BCRP基因多态性与类风湿关节炎耐药的相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     类风湿关节炎(rheumatoid arthritis, RA)是一种以慢性侵蚀性关节炎为特征的自身免疫性疾病。改善病情抗风湿药(disease-modifying anti-rheumatic drugs, DMARDs)是RA治疗的首选,经数十年的临床检验被证实对RA疗效肯定,副作用较小且价格相对低廉,容易被我国RA患者接受。但在临床中,一部分患者在治疗过程中逐渐出现DMARDs疗效下降,这时即使加大药物剂量,往往也不能有效控制病情,即患者对DMARDs产生耐药。DMARDs耐药现象在临床中十分普遍,很大程度上限制了药物的使用,影响RA的治疗效果。目前,引起DMARDs耐药的机制尚不清楚,但近年来的研究表明,多药耐药蛋白(multi-drug resistance transporter, MDR)通过药物外排作用,降低靶细胞内的药物浓度是引起DMARDs耐药的重要原因。
     乳腺癌耐药蛋白(breast cancer resistance protein, BCRP)属于MDR蛋白中的一种,已被证明在多种类型的肿瘤细胞中高表达,可特异性地外排抗肿瘤药物,是导致肿瘤耐药的重要原因。值得注意的是,甲氨蝶呤、来氟米特、柳氮磺吡啶这几种重要的DMARDs均是BCRP的底物。多项研究已证实BCRP表达在RA滑膜巨噬细胞和外周血单核细胞,且与DMARDs治疗效果不佳相关。体外实验表明,柳氮磺吡啶长期作用还可诱导T细胞表面BCRP表达上调,导致细胞内药物浓度降低。这些结果均提示BCRP可能参与了DMARDs耐药。单核苷酸多态性(single nucleotide polymorphisms, SNP)是指由单个核苷酸变异引起的基因组水平上的DNA序列多态性。单核苷酸多态性作为内因不但影响疾病的发生发展,而且造成不同种群、个体对病原体、药物反应的差异性。MDR蛋白的单核苷酸多态性不但影响MDR蛋白的表达及功能,而且广泛参与人体内药物的药代动力学过程,决定了临床常见的群体/个体药物反应差异性。BCRP由BCRP基因(ABCG2)编码,在肿瘤耐药的研究中发现,BCRP基因C421A和G34A两个位点的单核苷酸多态性(SNPs)可影响肿瘤细胞BCRP的表达水平和功能,还影响化疗药物在体内的药代动力学过程,导致患者对化疗的耐药性产生明显不同。目前尚无BCRP基因C421A和G34A位点的单核苷酸多态性对RA患者DMARDs耐药性影响的相关研究。
     目的:探讨我国湖南汉族人群BCRP基因(ABCG2)C421A和G34A位点的单核苷酸多态性(SNPs)与类风湿关节炎(RA)改善病情抗风湿药(DMARDs)耐药的相关性。
     方法:研究对象308例,其中RA患者204例,均为2011年3月~2012年2月在中南大学湘雅二医院风湿免疫科就诊的患者,根据患者对(DMARDs)治疗的反应不同,分为治疗有效组112例和难治组92例,另纳入正常对照104例。采用聚合酶链式反应-限制性片段长度多态性(PCR-RFLP)方法检测BCRP基因在C421A和G34A位点的基因型,比较三组间基因型和等位基因的分布频率。
     结果:各组研究对象基因型分布符合哈迪-温伯格平衡。C421A位点AC和AA基因型在治疗有效组的出现频率高于正常对照组,但差异无统计学意义(P值分别为0.223,0.420)。AC基因型在治疗有效组的出现频率明显高于难治组(P=0.031, OR=0.521,95%CI:0.287-0.945), A型等位基因在治疗有效组的出现频率也高于难治组(P=0.027, OR=0.625,95%CI:0.412-0.949)。BCRP-G34A位点的各基因型和等位基因在三组间的分布频率无显著性差异(P均>0.05)。
     结论:在湖南汉族人群中,BCRP基因C421A和G34A位点的单核苷酸多态性与RA易感性无关,但C421A位点突变可能与RA患者对DMARDs的治疗反应相关,AC基因型和A型等位基因可能是DMARDs耐药的保护性因素。BCRP-G34A位点突变与DMARDs耐药无关。
Background
     Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic erosive arthritis. Disease-modifying anti-rheumatic drugs (DMARDs) are recommended as the first-line treatment in clinical practice for decades, with less adverse effect and low price。However, physicians find that part of the RA patients seems to be less efficient with DMARDs, even increasing dosages cannot redress it. DAMRDs Resistance is a common problem in clinic, which undoubtedly affect the prognosis of RA. So far the mechanism leading to the resistance is not clear. Recently, studies showed that multi-drug resistance transporter (MDR) may play an important role in this process through the exocytosis effect to drugs.
     Breast cancer resistance protein (BCRP) is a member of MDR which has been proved to play an important role in the resistance to chemotherapeutics through the exocytosis effect to chemotherapeutic agents. It is noted that some DMARDs, including methotrexate, leflunomide and salazosulfadimidine are all substrates of BCRP. Previous studies have showed that BCRP expressed on the macrophages of synovial tissue and related to a poor response to DMARDs. Long-term use of salazosulfadimidine can up-regulate the expression of BCRP on T cells and reduce intracellular drug concentration. BCRP is coded by BCRP gene (ABCG2). Single nucleotide polymorphisms (SNPs) of C421A and G34A sites in BCRP gene can affect the expression of BCRP on cancer cells, resulting in pharmacokinetics change of chemotherapeutic agents and resistance to chemotherapeutics. By far there is no report on the relationship between SNPs of these two sites and resistance of DMARDs in RA patients.
     Objective:To investigate the relationship of single nucleotide polymorphisms (SNPs) of C421A and G34A sites with the drug-resistance of RA in Hunan Han population.
     Methods:308subjects of Chinese Han origin were genotyped with polymerase chain reaction-restricted fragment length polymorphisms (PCR-RFLP), with204RA patients and104healthy controls. The RA treated were divided into two groups according the response to disease-modifying antirheumatic drugs (DMARDs). There were108patients in the effective group and115patients in the in-effective group. Genotype distribution and allele frequencies were analyzed between the three groups.
     Results:No deviations from the Hardy-Weinberge quilibrium(HWE) were observed in all study groups. Compared to non-responders, the responders carried more AC genotype (P=0.031, OR=0.521,95%CI:0.287-0.945), and more A allele (P=0.027, OR=0.625,95%CI:0.412-0.949) in C421A site, but with no statistically differences in genotype nor allele frequency between RA and healthy controls. There were significant differences in the genotype frequency and allele frequency in G34A site among three groups (P>0.5).
     Conclusion:The results from our study suggest that the C421A BCRP gene polymorphism may not be related with the RA susceptibility, but may influence the efficacy of RA therapy with DMARDs. There is no such relationship found in G34A site.
引文
[1]Morgan C, Lunt M, Brightwell H, et al. Contribution of patient related differences to multidrug resistance in rheumatoid arthritis[J]. Ann Rheum Dis.2003,62(1): 15-19.
    [2]Galindo-Rodriguez G, Avina-Zubieta J A, Russell A S, et al. Disappointing longterm results with disease modifying antirheumatic drugs. A practice based study[J]. J Rheumatol.1999,26(11):2337-2343.
    [3]Fleischmann R M. Is there a need for new therapies for rheumatoid arthritis?[J]. J Rheumatol Suppl.2005,73:3-7,29-30.
    [4]Maradit-Kremers H, Nicola P J, Crowson C S, et al. Patient, disease, and therapy-related factors that influence discontinuation of disease-modifying antirheumatic drugs:a population-based incidence cohort of patients with rheumatoid arthritis[J]. J Rheumatol.2006,33(2):248-255.
    [5]Wolfe F. The epidemiology of drug treatment failure in rheumatoid arthritis[J]. Baillieres Clin Rheumatol.1995,9(4):619-632.
    [6]Aletaha D, Smolen J S. Effectiveness profiles and dose dependent retention of traditional disease modifying antirheumatic drugs for rheumatoid arthritis. An observational study[J]. J Rheumatol.2002,29(8):1631-1638.
    [7]Maetzel A, Wong A, Strand V, et al. Meta-analysis of treatment termination rates among rheumatoid arthritis patients receiving disease-modifying anti-rheumatic drugs[J]. Rheumatology (Oxford).2000,39(9):975-981.
    [8]Gottesman M M, Fojo T, Bates S E. Multidrug resistance in cancer:role of ATP-dependent transporters[J]. Nat Rev Cancer.2002,2(1):48-58.
    [9]van de Ven R, Oerlemans R, van der Heijden J W, et al. ABC drug transporters and immunity:novel therapeutic targets in autoimmunity and cancer [J]. J Leukoc Biol.2009,86(5):1075-1087.
    [10]Borst P, Elferink R O. Mammalian ABC transporters in health and disease[J]. Annu Rev Biochem.2002,71:537-592.
    [11]Sarkadi B, Homolya L, Szakacs G, et al. Human multidrug resistance ABCB and ABCG transporters:participation in a chemoimmunity defense system[J]. Physiol Rev.2006,86(4):1179-1236.
    [12]Marchetti S, Mazzanti R, Beijnen J H, et al. Concise review:Clinical relevance of drug drug and herb drug interactions mediated by the ABC transporter ABCB1 (MDR1, P-glycoprotein)[J]. Oncologist.2007,12(8):927-941.
    [13]Tsujimura S, Saito K, Nawata M, et al. Overcoming drug resistance induced by P-glycoprotein on lymphocytes in patients with refractory rheumatoid arthritis[J]. Ann Rheum Dis.2008,67(3):380-388.
    [14]Tsujimura S, Saito K, Nakayamada S, et al. Etanercept overcomes P-glycoprotein-induced drug resistance in lymphocytes of patients with intractable rheumatoid arthritis[J]. Mod Rheumatol.2010,20(2):139-146.
    [15]Suzuki K, Saito K, Tsujimura S, et al. Tacrolimus, a calcineurin inhibitor, overcomes treatment unresponsiveness mediated by P-glycoprotein on lymphocytes in refractory rheumatoid arthritis[J]. J Rheumatol.2010,37(3): 512-520.
    [16]Doyle L A, Yang W, Abruzzo L V, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells[J]. Proc Natl Acad Sci U S A.1998,95(26): 15665-15670.
    [17]Ni Z, Bikadi Z, Rosenberg M F, et al. Structure and function of the human breast cancer resistance protein (BCRP/ABCG2)[J]. Curr Drug Metab.2010,11(7): 603-617.
    [18]An Y, Ongkeko W M. ABCG2:the key to chemoresistance in cancer stem cells?[J]. Expert Opin Drug Metab Toxicol.2009,5(12):1529-1542.
    [19]Ross D D, Karp J E, Chen T T, et al. Expression of breast cancer resistance protein in blast cells from patients with acute leukemia[J]. Blood.2000,96(1): 365-368.
    [20]Fetsch P A, Abati A, Litman T, et al. Localization of the ABCG2 mitoxantrone resistance-associated protein in normal tissues[J]. Cancer Lett.2006,235(1): 84-92.
    [21]van der Heijden J W, Oerlemans R, Tak P P, et al. Involvement of breast cancer resistance protein expression on rheumatoid arthritis synovial tissue macrophages in resistance to methotrexate and leflunomide[J]. Arthritis Rheum. 2009,60(3):669-677.
    [22]U Kalyoncu I E. The breast cancer resistance protein:gatekeeper to the synovium?[J]. Int. J. Clin. Rheumatol.2010,5(5):509-511.
    [23]The association analysis of P-gp with Mltidrug resistance in rheumatoid arthritis[J]. CHINESE JOURNAL OF RHEUMATOLOGY.2010,14(4): 248-251.(In Chinese)
    [24]van der Heijden J, de Jong M C, Dijkmans B A, et al. Development of sulfasalazine resistance in human T cells induces expression of the multidrug resistance transporter ABCG2 (BCRP) and augmented production of TNFaIpha[J]. Ann Rheum Dis.2004,63(2):138-143.
    [25]Pawlik A, Wrzesniewska J, Fiedorowicz-Fabrycy I, et al. The MDR1 3435 polymorphism in patients with rheumatoid arthritis[J]. Int J Clin Pharmacol Ther. 2004,42(9):496-503.
    [26]Chen J, Chen L, Mao N, et al. Association of the MDR1 3435 polymorphism in patients with refractory rheumatoid arthritis in a Chinese population[J]. Rheumatol Int.2012,32(10):3127-3130.
    [27]Allikmets R, Schriml L M, Hutchinson A, et al. A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance[J]. Cancer Res.1998,58(23):5337-5339.
    [28]Tamura A, Onishi Y, An R, et al. In vitro evaluation of photosensitivity risk related to genetic polymorphisms of human ABC transporter ABCG2 and inhibition by drugs[J]. Drug Metab Pharmacokinet.2007,22(6):428-440.
    [29]Lee S S, Jeong H E, Yi J M, et al. Identification and functional assessment of BCRP polymorphisms in a Korean population[J]. Drug Metab Dispos.2007, 35(4):623-632.
    [30]de Jong F A, Marsh S, Mathijssen R H, et al. ABCG2 pharmacogenetics:ethnic differences in allele frequency and assessment of influence on irinotecan disposition[J]. Clin Cancer Res.2004,10(17):5889-5894.
    [31]Ota S, Ishii G, Goto K, et al. Immunohistochemical expression of BCRP and ERCC1 in biopsy specimen predicts survival in advanced non-small-cell lung cancer treated with cisplatin-based chemotherapy [J]. Lung Cancer.2009,64(1): 98-104.
    [32]Yuan J, Lv H, Peng B, et al. Role of BCRP as a biomarker for predicting resistance to 5-fluorouracil in breast cancer[J]. Cancer Chemother Pharmacol. 2009,63(6):1103-1110.
    [33]Li J, Cusatis G, Brahmer J, et al. Association of variant ABCG2 and the pharmacokinetics of epidermal growth factor receptor tyrosine kinase inhibitors in cancer patients[J]. Cancer Biol Ther.2007,6(3):432-438.
    [34]Sparreboom A, Gelderblom H, Marsh S, et al. Diflomotecan pharmacokinetics in relation to ABCG2 421C>A genotype[J]. Clin Pharmacol Ther.2004,76(1): 38-44.
    [35]Sparreboom A, Loos W J, Burger H, et al. Effect of ABCG2 genotype on the oral bioavailability of topotecan[J]. Cancer Biol Ther.2005,4(6):650-658.
    [36]Backstrom G, Taipalensuu J, Melhus H, et al. Genetic variation in the ATP-binding cassette transporter gene ABCG2 (BCRP) in a Swedish population[J]. Eur J Pharm Sci.2003,18(5):359-364.
    [37]Muller P J, Dally H, Klappenecker C N, et al. Polymorphisms in ABCG2, ABCC3 and CNT1 genes and their possible impact on chemotherapy outcome of lung cancer patients[J]. Int J Cancer.2009,124(7):1669-1674.
    [38]Poonkuzhali B, Lamba J, Strom S, et al. Association of breast cancer resistance protein/ABCG2 phenotypes and novel promoter and intron 1 single nucleotide polymorphisms[J]. Drug Metab Dispos.2008,36(4):780-795.
    [39]Hampras S S, Sucheston L, Weiss J, et al. Genetic polymorphisms of ATP-binding cassette (ABC) proteins, overall survival and drug toxicity in patients with Acute Myeloid Leukemia[J]. Int J Mol Epidemiol Genet.2010,1(3): 201-207.
    [40]Arnett F C, Edworthy S M, Bloch D A, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis[J]. Arthritis Rheum.1988,31(3):315-324.
    [41]Felson D T, Anderson J J, Boers M, et al. The American College of Rheumatology preliminary core set of disease activity measures for rheumatoid arthritis clinical trials. The Committee on Outcome Measures in Rheumatoid Arthritis Clinical Trials[J]. Arthritis Rheum.1993,36(6):729-7'40.
    [42]Imai Y, Nakane M, Kage K, et al. C421A polymorphism in the human breast cancer resistance protein gene is associated with low expression of Q141K protein and low-level drug resistance[J]. Mol Cancer Ther.2002,1(8):611-616.
    [43]Zhai X, Wang H, Zhu X, et al. Gene polymorphisms of ABC transporters are associated with clinical outcomes in children with acute lymphoblastic leukemia[J]. Arch Med Sci.2012,8(4):659-671.
    [44]Fischer S, Lakatos P L, Lakatos L, et al. ATP-binding cassette transporter ABCG2 (BCRP) and ABCB1 (MDR1) variants are not associated with disease susceptibility, disease phenotype response to medical therapy or need for surgeryin Hungarian patients with inflammatory bowel diseases[J]. Scand J Gastroenterol.2007,42(6):726-733.
    [45]Chen P, Zhao L, Zou P, et al. The contribution of the ABCG2 C421A polymorphism to cancer susceptibility:a meta-analysis of the current literature [J]. BMC Cancer.2012,12:383.
    [46]Campa D, Butterbach K, Slager S L, et al. A comprehensive study of polymorphisms in the ABCB1, ABCC2, ABCG2, NR1I2 genes and lymphoma risk[J]. Int J Cancer.2012,131(4):803-812.
    [47]Hu L L, Wang X X, Chen X, et al. BCRP gene polymorphisms are associated with susceptibility and survival of diffuse large B-cell lymphoma[J]. Carcinogenesis.2007,28(8):1740-1744.
    [48]Korenaga Y, Naito K, Okayama N, et al. Association of the BCRP C421A polymorphism with nonpapillary renal cell carcinoma[J]. Int J Cancer.2005, 117(3):431-434.
    [49]Matsuo H, Takada T, Ichida K, et al. ABCG2/BCRP dysfunction as a major cause of gout[J]. Nucleosides Nucleotides Nucleic Acids.2011,30(12): 1117-1128.
    [50]Cascorbi I, Fluh C, Remmler C, et al. Association of ATP-binding cassette transporter variants with the risk of Alzheimer's disease[J]. Pharmacogenomics. 2013,14(5):485-494.
    [51]Frank M H, Denton M D, Alexander S I, et al. Specific MDR1 P-glycoprotein blockade inhibits human alloimmune T cell activation in vitro [J]. J Immunol. 2001,166(4):2451-2459.
    [52]Vee M L, Lecureur V, Stieger B, et al. Regulation of drug transporter expression in human hepatocytes exposed to the proinfiammatory cytokines tumor necrosis factor-alpha or interleukin-6[J]. Drug Metab Dispos.2009,37(3):685-693.
    [53]Kondo C, Suzuki H, Itoda M, et al. Functional analysis of SNPs variants of BCRP/ABCG2[J]. Pharm Res.2004,21(10):1895-1903.
    [54]Zaher H, Khan A A, Palandra J, et al. Breast cancer resistance protein (Bcrp/abcg2) is a major determinant of sulfasalazine absorption and elimination in the mouse[J]. Mol Pharm.2006,3(1):55-61.
    [55]Urquhart B L, Ware J A, Tirana R G, et al. Breast cancer resistance protein (ABCG2) and drug disposition:intestinal expression, polymorphisms and sulfasalazine as an in vivo probe[J]. Pharmacogenet Genomics.2008,18(5): 439-448.
    [1]Morgan C, Lunt M, Brightwell H, et al. Contribution of patient related differences to multidrug resistance in rheumatoid arthritis[J]. Ann Rheum Dis.2003,62(1): 15-19.
    [2]Tsujimura S, Saito K, Nawata M, et al. Overcoming drug resistance induced by P-glycoprotein on lymphocytes in patients with refractory rheumatoid arthritis[J]. Ann Rheum Dis.2008,67(3):380-388.
    [3]Galindo-Rodriguez G, Avina-Zubieta J A, Russell A S, et al. Disappointing longterm results with disease modifying antirheumatic drugs. A practice based study[J]. J Rheumatol.1999,26(11):2337-2343.
    [4]Fleischmann R M. Is there a need for new therapies for rheumatoid arthritis?[J]. J Rheumatol Suppl.2005,73:3-7,29-30.
    [5]Maradit-Kremers H, Nicola P J, Crowson C S, et al. Patient, disease, and therapy-related factors that influence discontinuation of disease-modifying antirheumatic drugs:a population-based incidence cohort of patients with rheumatoid arthritis[J]. J Rheumatol.2006,33(2):248-255.
    [6]Wolfe F. The epidemiology of drug treatment failure in rheumatoid arthritis[J]. Baillieres Clin Rheumatol.1995,9(4):619-632.
    [7]Aletaha D, Smolen J S. Effectiveness profiles and dose dependent retention of traditional disease modifying antirheumatic drugs for rheumatoid arthritis. An observational study[J]. J Rheumatol.2002,29(8):1631-1638.
    [8]Maetzel A, Wong A, Strand V, et al. Meta-analysis of treatment termination rates among rheumatoid arthritis patients receiving disease-modifying anti-rheumatic drugs[J]. Rheumatology (Oxford).2000,39(9):975-981.
    [9]Jansen G, Scheper R J, Dijkmans B A. Multidrug resistance proteins in rheumatoid arthritis, role in disease-modifying antirheumatic drug efficacy and inflammatory processes:an overview[J]. Scand J Rheumatol.2003,32(6): 325-336.
    [10]van de Ven R, Oerlemans R, van der Heijden J W, et al. ABC drug transporters and immunity:novel therapeutic targets in autoimmunity and cancer [J]. J Leukoc Biol.2009,86(5):1075-1087.
    [11]Sarkadi B, Homolya L, Szakacs G, et al. Human multidrug resistance ABCB and ABCG transporters:participation in a chemoimmunity defense system[J]. Physiol Rev.2006,86(4):1179-1236.
    [12]Doyle L A, Yang W, Abruzzo L V, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells[J]. Proc Natl Acad Sci U S A.1998,95(26): 15665-15670.
    [13]Robey R W ,To K K, Polgar O, et al. ABCG2:a perspective[J]. Adv Drug Deliv Rev.2009,61(1):3-13.
    [14]Ding X W, Wu J H, Jiang C P. ABCG2:a potential marker of stem cells and novel target in stem cell and cancer therapy [J]. Life Sci.2010,86(17-18): 631-637.
    [15]Ross D D, Karp J E, Chen T T, et al. Expression of breast cancer resistance protein in blast cells from patients with acute leukemia[J]. Blood.2000,96(1): 365-368.
    [16]Ota S, Ishii G, Goto K, et al. Immunohistochemical expression of BCRP and ERCC1 in biopsy specimen predicts survival in advanced non-small-cell lung cancer treated with cisplatin-based chemotherapy [J]. Lung Cancer.2009,64(1): 98-104.
    [17]Yuan J, Lv H, Peng B, et al. Role of BCRP as a biomarker for predicting resistance to 5-fluorouracil in breast cancer[J]. Cancer Chemother Pharmacol. 2009,63(6):1103-1110.
    [18]Fetsch P A, Abati A, Litman T, et al. Localization of the ABCG2 mitoxantrone resistance-associated protein in normal tissues[J]. Cancer Lett.2006,235(1): 84-92.
    [19]Yoh K, Ishii G, Yokose T, et al. Breast cancer resistance protein impacts clinical outcome in platinum-based chemotherapy for advanced non-small cell lung cancer[J]. Clin Cancer Res.2004,10(5):1691-1697.
    [20]van der Heijden J, de Jong M C, Dijkmans B A, et al. Development of sulfasalazine resistance in human T cells induces expression of the multidrug resistance transporter ABCG2 (BCRP) and augmented production of TNFalpha[J]. Ann Rheum Dis.2004,63(2):138-143.
    [21]Zaher H, Khan A A, Palandra J, et al. Breast cancer resistance protein (Bcrp/abcg2) is a major determinant of sulfasalazine absorption and elimination in the mouse[J]. Mol Pharm.2006,3(1):55-61.
    [22]Oerlemans R V D H J. Increased activity of multidrug resistance protein PGP, but not MRP1 and BCRP, in Cd3+T lymphocytes of RA patients treated with DMARDs[Z].2009:61(Suppl.1),1285.
    [23]长沙:中南大学,2010.(In Chinese)
    [24]van der Heijden J W, Oerlemans R, Tak P P, et al. Involvement of breast cancer resistance protein expression on rheumatoid arthritis synovial tissue macrophages in resistance to methotrexate and leflunomide[J]. Arthritis Rheum. 2009,60(3):669-677.
    [25]Karanikolas G, Charalambopoulos D, Andrianakos A, et al. Combination of cyclosporine and leflunomide versus single therapy in severe rheumatoid arthritis[J]. J Rheumatol.2006,33(3):486-489.
    [26]de Jong F A, Marsh S, Mathijssen R H, et al. ABCG2 pharmacogenetics:ethnic differences in allele frequency and assessment of influence on irinotecan disposition[J]. Clin Cancer Res.2004,10(17):5889-5894.
    [27]Lee S S, Jeong H E, Yi J M, et al. Identification and functional assessment of BCRP polymorphisms in a Korean population[J]. Drug Metab Dispos.2007, 35(4):623-632.
    [28]Zhang W, Yu B N, He Y J, et al. Role of BCRP 421 C>A polymorphism on rosuvastatin pharmacokinetics in healthy Chinese males [J]. Clin Chim Acta. 2006,373(1-2):99-103.
    [29]Korenaga Y, Naito K, Okayama N, et al. Association of the BCRP C421A polymorphism with nonpapillary renal cell carcinoma[J]. Int J Cancer.2005, 117(3):431-434.
    [30]Mizuarai S, Aozasa N, Kotani H. Single nucleotide polymorphisms result in impaired membrane localization and reduced atpase activity in multidrug transporter ABCG2[J]. Int J Cancer.2004,109(2):238-246.
    [31]Colombo S, Soranzo N, Rotger M, et al. Influence of ABCB1, ABCC1, ABCC2, and ABCG2 haplotypes on the cellular exposure of nelfinavir in vivo[J]. Pharmacogenet Genomics.2005,15(9):599-608.
    [32]Kobayashi D, Ieiri I, Hirota T, et al. Functional assessment of ABCG2 (BCRP) gene polymorphisms to protein expression in human placenta[J]. Drug Metab Dispos.2005,33(1):94-101.
    [33]Imai Y, Nakane M, Kage K, et al. C421A polymorphism in the human breast cancer resistance protein gene is associated with low expression of Q141K protein and low-level drug resistance[J]. Mol Cancer Ther.2002,1(8):611-616.
    [34]Kondo C, Suzuki H, Itoda M, et al. Functional analysis of SNPs variants of BCRP/ABCG2[J]. Pharm Res.2004,21(10):1895-1903.
    [35]Urquhart B L, Ware J A, Tirona R G, et al. Breast cancer resistance protein (ABCG2) and drug disposition:intestinal expression, polymorphisms and sulfasalazine as an in vivo probe[J]. Pharmacogenet Genomics.2008,18(5): 439-448.
    [36]Sparreboom A, Gelderblom H, Marsh S, et al. Diflomotecan pharmacokinetics in relation to ABCG2 42C>A genotype[J]. Clin Pharmacol Ther.2004,76(1): 38-44.
    [37]de Jong F A, Marsh S, Mathijssen R H, et al. ABCG2 pharmacogenetics:ethnic differences in allele frequency and assessment of influence on irinotecan disposition[J]. Clin Cancer Res.2004,10(17):5889-5894.
    [38]Cusatis G, Gregorc V, Li J, et al. Pharmacogenetics of ABCG2 and adverse reactions to gefitinib[J]. J Natl Cancer Inst.2006,98(23):1739-1742.
    [39]Backstrom G, Taipalensuu J, Melhus H, et al. Genetic variation in the ATP-binding cassette transporter gene ABCG2 (BCRP) in a Swedish population[J]. Eur J Pharm Sci.2003,18(5):359-364.
    [40]Poonkuzhali B, Lamba J, Strom S, et al. Association of breast cancer resistance protein/ABCG2 phenotypes and novel promoter and intron 1 single nucleotide polymorphisms[J]. Drug Metab Dispos.2008,36(4):780-795.
    [41]Hampras S S, Sucheston L, Weiss J, et al. Genetic polymorphisms of ATP-binding cassette (ABC) proteins, overall survival and drug toxicity in patients with Acute Myeloid Leukemia[J]. Int J Mol Epidemiol Genet.2010,1(3): 201-207.
    [42]Yin L, Castagnino P, Assoian R K. ABCG2 expression and side population abundance regulated by a transforming growth factor beta-directed epithelial-mesenchymal transition[J]. Cancer Res.2008,68(3):800-807.
    [43]Evseenko D A, Paxton J W, Keelan J A. Independent regulation of apical and basolateral drug transporter expression and function in placental trophoblasts by cytokines, steroids, and growth factors[J]. Drug Metab Dispos.2007,35(4): 595-601.
    [44]Tsujimura S, Saito K, Nakayamada S, et al. Etanercept overcomes P-glycoprotein-induced drug resistance in lymphocytes of patients with intractable rheumatoid arthritis[J]. Mod Rheumatol.2010,20(2):139-146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700