乳腺癌内分泌治疗耐药机制探讨[J].罕少疾病杂志,2010,(01):42-6.
    [28]FAN J, YIN W J, LU J S, et al. ER alpha negative breast cancer cells restore response to endocrine therapy by combination treatment with both HDAC inhibitor and DNMT inhibitor [J]. J Cancer Res Clin Oncol,2008,134(8):883-90.
    [29]KAWAI H, LI H, AVRAHAM S, et al. Overexpression of histone deacetylase HDAC1 modulates breast cancer progression by negative regulation of estrogen receptor alpha [J]. Int J Cancer,2003,107(3):353-8.
    [30]HOPP T A, WEISS H L, PARRA I S, et al. Low levels of estrogen receptor beta protein predict resistance to tamoxifen therapy in breast cancer [J]. Clin Cancer Res, 2004,10(22):7490-9.
    [31]IGNATIADIS M, ROTHE F, CHABOTEAUX C, et al. HER2-positive circulating tumor cells in breast cancer [J]. PLoS One,2011,6(1):e15624.
    [32]SUBIK K, LEE J F, BAXTER L, et al. The Expression Patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by Immunohistochemical Analysis in Breast Cancer Cell Lines [J]. Breast Cancer (Auckl),2010,4:35-41.
    [33]LEVENSON A S, MACGREGOR SCHAFER J I, BENTREM D J, et al. Control of the estrogen-like actions of the tamoxifen-estrogen receptor complex by the surface amino acid at position 351 [J]. J Steroid Biochem Mol Biol,2001,76(1-5):61-70.
    [34]OSBORNE C K, BARDOU V, HOPP T A, et al. Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer [J]. J Natl Cancer Inst,2003,95(5):353-61.
    [35]ZHANG X, KRUTCHINSKY A, FUKUDA A, et al. MED1/TRAP220 exists predominantly in a TRAP/Mediator subpopulation enriched in RNA polymerase Ⅱ and is required for ER-mediated transcription [J]. Mol Cell,2005,19(1):89-100.
    [36]NAGALINGAM A, TIGHIOUART M, RYDEN L, et al. Medl plays a critical role in the development of tamoxifen resistance [J]. Carcinogenesis,2012,33(4):918-30.
    [37]CUI J, GERMER K, WU T, et al. Cross-talk between HER2 and MED1 regulates tamoxifen resistance of human breast cancer cells [J]. Cancer Res,2012,72(21): 5625-34.
    [38]NICHOLSON R I, HUTCHESON I R, HISCOX S E, et al. Growth factor signalling and resistance to selective oestrogen receptor modulators and pure anti-oestrogens:the use of anti-growth factor therapies to treat or delay endocrine resistance in breast cancer [J]. Endocr Relat Cancer,2005,12 Suppl 1:S29-36.
    [39]FAN P, WANG J, SANTEN R J, et al. Long-term treatment with tamoxifen facilitates translocation of estrogen receptor alpha out of the nucleus and enhances its interaction with EGFR in MCF-7 breast cancer cells [J]. Cancer Res,2007,67(3): 1352-60.
    [40]GHAYAD S E, VENDRELL J A, BEN LARBI S, et al. Endocrine resistance associated with activated ErbB system in breast cancer cells is reversed by inhibiting MAPK or PI3K/Akt signaling pathways [J]. Int J Cancer,2010,126(2):545-62.
    [41]IORFIDA M, BAGNARDI V, BALDUZZI A, et al. Preoperative therapy with trastuzumab and oral vinorelbine (+/- endocrine therapy) in patients with HER2-positive breast cancer [J]. Breast,2010,19(2):128-32.
    [42]KIM R, TANABE K, EMI M, et al. Modulation of tamoxifen sensitivity by antisense Bcl-2 and trastuzumab in breast carcinoma cells [J]. Cancer,2005,103(10): 2199-207.
    [43]袁翔,程昕,许元富,等.降低细胞膜角蛋白8和乳腺癌耐药蛋白的表达逆转耐药性[J].中国药理学通报,2009,(11):1425-9.
    [44]路洪超,耿翠芝,宋连柱,等.乳腺癌组织中BCAR1 p130Cas蛋白的表达及其临床意义[J].中国肿瘤临床,2009,(01):29-32.
    [45]BRINKMAN A, VAN DER FLIER S, KOK E M, et al. BCAR1, a human homologue of the adapter protein p130Cas, and antiestrogen resistance in breast cancer cells [J]. J Natl Cancer Inst,2000,92(2):112-20.
    [46]FROGNE T, BENJAMINSEN R V, SONNE-HANSEN K, et al. Activation of ErbB3, EGFR and Erk is essential for growth of human breast cancer cell lines with acquired resistance to fulvestrant [J]. Breast Cancer Res Treat,2009,114(2):263-75.
    [47]MCCLELLAND R A, BARROW D, MADDEN T A, et al. Enhanced epidermal growth factor receptor signaling in MCF7 breast cancer cells after long-term culture in the presence of the pure antiestrogen ICI 182,780 (Faslodex) [J]. Endocrinology,2001, 142(7):2776-88.
    [48]RIGGINS R B, ZWART A, NEHRA R, et al. The nuclear factor kappa B inhibitor parthenolide restores ICI 182,780 (Faslodex; fulvestrant)-induced apoptosis in antiestrogen-resistant breast cancer cells [J]. Mol Cancer Ther,2005,4(1):33-41.
    [49]RAO X, DI LEVA G, LI M, et al. MicroRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways [J]. Oncogene,2011, 30(9):1082-97.
    [50]FAN M, YAN P S, HARTMAN-FREY C, et al. Diverse gene expression and DNA methylation profiles correlate with differential adaptation of breast cancer cells to the antiestrogens tamoxifen and fulvestrant [J]. Cancer Res,2006,66(24):11954-66.
    [51]CHEN W, ROEDER R G. Mediator-dependent nuclear receptor function [J]. Semin Cell Dev Biol,2011,22(7):749-58.
    [52]ROEDER R G The role of general initiation factors in transcription by RNA polymerase Ⅱ [J]. Trends Biochem Sci,1996,21(9):327-35.
    [53]MALIK S, GUERMAH M, YUAN C X, et al. Structural and functional organization of TRAP220, the TRAP/mediator subunit that is targeted by nuclear receptors [J]. Mol Cell Biol,2004,24(18):8244-54.
    [54]WU Q, BURGHARDT R, SAFE S. Vitamin D-interacting protein 205 (DRIP205) coactivation of estrogen receptor alpha (ERalpha) involves multiple domains of both proteins [J]. J Biol Chem,2004,279(51):53602-12.
    [55]ZHU Y, QI C, JAIN S, et al. Amplification and overexpression of peroxisome proliferator-activated receptor binding protein (PBP/PPARBP) gene in breast cancer [J]. Proc Natl Acad Sci U S A,1999,96(19):10848-53.
    [56]KANG Y K, GUERMAH M, YUAN C X, et al. The TRAP/Mediator coactivator complex interacts directly with estrogen receptors alpha and beta through the TRAP220 subunit and directly enhances estrogen receptor function in vitro [J]. Proc Natl Acad Sci U S A,2002,99(5):2642-7.
    [57]JIANG P, HU Q, ITO M, et al. Key roles for MED1 LxxLL motifs in pubertal mammary gland development and luminal-cell differentiation [J]. Proc Natl Acad Sci US A,2010,107(15):6765-70.
    [58]FONDELL J D. The Mediator complex in thyroid hormone receptor action [J]. Biochim Biophys Acta,2013,1830(7):3867-75.
    [59]PANDEY P K, UDAYAKUMAR T S, LIN X, et al. Activation of TRAP/mediator subunit TRAP220/Med1 is regulated by mitogen-activated protein kinase-dependent phosphorylation [J]. Mol Cell Biol,2005,25(24):10695-710.
    [60]JIA Y, QI C, KASHIREDDI P, et al. Transcription coactivator PBP, the peroxisome proliferator-activated receptor (PPAR)-binding protein, is required for PPARalpha-regulated gene expression in liver [J]. J Biol Chem,2004,279(23): 24427-34.
    [61]ZHANG D, JIANG P, XU Q, et al. Arginine and glutamate-rich 1 (ARGLU1) interacts with mediator subunit 1 (MED1) and is required for estrogen receptor-mediated gene transcription and breast cancer cell growth [J]. J Biol Chem, 2011,286(20):17746-54.
    [62]DRANE P, BAREL M, BALBO M, et al. Identification of RB18A, a 205 kDa new p53 regulatory protein which shares antigenic and functional properties with p53 [J]. Oncogene,1997,15(25):3013-24.
    [63]ZHU Y, QI C, JIA Y, et al. Deletion of PBP/PPARBP, the gene for nuclear receptor coactivator peroxisome proliferator-activated receptor-binding protein, results in embryonic lethality [J]. J Biol Chem,2000,275(20):14779-82.
    [64]CHEN Z, ZHANG C, WU D, et al. Phospho-MEDl-enhanced UBE2C locus looping drives castration-resistant prostate cancer growth [J]. EMBO J,2011,30(12): 2405-19.
    [65]JIN F, IRSHAD S, YU W, et al. ERK and AKT signaling pathways promote MED1 overexpression in prostate cancer cells in association with elevated proliferation and tumorigenicity [J]. Mol Cancer Res,2013, doi:10.1158/1541-7786. MCR-12-0618.
    [66]BAI L, JIA Y, VISWAKARMA N, et al. Transcription coactivator mediator subunit MED1 is required for the development of fatty liver in the mouse [J]. Hepatology,2011,53(4):1164-74.
    [67]MATSUMOTO K, YU S, JIA Y, et al. Critical role for transcription coactivator peroxisome proliferator-activated receptor (PPAR)-binding protein/TRAP220 in liver regeneration and PPARalpha ligand-induced liver tumor development [J]. J Biol Chem, 2007,282(23):17053-60.
    [68]NAKAJIMA T, INUI S, FUSHIMI T, et al. Roles of MED1 in quiescence of hair follicle stem cells and maintenance of normal hair cycling [J]. J Invest Dermatol,2013, 133(2):354-60.
    [69]BOLLAG W B. Mediator1:an important intermediary of vitamin D receptor-regulated epidermal function and hair follicle biology [J]. J Invest Dermatol, 2012,132(4):1068-70.
    [70]SUMITOMO A, ISHINO R, URAHAMA N, et al. The transcriptional mediator subunit MED1/TRAP220 in stromal cells is involved in hematopoietic stem/progenitor cell support through osteopontin expression [J]. Mol Cell Biol,2010,30(20):4818-27.
    [71]HASEGAWA N, SUMITOMO A, FUJITA A, et al. Mediator subunits MED1 and MED24 cooperatively contribute to pubertal mammary gland development and growth of breast carcinoma cells [J]. Mol Cell Biol,2012,32(8):1483-95.
    [72]LUOH S W. Amplification and expression of genes from the 17q11 approximately q12 amplicon in breast cancer cells [J]. Cancer Genet Cytogenet,2002,136(1):43-7.
    [73]IVSHINA A V, GEORGE J, SENKO O, et al. Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer [J]. Cancer Research,2006, 66(21):10292-301.
    [74]BURAKOV D, WONG C W, RACHEZ C, et al. Functional interactions between the estrogen receptor and DRIP205, a subunit of the heteromeric DRIP coactivator complex [J]. J Biol Chem,2000,275(27):20928-34.
    [75]CHENG X, HUNG M C. Breast cancer brain metastases [J]. Cancer Metastasis Rev,2007,26(3-4):635-43.
    [76]VALASTYAN S, WEINBERG R A. Tumor metastasis:molecular insights and evolving paradigms [J]. Cell,2011,147(2):275-92.
    [77]QIN L, LIU Z, CHEN H, et al. The steroid receptor coactivator-1 regulates twist expression and promotes breast cancer metastasis [J]. Cancer Res,2009,69(9): 3819-27.
    [78]TAKEBE N, WARREN R Q, IVY S P. Breast cancer growth and metastasis: interplay between cancer stem cells, embryonic signaling pathways and epithelial-to-mesenchymal transition [J]. Breast Cancer Res,2011,13(3):211.
    [79]FORONI C, BROGGINI M, GENERALI D, et al. Epithelial-mesenchymal transition and breast cancer:role, molecular mechanisms and clinical impact [J]. Cancer Treat Rev,2012,38(6):689-97.
    [80]SHUMAN MOSS L A, JENSEN-TAUBMAN S, STETLER-STEVENSON W G. Matrix metalloproteinases:changing roles in tumor progression and metastasis [J]. Am J Pathol,2012,181(6):1895-9.
    [81]RADISKY E S, RADISKY D C. Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer [J]. J Mammary Gland Biol Neoplasia,2010,15(2):201-12.
    [82]GUTTILLA I K, ADAMS B D, WHITE B A. ERalpha, microRNAs, and the epithelial-mesenchymal transition in breast cancer [J]. Trends Endocrinol Metab,2012, 23(2):73-82.
    [83]ZHANG J, LIANG Q, LEI Y, et al. SOX4 induces epithelial-mesenchymal transition and contributes to breast cancer progression [J]. Cancer Res,2012,72(17): 4597-608.
    [84]HURTEAU G J, CARLSON J A, SPIVACK S D, et al. Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin [J]. Cancer Res,2007,67(17):7972-6.
    [85]KESSENBROCK K, PLAKS V, WERB Z. Matrix metalloproteinases:regulators of the tumor microenvironment [J]. Cell,2010,141(1):52-67.
    [86]TALLANT C, MARRERO A, GOMIS-RUTH F X. Matrix metalloproteinases: fold and function of their catalytic domains [J]. Biochim Biophys Acta,2010,1803(1): 20-8.
    [87]NAGASE H, VISSE R, MURPHY G Structure and function of matrix metalloproteinases and TIMPs [J]. Cardiovasc Res,2006,69(3):562-73.
    [88]LI H C, CAO D C, LIU Y, et al. Prognostic value of matrix metalloproteinases (MMP-2 and MMP-9) in patients with lymph node-negative breast carcinoma [J]. Breast Cancer Res Treat,2004,88(1):75-85.
    [89]SOMIARI S B, SOMIARI R I, HECKMAN C M, et al. Circulating MMP2 and MMP9 in breast cancer-potential role in classification of patients into low risk, high risk, benign disease and breast cancer categories [J]. Int J Cancer,2006,119(6): 1403-11.
    [90]FIGUEIRA R C, GOMES L R, NETO J S, et al. Correlation between MMPs and their inhibitors in breast cancer tumor tissue specimens and in cell lines with different metastatic potential [J]. BMC Cancer,2009,9:20.
    [91]FORSYTH P A, WONG H, LAING T D, et al. Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas [J]. Br J Cancer,1999,79(11-12):1828-35.
    [92]MIRA E, LACALLE R A, BUESA J M, et al. Secreted MMP9 promotes angiogenesis more efficiently than constitutive active MMP9 bound to the tumor cell surface [J]. J Cell Sci,2004,117(Pt 9):1847-57.
    [93]CHEN Y C, SOSNOSKI D M, MASTRO A M. Breast cancer metastasis to the bone:mechanisms of bone loss [J]. Breast Cancer Res,2010,12(6):215.
    [94]THIOLLOY S, HALPERN J, HOLT G E, et al. Osteoclast-derived matrix metalloproteinase-7, but not matrix metalloproteinase-9, contributes to tumor-induced osteolysis [J]. Cancer Res,2009,69(16):6747-55.
    [95]PRATAP J, JAVED A, LANGUINO L R, et al. The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion [J]. Mol Cell Biol,2005,25(19):8581-91.
    [96]ZHAO X, BENVENISTE E N. Transcriptional activation of human matrix metalloproteinase-9 gene expression by multiple co-activators [J]. J Mol Biol,2008, 383(5):945-56.
    [97]PARK S Y, KIM Y H, KIM Y, et al. Aromatic-turmerone attenuates invasion and expression of MMP-9 and COX-2 through inhibition of NF-kappaB activation in TPA-induced breast cancer cells [J]. J Cell Biochem,2012,113(12):3653-62.
    [98]LI L, CHEN P, LING Y, et al. Inhibitory effects of GL-V9 on the invasion of human breast carcinoma cells by downregulating the expression and activity of matrix metalloproteinase-2/9 [J]. Eur J Pharm Sci,2011,43(5):393-9.
    [99]MITTELSTADT M L, PATEL R C. AP-1 mediated transcriptional repression of matrix metalloproteinase-9 by recruitment of histone deacetylase 1 in response to interferon beta [J]. PLoS One,2012,7(8):e42152.
    [100]WANG X, LU H, URVALEK A M, et al. KLF8 promotes human breast cancer cell invasion and metastasis by transcriptional activation of MMP9 [J]. Oncogene, 2011,30(16):1901-11.
    [101]CHOU Y T, WANG H, CHEN Y, et al. Cited2 modulates TGF-beta-mediated upregulation of MMP9 [J]. Oncogene,2006,25(40):5547-60.
    [102]OGAWA K, CHEN F, KUANG C, et al. Suppression of matrix metalloproteinase-9 transcription by transforming growth factor-beta is mediated by a nuclear factor-kappaB site [J]. Biochem J,2004,381(Pt 2):413-22.
    [103]QIU Q, YANG M, TSANG B K, et al. EGF-induced trophoblast secretion of MMP-9 and TIMP-1 involves activation of both PI3K and MAPK signalling pathways [J]. Reproduction,2004,128(3):355-63.
    [104]YAN C, BOYD D D. Regulation of matrix metalloproteinase gene expression [J]. J Cell Physiol,2007,211 (1):19-26.
    [105]QIN L, LIAO L, REDMOND A, et al. The AIB1 oncogene promotes breast cancer metastasis by activation of PE A3-mediated matrix metalloproteinase 2 (MMP2) and MMP9 expression [J]. Mol Cell Biol,2008,28(19):5937-50.
    [106]KIM H J, ROH M S, SON C H, et al. Loss of Medl/TRAP220 promotes the invasion and metastasis of human non-small-cell lung cancer cells by modulating the expression of metastasis-related genes [J]. Cancer Lett,2012,321(2):195-202.
    [107]GADE P, SINGH A K, ROY S K, et al. Down-regulation of the transcriptional mediator subunit Medl contributes to the loss of expression of metastasis-associated dapkl in human cancers and cancer cells [J]. Int J Cancer,2009,125(7):1566-74.
    [108]FIRE A, XU S, MONTGOMERY M K, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J]. Nature,1998, 391(6669):806-11.
    [109]SIJEN T, FLEENOR J, SIMMER F, et al. On the role of RNA amplification in dsRNA-triggered gene silencing [J]. Cell,2001,107(4):465-76.
    [110]LI H, LI W X, DING S W. Induction and suppression of RNA silencing by an animal virus [J]. Science,2002,296(5571):1319-21.
    [111]SUMIMOTO H, KAWAKAMI Y. The RNA silencing technology applied by lentiviral vectors in oncology [J]. Methods Mol Biol,2010,614:187-99.
    [112]WIEDERSCHAIN D, WEE S, CHEN L, et al. Single-vector inducible lentiviral RNAi system for oncology target validation [J]. Cell Cycle,2009,8(3): 498-504.
    [113]SINGER O, VERMA I M. Applications of lentiviral vectors for shRNA delivery and transgenesis [J]. Curr Gene Ther,2008,8(6):483-8.
    [114]SPIRIN P V, BASKARAN D, RUBTSOV P M, et al. A Comparison of Target Gene Silencing using Synthetically Modified siRNA and shRNA That Express Recombinant Lentiviral Vectors [J]. Acta Naturae,2009,1(2):86-90.
    [115]ZHANG F, YAO Y, SU K, et al. Co-transduction of lentiviral and adenoviral vectors for co-delivery of growth factor and shRNA genes in mesenchymal stem cells-based chondrogenic system [J]. J Tissue Eng Regen Med,2012, doi: 10.1002/term.1656.
    [116]WEE S, WIEDERSCHAIN D, MAIRA S M, et al. PTEN-deficient cancers depend on PIK3CB [J]. Proc Natl Acad Sci U S A,2008,105(35):13057-62.
    [117]FRASOR J, STOSSI F, DANES J M, et al. Selective estrogen receptor modulators:discrimination of agonistic versus antagonistic activities by gene expression profiling in breast cancer cells [J]. Cancer Res,2004,64(4):1522-33.
    [118]ZHAO H, LO Y H, YU L, et al. Overcoming resistance to fulvestrant (ICI 182,780) by downregulating the c-ABL proto-oncogene in breast cancer [J]. Mol Carcinog,2011,50(5):383-9.
    [119]FLEMMING J, MADARNAS Y, FRANEK J A. Fulvestrant for systemic therapy of locally advanced or metastatic breast cancer in postmenopausal women:a systematic review [J]. Breast Cancer Res Treat,2009,115(2):255-68.
    [120]ISHII Y, PAPA L, BAHADUR U, et al. Bortezomib enhances the efficacy of fulvestrant by amplifying the aggregation of the estrogen receptor, which leads to a proapoptotic unfolded protein response [J]. Clin Cancer Res,2011,17(8):2292-300.
    [121]VARSHOCHI R, HALIM F, SUNTERS A, et al. ICI182,780 induces p21Wafl gene transcription through releasing histone deacetylase 1 and estrogen receptor alpha from Spl sites to induce cell cycle arrest in MCF-7 breast cancer cell line [J]. J Biol Chem,2005,280(5):3185-96.
    [122]LUPIEN M, MEYER C A, BAILEY S T, et al. Growth factor stimulation induces a distinct ER(alpha) cistrome underlying breast cancer endocrine resistance [J]. Genes Dev,2010,24(19):2219-27.
    [123]DEMIRPENCE E, SEMLALI A, OLIVA J, et al. An estrogen-responsive element-targeted histone deacetylase enzyme has an antiestrogen activity that differs from that of hydroxytamoxifen [J]. Cancer Res,2002,62(22):6519-28.
    [124]KONTZOGLOU K, PALLA V, KARAOLANIS G, et al. Correlation between Ki67 and breast cancer prognosis [J]. Oncology,2013,84(4):219-25.
    [125]VON MINCKWITZ G, SCHMITT W, LOIBL S, et al. Ki67 measured after neoadjuvant chemotherapy for primary breast cancer [J]. Clin Cancer Res,2013, doi: 10.1158/1078-0432.CCR-12-3628.
    [126]OSBORNE C K, SCHIFF R. Mechanisms of endocrine resistance in breast cancer [J]. Annu Rev Med,2011,62:233-47.
    [127]NORMANNO N, DI MAIO M, DE MAIO E, et al. Mechanisms of endocrine resistance and novel therapeutic strategies in breast cancer [J]. Endocr Relat Cancer, 2005,12(4):721-47.
    [128]SHANG Y, BROWN M. Molecular determinants for the tissue specificity of SERMs [J]. Science,2002,295(5564):2465-8.
    [129]LAMY P J, FINA F, BASCOUL-MOLLEVI C, et al. Quantification and clinical relevance of gene amplification at chromosome 17q12-q21 in human epidermal growth factor receptor 2-amplified breast cancers [J]. Breast Cancer Res, 2011,13(1):R15.
    [130]SATO H, SEIKI M. Regulatory mechanism of 92 kDa type IV collagenase gene expression which is associated with invasiveness of tumor cells [J]. Oncogene, 1993,8(2):395-405.
    [131]FARINA A R, TACCONELLI A, VACCA A, et al. Transcriptional up-regulation of matrix metalloproteinase-9 expression during spontaneous epithelial to neuroblast phenotype conversion by SK-N-SH neuroblastoma cells, involved in enhanced invasivity, depends upon GT-box and nuclear factor kappaB elements [J]. Cell Growth Differ,1999,10(5):353-67.
    [132]FOLGUERAS A R, PENDAS A M, SANCHEZ L M, et al. Matrix metalloproteinases in cancer:from new functions to improved inhibition strategies [J]. Int J Dev Biol,2004,48(5-6):411-24.
    [133]CLEMONS M, GOSS P. Estrogen and the risk of breast cancer [J]. N Engl J Med,2001,344(4):276-85.
    [134]SONG H, LI Y, LEE J, et al. Low-density lipoprotein receptor-related protein 1 promotes cancer cell migration and invasion by inducing the expression of matrix metalloproteinases 2 and 9 [J]. Cancer Res,2009,69(3):879-86.
    [135]KATCHMAN B A, OCAL I T, CUNLIFFE H E, et al. Expression of Quiescin Sulfhydryl Oxidase 1 is associated with a highly invasive phenotype and correlates with a poor prognosis in Luminal B breast cancer [J]. Breast Cancer Res,2013,15(2): R28.
    [136]MOOK O R, VAN OVERBEEK C, ACKEMA E Q et al. In situ localization of gelatinolytic activity in the extracellular matrix of metastases of colon cancer in rat liver using quenched fluorogenic DQ-gelatin [J]. J Histochem Cytochem,2003,51(6): 821-9.
    [137]YILMAZ M, CHRISTOFORI G, LEHEMBRE F. Distinct mechanisms of tumor invasion and metastasis [J]. Trends Mol Med,2007,13(12):535-41.
    [138]WANG L, LING Y, CHEN Y, et al. Flavonoid baicalein suppresses adhesion, migration and invasion of MDA-MB-231 human breast cancer cells [J]. Cancer Lett, 2010,297(1):42-8.
    [139]QIN L, ZHANG M. Maspin regulates endothelial cell adhesion and migration through an integrin signaling pathway [J]. J Biol Chem,2010,285(42):32360-9.
    [140]KUPAI K, SZUCS G, CSEH S, et al. Matrix metalloproteinase activity assays: Importance of zymography [J]. J Pharmacol Toxicol Methods,2010,61(2):205-9.
    [141]MA Z, SHAH R C, CHANG M J, et al. Coordination of cell signaling, chromatin remodeling, histone modifications, and regulator recruitment in human matrix metalloproteinase 9 gene transcription [J]. Mol Cell Biol,2004,24(12): 5496-509.
    [142]KO H S, LEE H J, KIM S H, et al. Piceatannol suppresses breast cancer cell invasion through the inhibition of MMP-9:involvement of PI3K/AKT and NF-kappaB pathways [J]. J Agric Food Chem,2012,60(16):4083-9.
    [143]KIM S, HAN J, LEE S K, et al. Berberine suppresses the TPA-induced MMP-1 and MMP-9 expressions through the inhibition of PKC-alpha in breast cancer cells [J]. J Surg Res,2012,176(1):e21-9.
    [144]SATO H, KITA M, SEIKI M. v-Src activates the expression of 92-kDa type IV collagenase gene through the AP-1 site and the GT box homologous to retinoblastoma control elements. A mechanism regulating gene expression independent of that by inflammatory cytokines [J]. J Biol Chem,1993,268(31):23460-8.
    [145]LIN K T, WANG Y W, CHEN C T, et al. HDAC inhibitors augmented cell migration and metastasis through induction of PKCs leading to identification of low toxicity modalities for combination cancer therapy [J]. Clin Cancer Res,2012,18(17): 4691-701.
    [146]IYER N G, OZDAG H, CALDAS C. p300/CBP and cancer [J]. Oncogene, 2004,23(24):4225-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700