CXCR1/2在胃癌细胞增殖、迁移和侵袭中的作用及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     胃癌是人类常见的恶性肿瘤之一,国际癌症研究协会最新数据显示其发病率及死亡率高居恶性肿瘤前列。胃癌细胞增殖失控、侵袭、转移及耐药是导致其不良预后的重要原因。胃癌治疗的突破依赖于我们对胃癌发生发展复杂分子机制的深入探索。“非可控性炎症”在胃癌的发生发展进程中扮演着重要角色,在炎症与肿瘤动态网络的可调性与鲁棒性(robustness)辩证关系中,趋化因子受体与其配体是一类重要的非可控性炎症因素。最近有研究发现,趋化因子受体家族在数种肿瘤细胞中高表达,在肿瘤的发生、增殖、生长、侵袭、转移、血管新生及耐药等方面发挥重要的调控作用。
     CXCR1/2即CXCR1和CXCR2,二者具有75.8%的高度相似序列,属于趋化因子受体家族。最初研究表明CXCR1/2主要表达于中性粒细胞,被激活后调节信号通路下游的蛋白靶点(如NF-kB,AP-1, MMP9等),参与化学趋化、钙离子流动、细胞增殖、运动及血管新生的调节等。目前,有研究显示CXCR1/2在某些肿瘤进程中发挥一定的作用。而有关CXCR1/2在胃癌增殖生长、侵袭及转移中扮演何种角色?许多的研究表明MAPK/ERK和PI3K/AKT通路参与调控肿瘤的生物学行为,CXCR1/2是否与MAPK/ERK和PI3K/AKT通路在胃癌调控中有关联?哪些与胃癌细胞凋亡、增殖生长及侵袭转移相关的指标参与到CXCR1/2调控通路中?这些问题值得但尚未被深入研究。
     目的
     本课题着眼于一类重要的非可控性炎症因素--趋化因子受体CXCR1/2:
     1.研究CXCR1/2在胃癌中的表达及其与临床病理特征的关系。
     2.探究靶向阻断CXCR1/2和CXCR1基因沉默及过表达对胃癌细胞生物学行为的影响及其机制。
     3.为利用CXCR1/2设计靶向药物治疗胃癌提供有价值的实验基础。
     方法
     1.探讨CXCR/2表达与临床病理特征及与调控胃癌细胞生物学行为相关指标的相关性
     (1)收集胃癌及癌旁组织标本69例,采用免疫组织化学方法(IHC)检测,并分析CXCR1/2表达与临床病理特征之间的相关性;
     (2)分析CXCR1/2表达与ERK和AKT磷酸化、凋亡增殖生长(bcl-2, bax, CyclinD1, EGFR和ki-67)、血管新生(VEGF和CD34)及侵袭转移(MMP-9, MMP-2, TIMP-2和E-cadherin)等指标的相关性。
     2.探讨靶向阻断CXCR1/2对胃癌生物学行为的影响及其机制建立体内外Repertaxin(一种CXCR1/2小分子特异性抑制剂,能阻断CXCR1/2与其配体结合)靶向阻断胃癌细胞CXCR1/2体系:Repertaxin单独或联合化疗药物5-氟尿嘧啶(fluorouracil,5-FU)应用到培养的胃癌细胞MKN45和裸鼠成瘤模型中。
     (1)MTT实验、平板克隆形成实验、流式细胞周期检测及凋亡检测观察胃癌细胞增殖、细胞周期和凋亡情况变化;
     (2)划痕实验、迁移实验和侵袭实验比较细胞迁移及侵袭性;
     (3) real-time-PCR检测凋亡增殖生长(bcl-2, bax, CyclinD1, EGFR和ki-67)、血管新生(VEGF)及侵袭转移(MMP-9, MMP-2, TIMP-2和E-cadherin)指标的mRNA水平;
     (4) Western-blotting检测CXCR1/2、凋亡增殖生长(bc1-2, bax, CyclinD1, EGFR和ki-67)、血管新生(VEGF)及侵袭转移(MMP-9, MMP-2, TIMP-2和E-cadherin)指标的蛋白表达以及ERK和AKT磷酸化;
     (5)裸鼠成瘤实验:观察裸鼠体内移植瘤生长情况;切取移植瘤,制作切片,观察肿瘤细胞形态;TUNEL法检测细胞凋亡情况。
     3.探讨CXCR1沉默和过表达对胃癌细胞生物学行为的影响及机制
     (1) RT-PCR和Western-blotting检测CXCR1在胃黏膜正常细胞系GES-1及胃癌细胞系MKN28、MKN45、BGC823、SGC7901和AGS中的表达,筛选CXCR1低表达和高表达胃癌细胞株;
     (2)构建CXCR1干扰质粒载体(pYr-1.1-CXCR1-shRNA)、过表达质粒载体(pIRES2-ZsGreen1-CXCR1)及阴性对照质粒载体;建立CXCR1沉默及过表达的稳定转染细胞系;
     (3)为验证未出现脱靶效应(off-target effects):针对CXCR1干扰质粒载体(pYr-1.1-CXCR1-shRNA),设计构建干扰回复载体(pIRES2-ZsGreen1-CXCR1-Mut),双转染胃癌细胞,进行功能回复实验;
     (4)MTT实验、平板克隆形成实验和流式细胞周期检测观察癌细胞增殖、细胞周期和凋亡情况变化;
     (5)划痕实验、迁移实验和侵袭实验比较细胞迁移及侵袭性;
     (6) real-time-PCR检测凋亡增殖生长(bcl-2, bax, CyclinD1, EGFR和ki-67)、血管新生(VEGF)及侵袭转移(MMP-9, MMP-2, TIMP-2和E-cadherin)指标的mRNA水平;
     (7) Western-blotting检测CXCR1/2、凋亡增殖生长(bcl-2, bax, CyclinD1, EGFR和ki-67),血管新生(VEGF)及侵袭转移(MMP-9, MMP-2, TIMP-2和E-cadherin)指标的蛋白表达以及ERK和AKT磷酸化;
     (8)裸鼠成瘤实验:观察裸鼠体内移植瘤生长情况;切取移植瘤,制作HE切片,观察肿瘤细胞形态。
     结果1. CXCR1/2表达与胃癌的临床病理参数具有相关性
     (1)CXCR1/2在胃癌组织中的表达高于对应的癌旁组织,CXCR1/2的表达与年龄、性别和分化程度无关,而与胃癌的侵袭深度、淋巴结转移和TNM分期成正相关性。
     (2) CXCR1/2的表达与pAKT、pERK、Cyclin D1、EGFR、Bcl-2、微血管密度(MVD)、MMP-9和MMP-2的表达具有正相关性,但与AKT、ERK、Ki-67、Bax、VEGF、TIMP-2和E-cadherin的表达不具有相关性。
     2. Repertaxin靶向阻断CXCR1/2改变胃癌生物学行为并增敏5-FU
     (1) Repertaxin阻断CXCR1/2能诱导细胞周期阻滞和凋亡发生,阻止细胞增殖生长,抑制细胞迁移和侵袭;Repertaxin和5-FU联合应用效果更明显。
     (2) Repertaxin能降低ERK1/2和AKT磷酸化水平,Repertaxin和5-FU联合应用效果更明显。
     (3) Repertaxin能抑制bcl-2、cyclin D1、EGFR、VEGF、MMP2和MMP9的表达,而促进bax、TIMP-2和E-cadherin的表达;Repertaxin和5-FU联合应用效果更明显。3. CXCRl沉默和过表达能改变胃癌细胞生物学行为
     (1)CXCR1干扰未出现脱靶效应。
     (2)CXCR1沉默能诱导细胞周期阻滞和细胞凋亡,降低细胞增殖生长,抑制细胞迁移和侵袭;而CXCR1过表达则能促进细胞分裂、增殖生长、细胞迁移和侵袭,降低瘤细胞凋亡比例。
     (3)CXCR1沉默能降低ERK1/2和AKT磷酸化水平。
     (4)CXCR1沉默能抑制bcl-2、cyclin D1、EGFR、VEGF、MMP2和MMP9的表达,促进bax和E-cadherin的表达。
     结论:
     1.化学趋化因子受体CXCR1/2在胃癌组织和胃癌细胞系中高表达,发现CXCR1/2表达与侵袭、转移及TNM分期成正相关。
     2.在胃癌中CXCR1/2与其配体结合能激活MAPK/ERK和PI3K/AKT信号通路,通过调节与凋亡增殖生长(Bcl-2、Bax、 CyclinD1、EGFR和VEGF)、侵袭转移(MMP-9、MMP-2、TIMP-2和E-cadherin)相关指标中bcl-2、CyclinD1、EGFR、VEGF、MMP2和MMP9的上调以及bax、TIMP2和E-cadherin的下调,进而参与调控胃癌细胞的增殖生长、侵袭及转移,最终影响胃癌的发展。
Background
     Gastric cancer is one of the most common causes of cancer-related deaths worldwide, and the data from International Agency for Research on Cancer show that the morbidity and mortality of gastric cancer ranges the forefront of the malignant tumors. Uncontrolled proliferation, invasion, metastasis and drug resistance are the major poor prognostic factors for gastric cancer. Therefore, improvement in the therapy of gastric cancer now depends on improving our knowledge of the complicated molecular mechanisms governing the progression and aggressiveness of the disease. Non-resolving inflammation plays a critical role in the development and process of gastric cancer. In the dialectical relationship between inflammation and tumor dynamic network scalability and robustness, chemokine receptors and their ligands are an important class of non-controlled inflammatory factors, and they express in some tumors and involve in tumor carcinogenesis, proliferation, growth, invasion, metastasis, and drug-resistance process.
     C-X-C chemokine receptor1/2(CXCR1/2), including CXCR1and CXCR2, belong to chemokine receptor families. Initial studies indicated that CXCR1/2express mainly on neutrophils and are originally characterized by their ability to regulate downstream protein targets (such as NF-kB, AP-1, MMP9, etc.) of signaling pathways and then induce chemotaxis of leukocytes, calcium ion flow, cell proliferation, movement, and regulation of angiogenesis. Recently, it was found that CXCR1/2are overexpressed in numerous solid tumors, and the studies revealed a close correlation with proliferation, angiogenesis, invasion, metastasis and drug resistance of the tumor. Although there have been some studies on CXCR1/2in several cancer types and there have been a few reports on expression of CXCR1/2in gastric carcinoma, the expression and functional roles of CXCR1/2in gastric adenocarcinoma progression remain controversial and unclear.
     Objective
     This study focused on an important class of non-resolving inflammation factors CXCR1/2to detect the expression of CXCR1/2in gastric cancer, explore its relationship with clinical and pathological features and study the changes of biological behavior of gastric cancer cells and their mechanisms after targeted blocking CXCR1/2and CXCR1gene silencing and over-expression. The project may provide some valuable experimental evidence for designing targeted drugs of CXCR1and/or CXCR2to treat gastric cancer.
     Methods
     1. Studying the correlation between the expression of CXCR1/2and clinicopathological factors, and and relevant indicators expression of regulating gastric cancer cell biological behaviors in patients with gastric carcinoma.
     (1)69primary and sporadic gastric adenocarcinoma tissue samples and their corresponding non-neoplastic mucosa specimens was retrieved, and we detected CXCR1/2expression by IHC and discussed its correlation with clinicopathological factors.
     (2) we analyzed the correlation between the expression of CXCR1/2and ERK1/2and AKT phosphorylation, and relevant indicators expression of the proliferation, growth and apoptosis (Bcl-2and Bax, CyclinDl, EGFR and Ki-67), angiogenesis(VEGF and CD34), invasion and metastasis (MMP-9, MMP-2, TIMP-2and E-cadherin), which are involved in the regulation of tumor proliferation, growth, angiogenesis, invasion and metastasis.
     2. Investigating the changes of gastric cancer cell biological behaviors and the mechanism of inhibiting CXCR1/2. The system of Repertaxin (a small molecule inhibitor of CXCR1/2activation) blocking CXCR1/2was established in vivo and in vitro. Repertaxin alone,5-FU alone, Repertaxin and5-FU in combination, and a control group were applied to gastric cancer cells and nude mice model.
     (1) Cell proliferation, cycle and apoptosis of gastric cancer cells were investigated by MTT assay, colony forming assay, cell cycle analysis and apoptosis assay.
     (2) Migration and invasion of gastric cancer cells were detected by wound-healing assay, cell migration and invasion assay.
     (3) It was detected that the mRNA level of the proliferation, growth, apoptosis(bcl-2, bax, CyclinDl, epidermal growth factor receptor EGFR and ki-67), angiogenesis(vascular endothelial growth factor VEGF), invasion and metastasis (matrix metallopeptidase MMP9, MMP2, tissue inhibitor of metalloproteinases TIMP2and E-cadherin) related indicators were by real-time-PCR.
     (4) It was assayed that the extracellular signal regulated protein kinase ERK1/2and AKT phosphorylation and expression of proliferation, growth, apoptosis(bcl-2, bax, CyclinDl, EGFR and ki-67), angiogenesis(VEGF), invasion and metastasis(MMP9, MMP2, TIMP2and E-cadherin) related indicators by Western-blotting.
     (5) Nude mice model:The growth of transplanted tumors was observated. After three weeks of the therapy, all mice were euthanized according to institutional guidelines, and local tumors were resected and analyzed. A part of every tumor tissue was fixed and processed for immunohistochemistry and TUNEL assay.
     3. Exploring the changes of gastric cancer cell biological behaviors and the mechanism of CXCR1gene silencing and over-expression.
     (1) The CXCR1expression was investigated by RT-PCR and Western-blotting in normal gastric mucosa cell line GES-1and gastric cancer cell lines(MKN28, MKN45, BGC823, SGC7901and AGS) to identify the cell lines of CXCR1over expression and that of CXCR1low expression.
     (2) Constructing interference vector (pYr-1.1-CXCR1-shRNA), over-expression plasmid vector (pIRES2-ZsGreenl-CXCR1) and negative control plasmid vector, and establishing the stable transfected cell lines of CXCR1silencing and over-expression.
     (3) Investigating off-target effects, for CXCR1interference plasmid vector, designing and constructing interference reverted plasmid vector (pIRES2-ZsGreenl-CXCR1-Mut), gastric cancer cells were doubly transfected to carry out functional rescue experiment.
     (4) Cell proliferation, cycle and apoptosis were investigated by MTT assay, colony forming assay, cell cycle analysis and apoptosis assay.
     (5) Migration and invasion of gastric cancer cells were detected by wound-healing assay, cell migration and invasion assay.
     (6) It was detected that the mRNA level of the proliferation, growth, apoptosis(bcl-2, bax, CyclinD1, EGFR and ki-67), angiogenesis (VEGF), invasion and metastasis(MMP9, MMP2, TIMP2and E-cadherin) related indicators were by real-time-PCR.
     (7) It was assayed that CXCR1, ERK1/2and AKT phosphorylation and expression of the proliferation, growth, apoptosis(bcl-2and bax, CyclinD1, EGFR and ki-67), angiogenesis(VEGF), invasion and metastasis(MMP9, MMP2, TIMP2and E-cadherin) related indicators by Western-blotting.
     (8) Nude mice model:The growth of transplanted tumors was observed. After three weeks of the therapy, all mice were euthanized according to institutional guidelines, and local tumors were resected and analyzed. A part of every tumor tissue was fixed and processed for HE and immunohistochemistry assay.
     Results
     4. CXCR1/2expression was associated with clinicopathological parameters of gastric cancer.
     (1) The CXCR1/2expression was significantly higher in gastric carcinoma compared to corresponding non-neoplastic mucosa tissues and was significantly associated with invasion, lymph node metastasis and TNM staging. However, no correlation was observed between CXCR1/2expression and gender, age and tumor differentiation.
     (2) Correlation analysis between CXCR1/2expression and the indicators expression of the phosphorylation(AKT, ERK, pAKT and pERK), proliferation, growth and apoptosis(Bcl-2, Bax, Cyclin Dl, EGFR and Ki-67), angiogenesis(VEGF and MVD), invasion and metastasis (MMP-9, MMP-2, TIMP-2and E-cadherin) by using the Spearman correlation test showed that CXCR1/2expression significantly correlated with pAKT, pERK, Cyclin D1, EGFR, Bcl-2, MVD, MMP-9and MMP-2, but CXCR1/2and AKT, ERK, Ki-67, Bax, VEGF, TIMP-2and E-cadherin expression had no significant correlation in gastric carcinoma.
     5. Repertaxin blocking CXCR1/2could change gastric cancer cell biological behaviors and enhance the effects of5-FU on gastric cancer in vitro and xenografts.
     (1) Repertaxin alone effectively induced gastric cancer cell cycle arrest, apoptosis, retarded proliferation and growth, and inhibited gastric cancer cell migration and invasion. The efficacy Repertaxin and5-FU in combination was much better than that of Repertaxin alone or5-FU alone.
     (2) Repertaxin repressed the phosphorylation of AKT and ERK1/2. The efficacy Repertaxin and5-FU in combination was much better than that of Repertaxin alone or5-FU alone.
     (3) Repertaxin decreased the expression of bcl-2, cyclin D1, EGFR, VEGF, MMP2and MMP9, and increased the level of bax, TIMP2and E-cadherin. The efficacy Repertaxin and5-FU in combination was much better than that of Repertaxin alone or5-FU alone.
     6. CXCR1silencing and over-expression could change gastric cancer cell biological behaviors.
     (1) The off-target effects didn't appear in the CXCR1interference.
     (2) CXCR1silencing induced gastric cancer cell cycle arrest and apoptosis, retarded proliferation and growth, and inhibited gastric cancer cell migration and invasion. CXCR1over-expression promoted gastric cancer cell cycle, proliferation, growth, migration and invasion, and inhibited gastric cancer cell apoptosis.
     (3) CXCR1silencing decreased the phosphorylation level of AKT and ERK1/2.
     (4) CXCR1silencing inhibited the expression of bcl-2, CyclinDl, EGFR, VEGF, MMP2and MMP9, and promoted the expression of bax and E-cadherin.
     Conclusion:
     1. CXCR1/2was overexpressed in gastric cancer tissue and gastric cancer cells, and for the first time it was found that CXCR1/2expression was correlated positively with the proliferation, invasion, development and progression of gastric cancer.
     2. For the first time, it was found that CXCR1/2binding its ligands promoted the proliferation, invasion and metastasis of gastric cancer by inhibiting ERK1/2and AKT signaling pathway, and hereafter significantly decreasing the expression of bcl-2, cyclin D1, EGFR, VEGF, MMP2and MMP9, and increasing the level of bax, TIMP2and E-cadherin.
引文
[1]Alberts SR, Cervantes A, van de Velde CJ. Gastric cancer: epidemiology, pathology and treatment[J]. Ann Oncol,2003,14 Suppl 2:ii31-36.
    [2]http://globocan.iarc.fr/Accessed February 28.
    [3]Yang L. Incidence and mortality of gastric cancer in China[J]. World J Gastroenterol,2006, 12(1):17-20.
    [4]王建明.胃癌流行病学研究[J].中华肿瘤防治杂志,2006,13(1):1-6.
    [5]Choi JH, Lim HY, Joo HJ, et al. Expression of multidrug resistance-associated proteinl,P-glycoprotein, and thymidylate synthase in gastric cancer patients treated with 5-fluorouracil and doxorubicin-based adjuvant chemotherapy after curative resection[J]. Br J Cancer,2002,86(10):1578-1585.
    [6]Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow?[J]. Lancet,2001, 357(9255):539-545.
    [7]Nathan C, Ding A. Nonresolving inflammation[J]. Cell,2010,140(6):871-882.
    [8]Righi E, Kashiwagi S, Yuan J, et al. CXCL12/CXCR4 blockade induces multimodal antitumor effects that prolong survival in an immunocompetent mouse model of ovarian cancer[J]. Cancer Res,2011,71(16):5522-5534.
    [9]Wendel C, Hemping-Bovenkerk A, Krasnyanska J, et al. CXCR4/CXCL12 participate in extravasation of metastasizing breast cancer cells within the liver in a rat model[J]. PLoS One, 2012,7(1):e30046.
    [10]杨永德,印国兵,曾晓华.局部进展期乳腺癌趋化因子受体CXCR4的表达与新辅助化疗疗效的相关性及预后研究[J].中国癌症杂志,2011,21(6):446-451.
    [11]Mantovani A. Cancer:Inflaming metastasis[J]. Nature,2009,457(7225):36-37.
    [12]Balkwill F, Mantovani A. Cancer and inflammation: implications for pharmacology and therapeutics[J]. Clin Pharmacol Ther,2010,87(4):401-406.
    [13]Balkwill FR. The chemokine system and cancer[J]. J Pathol,2012,226(2):148-157.
    [14]Jones SA, Moser B, Thelen M. A comparison of post-receptor signal transduction events in Jurkat cells transfected with either IL-8R1 or IL-8R2. Chemokine mediated activation of p42/p44 MAP-kinase (ERK-2)[J]. FEBS Lett,1995,364(2):211-214.
    [15]Varney ML, Johansson SL, Singh RK. Distinct expression of CXCL8 and its receptors CXCR1 and CXCR2 and their association with vessel density and aggressiveness in malignant melanoma[J]. Am J Clin Pathol,2006,125(2):209-216.
    [16]Singh S, Nannuru KC, Sadanandam A, et al. CXCR1 and CXCR2 enhances human melanoma tumourigenesis, growth and invasion[J]. Br J Cancer,2009,100(10):1638-1646.
    [17]Ginestier C, Liu S, Diebel ME, et al. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts[J]. J Clin Invest,2010,120(2):485-497.
    [18]Shamaladevi N, Lyn DA, Escudero DO, Lokeshwar BL. CXC receptor-1 silencing inhibits androgen-independent prostate cancer[J]. Cancer Res,2009,69(21):8265-8274.
    [19]Li A, Varney ML, Singh RK. Expression of interleukin 8 and its receptors in human colon carcinoma cells with different metastatic potentials[J]. Clin Cancer Res,2001,7(10): 3298-3304.
    [20]张忠国,牛瑞芳,孙宝存,等.结肠癌肝转移与CXCR1/CXCL8信号传导通路关系的研究[J].中华肿瘤防治杂志,2008,15(13):1010-1013.
    [21]Yang G, Rosen DG, Liu G, et al. CXCR2 promotes ovarian cancer growth through dysregulated cell cycle, diminished apoptosis, and enhanced angiogenesis[J]. Clin Cancer Res,2010,16(15): 3875-3886.
    [22]Waugh DJ, Wilson C. The interleukin-8 pathway in cancer[J]. Clin Cancer Res,2008,14(21): 6735-6741.
    [23]Backhed F, Torstensson E, Seguin D, et al. Helicobacter pylori infection induces interleukin-8 receptor expression in the human gastric epithelium[J]. Infect Immun,2003,71(6):3357-3360.
    [24]Eck M, Schmausser B, Scheller K, et al. Pleiotropic effects of CXC chemokines in gastric carcinoma: differences in CXCL8 and CXCL1 expression between diffuse and intestinal types of gastric carcinoma[J]. Clinical and Experimental Immunology,2003,134(3):508-515.
    [25]Kitadai Y, Haruma K, Mukaida N, et al. Regulation of disease-progression genes in human gastric carcinoma cells by interleukin 8[J]. Clin Cancer Res,2000,6(7):2735-2740.
    [26]巨大维,魏品康,林晖明,等.消痰散结方对小鼠胃移植瘤及瘤旁胃组织中白细胞介素8及其受体表达的影响[J].中西医结合学报,2010,8(1):74-79.
    [27]Singh JK, Farnie G, Bundred NJ, et al. Targeting CXCR1/2 Significantly Reduces Breast Cancer Stem Cell Activity and Increases the Efficacy of Inhibiting HER2 via HER2-Dependent and-Independent Mechanisms[J]. Clin Cancer Res,2013,19(3):643-656.
    [28]Singh S, Sadanandam A, Nannuru KC, et al. Small-molecule antagonists for CXCR2 and CXCR1 inhibit human melanoma growth by decreasing tumor cell proliferation, survival, and angiogenesis[J]. Clin Cancer Res,2009,15(7):2380-2386.
    [29]Brzezianska E, Pastuszak-Lewandoska D. A minireview: the role of MAPK/ERK and PI3K/Akt pathways in thyroid follicular cell-derived neoplasm[J]. Frontiers in Bioscience,2011,16: 422-439.
    [30]Zhang Y, Wang L, Zhang M, et al. Potential mechanism of interleukin-8 production from lung cancer cells: an involvement of EGF-EGFR-PI3K-Akt-Erk pathway[J]. J Cell Physiol,2012, 227(1):35-43.
    [31]Raman D, Baugher PJ, Thu YM, Richmond A. Role of chemokines in tumor growth[J]. Cancer Lett,2007,256(2):137-165.
    [32]Payne AS, Cornelius LA. The role of chemokines in melanoma tumor growth and metastasis[J]. J Invest Dermatol,2002,118(6):915-922.
    [33]Wang JM, Deng X, Gong W, Su S. Chemokines and their role in tumor growth and metastasis[J]. J Immunol Methods,1998,220(1-2):1-17.
    [34]Ali S, Lazennec G Chemokines: novel targets for breast cancer metastasis[J]. Cancer Metastasis Rev,2007,26(3-4):401-420.
    [35]Vindrieux D, Escobar P, Lazennec G. Emerging roles of chemokines in prostate cancer[J]. Endocrine-Related Cancer,2009,16(3):663-673.
    [36]Orimo A, Gupta PB, Sgroi DC, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion[J]. Cell,2005,121(3):335-348.
    [37]Colmone A, Amorim M, Pontier AL, et al. Leukemic Cells Create Bone Marrow Niches That Disrupt the Behavior of Normal Hematopoietic Progenitor Cells[J]. Science,2008,322(5909): 1861-1865.
    [38]Singh S, Varney M, Singh RK. Host CXCR2-Dependent Regulation of Melanoma Growth, Angiogenesis, and Experimental Lung Metastasis[J]. Cancer Research,2009,69(2):411-415.
    [39]Kitamura T, Kometani K, Hashida H, et al. SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion[J]. Nat Genet,2007,39(4):467-475.
    [40]Buonamici S, Trimarchi T, Ruocco MG, et al. CCR7 signalling as an essential regulator of CNS infiltration in T-cell leukaemia[J]. Nature,2009,459(7249):1000-U1129.
    [41]Lazennec G, Richmond A. Chemokines and chemokine receptors:new insights into cancer-related inflammation[J]. Trends in Molecular Medicine,2010,16(3):133-144.
    [42]Matsuo Y, Raimondo M, Woodward TA, et al. CXC-chemokine/CXCR2 biological axis promotes angiogenesis in vitro and in vivo in pancreatic cancer[J]. Int J Cancer,2009,125(5): 1027-1037.
    [43]Maxwell PJ, Gallagher R, Seaton A, et al. HIF-1 and NF-kappaB-mediated upregulation of CXCR1 and CXCR2 expression promotes cell survival in hypoxic prostate cancer cells[J]. Oncogene,2007,26(52):7333-7345.
    [44]Varney ML, Singh S, Li A, et al. Small molecule antagonists for CXCR2 and CXCR1 inhibit human colon cancer liver metastases[J]. Cancer Lett,2011,300(2):180-188.
    [45]Varney ML, Li A, Dave BJ, et al. Expression of CXCR1 and CXCR2 receptors in malignant melanoma with different metastatic potential and their role in interleukin-8 (CXCL-8)-mediated modulation of metastatic phenotype[J]. Clin Exp Metastasis,2003,20(8):723-731.
    [46]Murphy C, McGurk M, Pettigrew J, et al. Nonapical and cytoplasmic expression of interleukin-8, CXCR1, and CXCR2 correlates with cell proliferation and microvessel density in prostate cancer[J]. Clin Cancer Res,2005,11(11):4117-4127.
    [47]Washington K. 7th edition of the AJCC cancer staging manual:stomach[J]. Ann Surg Oncol, 2010,17(12):3077-3079.
    [48]Osinsky S, Bubnovskaya L, Ganusevich I, et al. Hypoxia, tumour-associated macrophages, microvessel density, VEGF and matrix metalloproteinases in human gastric cancer: interaction and impact on survival[J]. Clin Transl Oncol,2011,13(2):133-138.
    [49]Badescu A, Georgescu CV, Vere CC, et al. Correlations between Her2 oncoprotein, VEGF expression, MVD and clinicopathological parameters in gastric cancer[J]. Rom J Morphol Embryol,2012,53(4):997-1005.
    [50]Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis[J]. Nature,2001,410(6824):50-56.
    [51]Tanaka T, Bai Z, Srinoulprasert Y, et al. Chemokines in tumor progression and metastasis[J]. Cancer Sci,2005,96(6):317-322.
    [52]Koizumi K, Hojo S, Akashi T, et al. Chemokine receptors in cancer metastasis and cancer cell-derived chemokines in host immune response[J]. Cancer Sci,2007,98(11):1652-1658.
    [53]Balakin KV, Ivanenkov YA, Tkachenko SE, et al. Regulators of chemokine receptor activity as promising anticancer therapeutics[J]. Current Cancer Drug Targets,2008,8(4):299-340.
    [54]Ruffini PA, Morandi P, Cabioglu N, et al. Manipulating the chemokine-chemokine receptor network to treat cancer[J]. Cancer,2007,109(12):2392-2404.
    [55]Kakinuma T, Hwang ST. Chemokines, chemokine receptors, and cancer metastasis[J]. Journal of Leukocyte Biology,2006,79(4):639-651.
    [56]Gabellini C, Trisciuoglio D, Desideri M, et al. Functional activity of CXCL8 receptors, CXCR1 and CXCR2, on human malignant melanoma progression[J]. Eur J Cancer,2009,45(14): 2618-2627.
    [57]Roomi MW, Monterrey JC, Kalinovsky T, et al. Comparative effects of EGCG, green tea and a nutrient mixture on the patterns of MMP-2 and MMP-9 expression in cancer cell lines[J]. Oncol Rep,2010,24(3):747-757.
    [58]Roomi MW, Monterrey JC, Kalinovsky T, et al. Patterns of MMP-2 and MMP-9 expression in human cancer cell lines[J]. Oncology Reports,2009,21(5):1323-1333.
    [59]Knall C, Worthen GS, Johnson GL. Interleukin 8-stimulated phosphatidylinositol-3-kinase activity regulates the migration of human neutrophils independent of extracellular signal-regulated kinase and p38 mitogen-activated protein kinases[J]. Proc Natl Acad Sci U S A, 1997,94(7):3052-3057.
    [60]Cheng GZ, Park S, Shu SK, et al. Advances of AKT pathway in human oncogenesis and as a target for anti-cancer drug discovery[J]. Current Cancer Drug Targets,2008,8(1):2-6.
    [61]Venkatakrishnan G, Salgia R, Groopman JE. Chemokine receptors CXCR-1/2 activate mitogen-activated protein kinase via the epidermal growth factor receptor in ovarian cancer cells[J]. J Biol Chem,2000,275(10):6868-6875.
    [62]MacManus CF, Pettigrew J, Seaton A, et al. Interleukin-8 signaling promotes translational regulation of cyclin D in androgen-independent prostate cancer cells[J]. Mol Cancer Res,2007, 5(7):737-748.
    [63]Luppi F, Longo AM, de Boer WI, et al. Interleukin-8 stimulates cell proliferation in non-small cell lung cancer through epidermal growth factor receptor transactivation[J]. Lung Cancer,2007, 56(1):25-33.
    [64]Jing JJ, Liu HY, Hao JK, et al. Gastric cancer incidence and mortality in Zhuanghe, China, between 2005 and 2010[J]. World J Gastroenterol,2012,18(11):1262-1269.
    [65]Shah MA, Kelsen DP. Gastric cancer: a primer on the epidemiology and biology of the disease and an overview of the medical management of advanced disease[J]. J Natl Compr Canc Netw, 2010,8(4):437-447.
    [66]Lughezzani G, Capitanio U, Jeldres C, et al. Prognostic significance of lymph node invasion in patients with metastatic renal cell carcinoma: a population-based perspective[J]. Cancer,2009, 115(24):5680-5687.
    [67]Fukuda N, Sugiyama Y, Midorikawa A, Mushiake H. Prognostic significance of the metastatic lymph node ratio in gastric cancer patients[J]. World J Surg,2009,33(11):2378-2382.
    [68]Hyung WJ, Noh SH, Yoo CH, et al. Prognostic significance of metastatic lymph node ratio in T3 gastric cancer[J]. World J Surg,2002,26(3):323-329.
    [69]Ainsworth PD, Johnson MA. The prognostic significance of the metastatic lymph node ratio in Dukes stage C colorectal cancer in a district general hospital[J]. Colorectal Dis,2010,12(12): 1219-1222.
    [70]Ohtani N, Ohtani H, Oki M, et al. CXC chemokine receptor 1 (CXCR1) is expressed mainly by neutrophils in inflamed gut and stomach tissues[J]. Tohoku Journal of Experimental Medicine, 2002,196(3):179-184.
    [71]Lin BR, Chang CC, Chen LR, et al. Cysteine-rich 61 (CCN1) enhances chemotactic migration, transendothelial cell migration, and intravasation by concomitantly up-regulating chemokine receptor 1 and 2[J]. Mol Cancer Res,2007,5(11):1111-1123.
    [72]Ning Y, Labonte MJ, Zhang W, et al. The CXCR2 Antagonist, SCH-527123, Shows Antitumor Activity and Sensitizes Cells to Oxaliplatin in Preclinical Colon Cancer Models[J]. Molecular Cancer Therapeutics,2012,11(6):1353-1364.
    [73]Varney ML, Singh S, Li AH, et al. Small molecule antagonists for CXCR2 and CXCR1 inhibit human colon cancer liver metastases[J]. Cancer Letters,2011,300(2):180-188.
    [74]Singh S, Sadanandam A, Nannuru KC, et al. Small-Molecule Antagonists for CXCR2 and CXCR1 Inhibit Human Melanoma Growth by Decreasing Tumor Cell Proliferation, Survival, and Angiogenesis[J]. Clinical Cancer Research,2009,15(7):2380-2386.
    [75]Casilli F, Bianchini A, Gloaguen I, et al. Inhibition of interleukin-8 (CXCL8/IL-8) responses by Repertaxin, a new inhibitor of the chemokine receptors CXCR1 and CXCR2[J]. Biochemical Pharmacology,2005,69(3):385-394.
    [76]Bertini R, Allegretti M, Bizzarri C, et al. Noncompetitive allosteric inhibitors of the inflammatory chemokine receptors CXCR1 and CXCR2:Prevention of reperfusion injury[J]. Proceedings of the National Academy of Sciences of the United States of America,2004, 101(32):11791-11796.
    [77]Clarke C, Kuboki S, Sakai N, et al. CXC Chemokine Receptor-1 is Expressed by Hepatocytes and Regulates Liver Recovery After Hepatic Ischemia/Reperfusion Injury[J]. Hepatology,2011, 53(1):261-271.
    [78]Hall PA, Levison DA, Woods AL, et al. Proliferating cell nuclear antigen (PCNA) immunolocalization in paraffin sections:an index of cell proliferation with evidence of deregulated expression in some neoplasms[J]. J Pathol,1990,162(4):285-294.
    [79]Che X, Hokita S, Natsugoe S, et al. Tumor angiogenesis related to growth pattern and lymph node metastasis in early gastric cancer[J]. Chin Med J (Engl),1998,111(12):1090-1093.
    [80]Kitadai Y. Angiogenesis and lymphangiogenesis of gastric cancer[J]. J Oncol,2010,2010: 468725.
    [81]Singh S, Sadanandam A, Singh RK. Chemokines in tumor angiogenesis and metastasis[J]. Cancer Metastasis Rev,2007,26(3-4):453-467.
    [82]Buonamici S, Trimarchi T, Ruocco MG, et al. CCR7 signalling as an essential regulator of CNS infiltration in T-cell leukaemia[J]. Nature,2009,459(7249):1000-1004.
    [83]Hannelien V, Karel G, Jo VD, Sofie S. The role of CXC chemokines in the transition of chronic inflammation to esophageal and gastric cancer[J]. Biochim Biophys Acta,2012,1825(1): 117-129.
    [84]Murphy PM. The molecular biology of leukocyte chemoattractant receptors[J]. Annual Review of Immunology,1994,12:593-633.
    [85]Matsuo Y, Ochi N, Sawai H, et al. CXCL8/IL-8 and CXCL12/SDF-1alpha co-operatively promote invasiveness and angiogenesis in pancreatic cancer[J]. Int J Cancer,2009,124(4): 853-861.
    [86]Singh S, Sadanandam A, Varney ML, et al. Small interfering RNA-mediated CXCR1 or CXCR2 knock-down inhibits melanoma tumor growth and invasion[J]. Int J Cancer,2010,126(2): 328-336.
    [87]Wang JP, Hu WM, Wang KS, et al. Upregulation of C-X-C chemokine receptor type 1 expression is associated with late-stage gastric adenocarcinoma[J]. Exp Ther Med,2012,4(1): 55-60.
    [88]Wang JP, Hu WM, Wang KS, Luo BH, Yu J, et al. (2013) Expression of C-X-C chemokine receptor types 1/2 in patients with gastric carcinoma:Clinicopathological correlations and significance. Oncol Lett 5:874-582.[J].
    [89]Wang JP, Hu WM, Wang KS, et al. Upregulation of C-X-C chemokine receptor type 1 expression is associated with late-stage gastric adenocarcinoma[J]. Experimental and Therapeutic Medicine,2012,4(1):55-60.
    [90]Wang JP HW, Wang KS, et al. Expression of C-X-C chemokine receptor type 1/2 in patients with gastric carcinoma: clinicopathologic correlations and significance[J]. oncology letter, 2013,5(2):574-582.
    [91]Kuai WX, Wang Q, Yang XZ, et al. Interleukin-8 associates with adhesion, migration, invasion and chemosensitivity of human gastric cancer cells[J]. World J Gastroenterol,2012,18(9): 979-985.
    [92]Chen Y, Shi M, Yu GZ, et al. Interleukin-8, a promising predictor for prognosis of pancreatic cancer[J]. World J Gastroenterol,2012,18(10):1123-1129.
    [93]Novina CD, Sharp PA. The RNAi revolution[J]. Nature,2004,430(6996):161-164.
    [94]Miyagishi M, Taira K. U6 promoter-driven siRNAs with four uridine 3'overhangs efficiently suppress targeted gene expression in mammalian cells[J]. Nature Biotechnology,2002,20(5): 497-500.
    [95]Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells[J]. Science,2002,296(5567):550-553.
    [96]Fedorov Y, Anderson EM, Birmingham A, et al. Off-target effects by siRNA can induce toxic phenotype[J]. Rna-a Publication of the Rna Society,2006,12(7):1188-1196.
    [97]Reddy KB, Nabha SM, Atanaskova N. Role of MAP kinase in tumor progression and invasion[J]. Cancer Metastasis Rev,2003,22(4):395-403.
    [98]Xue M, Ge Y, Zhang J, et al. Anticancer properties and mechanisms of fucoidan on mouse breast cancer in vitro and in vivo[J]. PLoS One,2012,7(8):e43483.
    [99]Ye X, Guo Y, Zhang Q, et al. betaKlotho suppresses tumor growth in hepatocellular carcinoma by regulating Akt/GSK-3beta/cyclin D1 signaling pathway[J]. PLoS One,2013,8(1):e55615.
    [100]Tsai HL, Yeh YS, Chang YT, et al. Co-existence of cyclin D1 and vascular endothelial growth factor protein expression is a poor prognostic factor for UICC stage I-III colorectal cancer patients after curative resection[J]. J Surg Oncol,2013,107(2):148-154.
    [101]Sanceau J, Truchet S, Bauvois B. Matrix metalloproteinase-9 silencing by RNA interference triggers the migratory-adhesive switch in Ewing's sarcoma cells[J]. J Biol Chem,2003,278(38): 36537-36546.
    [102]Bergers G, Brekken R, McMahon G, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis[J]. Nat Cell Biol,2000,2(10):737-744.
    [103]Lobos-Gonzalez L, Aguilar L, Diaz J, et al. E-cadherin determines Caveolin-1 tumor suppression or metastasis enhancing function in melanoma cells[J]. Pigment Cell Melanoma Res,2013.
    [104]Tiwari A, Hadley JA, Hendricks GL,3rd, et al. Characterization of ascites-derived ovarian tumor cells from spontaneously occurring ovarian tumors of the chicken: evidence for e-cadherin upregulation[J]. PLoS One,2013,8(2):e57582.
    [105]Austin P, Freeman SA, Gray CA, et al. The Invasion Inhibitor Sarasinoside A1 Reverses Mesenchymal Tumor Transformation In An E-Cadherin-Independent Manner[J]. Mol Cancer Res,2013.
    [106]Cong N, Du P, Zhang A, et al. Downregulated microRNA-200a promotes EMT and tumor growth through the wnt/beta-catenin pathway by targeting the E-cadherin repressors ZEB1/ZEB2 in gastric adenocarcinoma[J]. Oncol Rep,2013,29(4):1579-1587.
    [107]Feng Z, Gan H, Cai Z, et al. Aberrant Expression of Hypoxia-inducible Factor 1alpha, TWIST and E-cadherin is Associated with Aggressive Tumor Phenotypes in Endometrioid Endometrial Carcinoma[J]. Jpn J Clin Oncol,2013.
    [108]Brett A, Pandey S, Fraizer G The Wilms' tumor gene (WT1) regulates E-cadherin expression and migration of prostate cancer cells[J]. Mol Cancer,2013,12:3.
    [109]Gonzalez-Moles MA, Bravo M, Ruiz-Avila I, et al. E-cadherin in non-tumor epithelium adjacent to oral cancer as risk marker for the development of multiple tumors[J]. Br J Oral Maxillofac Surg,2013,51(2):157-163.
    [110]Zhan H, Liang H, Liu X, et al. Expression of Rac1, HIF-1alpha, and VEGF in Gastric Carcinoma: Correlation with Angiogenesis and Prognosis[J]. Onkologie,2013,36(3):102-107.
    [111]Zhang X, Wang Z, Zhang Y, et al. Impact of acetylsalicylic acid on tumor angiogenesis and lymphangiogenesis through inhibition of VEGF signaling in a murine sarcoma model[J]. Oncol Rep,2013.
    [112]Shi Y, Tong M, Wu Y, et al. VEGF-C ShRNA Inhibits Pancreatic Cancer Growth and Lymphangiogenesis in an Orthotopic Fluorescent Nude Mouse Model[J]. Anticancer Res,2013, 33(2):409-417.
    [113]Saponaro C, Malfettone A, Ranieri G, et al. VEGF, HIF-1alpha expression and MVD as an angiogenic network in familial breast cancer[J]. PLoS One,2013,8(1):e53070.
    [114]Cao Z, Lin W, Huang Z, et al. Jiedu Xiaozheng Yin, a Chinese herbal formula, inhibits tumor angiogenesis via downregulation of VEGF-A and VEGFR-2 expression in vivo and in vitro[J]. Oncol Rep,2013,29(3):1080-1086.
    [115]Wu J, Wu X, Zhong D, et al. Short Hairpin RNA (shRNA) Ether a go-go 1 (Eag1) Inhibition of Human Osteosarcoma Angiogenesis via VEGF/PI3K/AKT Signaling[J]. Int J Mol Sci,2012, 13(10):12573-12583.
    [1]Scotton CJ, Wilson JL, Milliken D, et al. Epithelial cancer cell migration: a role for chemokine receptors?[J]. Cancer Res,2001,61(13):4961-4965.
    [2]Nathan C, Ding A. Nonresolving inflammation[J]. Cell,2010,140(6):871-882.
    [3]Singh S, Nannuru KC, Sadanandam A, et al. CXCR1 and CXCR2 enhances human melanoma tumourigenesis, growth and invasion[J]. Br J Cancer,2009,100(10):1638-1646.
    [4]Ginestier C, Liu S, Diebel ME, et al. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts[J]. J Clin Invest,2010,120(2):485-497.
    [5]Chen Y, Shi M, Yu GZ, et al. Interleukin-8, a promising predictor for prognosis of pancreatic cancer[J]. World J Gastroenterol,2012,18(10):1123-1129.
    [6]Li A, Varney ML, Singh RK. Expression of interleukin 8 and its receptors in human colon carcinoma cells with different metastatic potentials[J]. Clin Cancer Res,2001,7(10): 3298-3304.
    [7]张忠国,牛瑞芳,孙宝存,等.结肠癌肝转移与CXCR1/CXCL8信号传导通路关系的研究[J].中华肿瘤防治杂志,2008,15(13):1010-1013.
    [8]Yang G, Rosen DG, Liu G, et al. CXCR2 promotes ovarian cancer growth through dysregulated cell cycle, diminished apoptosis, and enhanced angiogenesis[J]. Clin Cancer Res,2010,16(15): 3875-3886.
    [9]Waugh DJ, Wilson C. The interleukin-8 pathway in cancer[J]. Clin Cancer Res,2008,14(21): 6735-6741.
    [10]Hannelien V, Karel G, Jo VD, Sofie S. The role of CXC chemokines in the transition of chronic inflammation to esophageal and gastric cancer[J]. Biochim Biophys Acta,2012,1825(1): 117-129.
    [11]Wilson C, Purcell C, Seaton A, et al. Chemotherapy-induced CXC-chemokine/CXC-chemokine receptor signaling in metastatic prostate cancer cells confers resistance to oxaliplatin through potentiation of nuclear factor-kappaB transcription and evasion of apoptosis[J]. J Pharmacol Exp Ther,2008,327(3):746-759.
    [12]Holmes WE, Lee J, Kuang WJ, et al. Structure and functional expression of a human interleukin-8 receptor. Science. 1991.253:1278-1280[J]. J Immunol,2009,183(5):2895-2897.
    [13]Rollins BJ. Inflammatory chemokines in cancer growth and progression[J]. Eur J Cancer,2006, 42(6):760-767.
    [14]Richmond A, Yang J, Su Y. The good and the bad of chemokines/chemokine receptors in melanoma[J]. Pigment Cell Melanoma Res,2009,22(2):175-186.
    [15]Lin BR, Chang CC, Chen LR, et al. Cysteine-rich 61 (CCN1) enhances chemotactic migration, transendothelial cell migration, and intravasation by concomitantly up-regulating chemokine receptor 1 and 2[J]. Mol Cancer Res,2007,5(11):1111-1123.
    [16]Morris SW, Nelson N, Valentine MB, et al. Assignment of the genes encoding human interleukin-8 receptor types 1 and 2 and an interleukin-8 receptor pseudogene to chromosome 2q35[J]. Genomics,1992,14(3):685-691.
    [17]Ahuja SK, Ozcelik T, Milatovitch A, et al. Molecular evolution of the human interleukin-8 receptor gene cluster[J]. Nat Genet,1992,2(1):31-36.
    [18]Nasser MW, Qamri Z, Deol YS, et al. Crosstalk between chemokine receptor CXCR4 and cannabinoid receptor CB2 in modulating breast cancer growth and invasion[J]. PLoS One,2011, 6(9):e23901.
    [19]Peek RM, Jr., Crabtree JE. Helicobacter infection and gastric neoplasia[J]. J Pathol,2006, 208(2):233-248.
    [20]Polk DB, Peek RM, Jr. Helicobacter pylori: gastric cancer and beyond[J]. Nat Rev Cancer,2010, 10(6):403-414.
    [21]Peek RM, Jr., Fiske C, Wilson KT. Role of innate immunity in Helicobacter pylori-induced gastric malignancy [J]. Physiol Rev,2010,90(3):831-858.
    [22]Crabtree JE, Peichl P, Wyatt JI, et al. Gastric interleukin-8 and IgA IL-8 autoantibodies in Helicobacter pylori infection[J]. Scand J Immunol,1993,37(1):65-70.
    [23]Crabtree JE, Shallcross TM, Heatley RV, Wyatt JI. Mucosal tumour necrosis factor alpha and interleukin-6 in patients with Helicobacter pylori associated gastritis[J]. Gut,1991,32(12): 1473-1477.
    [24]Yamaoka Y, Kita M, Kodama T, et al. Helicobacter pylori cagA gene and expression of cytokine messenger RNA in gastric mucosa[J]. Gastroenterology,1996,110(6):1744-1752.
    [25]Crabtree JE, Lindley IJ. Mucosal interleukin-8 and Helicobacter pylori-associated gastroduodenal disease[J]. Eur J Gastroenterol Hepatol,1994,6 Suppl 1:S33-38.
    [26]Backhed F, Torstensson E, Seguin D, et al. Helicobacter pylori infection induces interleukin-8 receptor expression in the human gastric epithelium[J]. Infect Immun,2003,71(6):3357-3360.
    [27]Schmausser B, Josenhans C, Endrich S, et al. Downregulation of CXCR1 and CXCR2 expression on human neutrophils by Helicobacter pylori: a new pathomechanism in H. pylori infection?[J]. Infect Immun,2004,72(12):6773-6779.
    [28]Ohsuga M, Kusugami K, Ina K, et al. Comparison between in vivo and in vitro chemokine production in Helicobacter pylori infection[J]. Aliment Pharmacol Ther,2000,14 Suppl 1: 205-215.
    [29]Sato Y, Sugimura K, Mochizuki T, et al. Regional differences on production of chemokines in gastric mucosa between Helicobacter pylori-positive duodenal ulcer and gastric ulcer[J]. Dig Dis Sci,1999,44(12):2390-2396.
    [30]Yamaoka Y, Kodama T, Kita M, et al. Relation between clinical presentation, Helicobacter pylori density, interleukin lbeta and 8 production, and cagA status[J]. Gut,1999,45(6): 804-811.
    [31]Pierce BL, Ballard-Barbash R, Bernstein L, et al. Elevated biomarkers of inflammation are associated with reduced survival among breast cancer patients[J]. J Clin Oncol,2009,27(21): 3437-3444.
    [32]Cabodi S, Taverna D. Interfering with inflammation: a new strategy to block breast cancer self-renewal and progression?[J]. Breast Cancer Res,2010,12(2):305.
    [33]Chen RJ, Chen SU, Chou CH, Lin MC. Lysophosphatidic acid receptor 2/3-mediated IL-8-dependent angiogenesis in cervical cancer cells[J], Int J Cancer,2011.
    [34]Tang KH, Ma S, Lee TK, et al. CD133(+) liver tumor-initiating cells promote tumor angiogenesis, growth, and self-renewal through neurotensin/interleukin-8/CXCL1 signaling[J]. Hepatology,2012,55(3):807-820.
    [35]Hu J, Deng X, Bian X, et al. The expression of functional chemokine receptor CXCR4 is associated with the metastatic potential of human nasopharyngeal carcinoma[J]. Clin Cancer Res,2005,11(13):4658-4665.
    [36]Tanaka T, Bai Z, Srinoulprasert Y, et al. Chemokines in tumor progression and metastasis[J]. Cancer Sci,2005,96(6):317-322.
    [37]Eck M, Schmausser B, Scheller K, et al. Pleiotropic effects of CXC chemokines in gastric carcinoma:differences in CXCL8 and CXCL1 expression between diffuse and intestinal types of gastric carcinoma[J]. Clin Exp Immunol,2003,134(3):508-515.
    [38]Kitadai Y, Haruma K, Mukaida N, et al. Regulation of disease-progression genes in human gastric carcinoma cells by interleukin 8[J]. Clin Cancer Res,2000,6(7):2735-2740.
    [39]Crabtree JE, Wyatt JI, Trejdosiewicz LK, et al. Interleukin-8 expression in Helicobacter pylori infected, normal, and neoplastic gastroduodenal mucosa[J]. J Clin Pathol,1994,47(1):61-66.
    [40]Yamaoka Y, Kodama T, Kita M, et al. Relation between cytokines and Helicobacter pylori in gastric cancer[J]. Helicobacter,2001,6(2):116-124.
    [41]Lee KH, Bae SH, Lee JL, et al. Relationship between urokinase-type plasminogen receptor, interleukin-8 gene expression and clinicopathological features in gastric cancer[J]. Oncology, 2004,66(3):210-217.
    [42]Beswick EJ, Das S, Pinchuk IV, et al. Helicobacter pylori-induced IL-8 production by gastric epithelial cells up-regulates CD74 expression[J]. J Immunol,2005,175(1):171-176.
    [43]Balkwill FR. The chemokine system and cancer[J]. J Pathol,2012,226(2):148-157.
    [44]Varney ML, Singh S, Li A, et al. Small molecule antagonists for CXCR2 and CXCR1 inhibit human colon cancer liver metastases[J]. Cancer Lett,2011,300(2):180-188.
    [45]Maxwell PJ, Gallagher R, Seaton A, et al. HIF-1 and NF-kappaB-mediated upregulation of CXCR1 and CXCR2 expression promotes cell survival in hypoxic prostate cancer cells[J]. Oncogene,2007,26(52):7333-7345.
    [46]Murphy C, McGurk M, Pettigrew J, et al. Nonapical and cytoplasmic expression of interleukin-8, CXCR1, and CXCR2 correlates with cell proliferation and microvessel density in prostate cancer[J]. Clin Cancer Res,2005,11(11):4117-4127.
    [1]Yang L. Incidence and mortality of gastric cancer in China[J].World J Gastroenterol,2006, 12(1):17-20.
    [2]Alberts SR, Cervantes A, van de Velde CJ. Gastric cancer:epidemiology, pathology and treatment[J]. Ann Oncol,2003,14 (Supp12):ii31-ii36.
    [3]Albert C. Clinical aspects of gastric cancer[M]. In: Rustgi AK, eds. Gastrointestinal cancer: biology, diagnosis and therapy.Philadelphia: Lippincott Raven,1995:197-216.
    [4]Lu JB, Sun XB, Dai DX,et al.Epidemiology of gastroenterologic cancer in Henan Province, China[J], World J Gastroenterol,2003,9(11):2400-2403.
    [5]Sasako M. Principles of surgical treatment for curable gastric cancer[J]. J Clin Oncol,2003, 21(23s):274s-275s.
    [6]Roth AD. Chemotherapy in gastric cancer: a never ending saga[J].Ann Oncol,2003,14(2): 175-177.
    [7]Choi JH, Lim HY, Joo HJ, et al. Expression of multidrug resistance-associated proteinl, P-glycoprotein, and thymidylate synthase in gastric cancer patients treated with 5-fluorouracil and doxorubicin-based adjuvant chemotherapy after curative resection[J]. Br J Cancer, 2002,86(10):1578-1585.
    [8]Ludwig A, Dietel M, Lage H. Identification of differentially expressed genes in classical and atypical multidrug-resistant gastric carcinoma cells[J]. Anticancer Res,2002,22(6A): 3213-3221.
    [9]Kowalski P, Stein U, Scheffer GL,et al. Modulation of the atypical multidrug resistant phenotype by a hammerhead ribozyme directed against the ABC transporter BCRP/MXR /ABCG2[J]. Cancer Gene Ther,2002,9 (7):579-586.
    [10]金懋林主编.消化道恶性肿瘤化学治疗[M].北京:北京大学医学出版社,2008:67-75.
    [11]El-Osta A, Kantharidis P, Zalcberg JR, et al Precipitous release of methyl-CpG binding protein 2 and histone deacetylase 1 from themethylated human multidrug resistance gene (MDR1) on activation[J].Mol CellBiol,2002,22(6):1844-1857.
    [12]Shiraki N,Okamura K,Tokunaga J,et al Bromocriptine reverses P-glycoprotein mediated multidrug resistance in tumor cells[J]. Jpn J Cancer Res,2002,93(2):209-215.
    [13]Walther W, Stein U, Schlag PM. Use of the human MDR1 promoter for heatinducible expression of therapeutic genes[J]. Int J Cancer,2002,98 (2):291-296.
    [14]Grant DF, Bessho T, Reardon JT. Nucleotide excision repair of melphalan monoadducts[J]. CancerRes,1998,58(22):5196-5200.
    [15]Kevin D.ABC Transporters as phenotypic markers and functional regulators of stem cells[J]. Stem Cells,2002,20(3):274-279.
    [16]Gurel S, Yerci O, Filiz G, et al.High expression of multidrug resistance-1 (MDR-1) and its relationship with multiple prognostic factors in gastric carcinomas in patients in Turkey[J].J Int Med Res,1999,27(2):79-84.
    [17]Yeh KH, Chen CL, Shun CT, et al.Relatively low expression of multidrug resistance-1 (MDR-1) and its possible clinical implication in gastric cancers[J]. J Clin Gastroenterol,1998,26(4):8-274.
    [18]Alexander D, Yamamoto T, Kato S,et al. Histopathological assessment of multidrug resistance in gastric cancer:expression of P-glycoprotein, multidrug resistance-associated protein, and lung-resistance protein[J]. Surg Today,1999,29 (5):401-406.
    [19]Takebayashi Y, Akiyama S, Natsugoe S, et al. The expression of multidrug resistance protein in human gastrointestinal tract carcinomas[J]. Cancer,1998,82(4):661-666.
    [20]Yin D,Xie D,Hofmann WK,et al.DNA repair gene 06 methylguanine-DNA methyltransferase: promoter hypermethyllation associated with decreased expression and G:C to A:T mutations of p53 in brain tumors[J].J Mol Carcing,2003,36(1):23.
    [21]Andressoo JO,Hoeijmakers JH,Mitchell JR.Nucleotide excision repair disorders and the balance between cancer and aging[J].Cell Cycle,2006,5(24):8-2886.
    [22]Valentini AM, Armentano R, Pirrelli M, et al. Chemotherapeutic agents for colorectal cancer with a defective mismatch repair system:the state of the art[J]. Cancer Treat Rev,2006,32(8): 18-607.
    [23]Torchilin VP. Drug targeting [J]. Eur J Pharm Sci,2000 (11 Suppl 2):S81-S91.
    [24]Willis M, Forssen E. Ligand-targeted liposomes [J]. Adv Drug Deliv Rev,1998,29 (3):249-271.
    [25]Gregoriadis G, Senoir J, Poste G. Targeting of Druns with Synthetic Systems [M]. London: Plenum Press,1996:209-219.
    [26]Goldferg EP. Targeted Drugs [M]. New York:Johnwiley and Sons,1999:1-55.
    [27]Tolomeol M,Simoni D.Drug resistance and apoptosis in cancer treatment:development of new apoptosis-inducing agents active in drug resistant malignancies[J].Curr Med Chem Anti-Cancer Agents,2002,2(3):387-401.
    [28]Elliott T,Sethi T.Integrins and extracellular matrix:a novel mechanism of multidrug resistance [J].Expert R ev A nticancer Ther,2002,2(4):449-459.
    [29]Yang JM,Xu Z,W u H,et al.Overexpression of extracellular matrix metalloproteinase inducer in multidrug resistant cancer cells[J].M ol Cancer Res,2003,1(6):420-427.
    [30]Zhou Y,Xu Y,Tan Y,et al.Sorcin,an important gene associated with multidrug resistance in human leukemia cells[J].Leuk Res,2006,2006,30(4):469-476.
    [31]Du JP,Pan YL,Shi YQ,et al.Overexpression and significance of prion in gastric cancer and multidrug-resistant gastric carcinoma cell line SGC790 1/ADR[J].Int J Cancer,2005,113(2): 213-220.
    [32]Hao Z,L i X,Q iao T,et al CIAPIN1 confers multidrug resistance by upregulating the expression of MDR-1 and MRP-1 in gastric cancer Cells[J].Cancer B iol Ther,2006,5 (3):1236-1239.
    [33]Nobili S, Landini I, Giglioni B, et al.Pharmacological strategies for overcoming multidrug resistance[J]. Curr Drug Targets,2006,7(7):861-879.
    [34]Takara K, Sakaeda T, Okumura K. An update on overcoming MDR1-mediated multidrug resistance in cancer chemotherapy[J].Curr Pharm Des,2006,12(3):273-286.
    [35]Meschini S,CalcabriniA,Monti E.Intracellular P-glycoprotein expression is associated with the intrinsic multidrugresistance phenotype in human colon adenocarcinoma cells [J].Cancer,2000, 87(5):615-628.
    [36]MarzoliniC,PausE,BuclinT,etal.Polymorphisms is human MDR1 (P-glycoprotein):recent advances and clincal relevance[J].Clin Pharmacol Ther,2004,75(1):13.
    [37]Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer:role of ATP-dependent transporters [J], Nat Rev Cancer,2002,2(1):48-58.
    [38]Stein U,Lage H,Jordan A,et al.Impact of BCRP/MXR, MRP1 and MDR1/P-Glycoprotein on thermoresistant variants of atypical and classical multidrug resistant cancer cells[J].Int J Cancer, 2002,97(6):751-760.
    [39]Lin HL, Liu TY, Wu CW.et al. Berberine modulates expression of mdrl gene product and the responses of digestive track cancer cells to Paclitaxel[J]. Br J Cancer,1999,81(3):416-422.
    [40]Wallner J,Deisch D, Gsur A, et al. MDRlgene expression and its clinical relevance in primary gastric carcinoma [J].cancer,1993,71(3):667.
    [41]杨兆瑞,吴晴,陈嘉薇,等HIF-1、JNK1、P-gp、MRP-1和LRP蛋白在胃癌中的表达与临床病理及预后的关系[J].第三军医大学学报,2007,29(18):1755.
    [42]Triller N,Korosec P,Kern I,et al.Multidrug resistance in small cell lung cancer:expression of P-glycoprotein,multidrug resistance protein 1 and lung resistance protein in chemo-naive patients and in relapsed disease[J].Lung Cancer,2006,54(2):235-240.
    [43]Yang L,Wang JL, He S,et al. Expression of TS and P-gp in gastric carcinoma and their clinical significance[J]. Modem Oncology,2008,16(10):1737-1739.
    [44]Sauna ZE, Kim IW, Ambudkar SV, et al. Genomics and the mechanism of P-glycoprotein (ABCB1) [J]. J Bioenerg Biomembr,2007,39(5-6):481-487.
    [45]Cole SP, Bhardwaj G, Gerlach JH, et al. Overexpression of a transporter gene in a multidrugresistant human lung cancer cell line[J].Science,1992,258(5088):1650-1654.
    [46]Eid H,Mingfang I,Institoris E,et al.MRP expression of testicular cancers and its clinical relevance[J].Anticancer Res,2000,20(5):4019.
    [47]Van Zanden JJ, Geraets L, Wortelboer HM,et al. Structural requirements for the flavonoid-mediated modulation of glutathione S-transferase P1-1 and GS-X pump activity in MCF7 brest cancer cells[J].Biochem Pharmacol,2004,67 (8):1607-1617.
    [48]Marquardt D, Center MS. Involvement of vacuolar H(+)-adeno-sine triphosphat- -ase activity in multidrug resistance in HL60 cells[J] J Natl Cancer Inst,1991,83(15):1098-1102.
    [49]李续建,王椿,乔振华.急性髓性白血病细胞MRP基因表达[J].中华肿瘤杂志,1998,20(1):11.
    [50]于冬青,易永芬.多药耐药相关蛋白和肺耐药蛋白在胃癌组织中的表达[J].实用癌症杂志,2003,18(1):47-49.
    [51]韩军良,周绍娟,毕峰.P-糖蛋白及多药耐药相关蛋白在胃癌中的表达与意义[J].第四军医大学学报,1998,19(3):318-321.
    [52]尹清云,王燕,罗湘江.多药耐药相关蛋白在胃癌组织中的表达及意义[J].宁夏医学杂志,2004, 26(12):750-751.
    [53]Endo K,MacharaA Y, Ichiyoshi Y,et al. Multidrug resistance associated protein expression in clinical gastric carcinoma[J].Cancer,1996,77(8):1681-1687.
    [54]Morrow CS,Peklak-Scott C,Bish-wokarma B,et al.Multidrug resistance protein 1 (MRP1, ABCC1)mediates resistance to mitoxantrone via glutathione-dependent drug efflux[J]. Mol Pharmacol,2006,69 (4):1499-1505.
    [55]Scheper RJ,Broxterman HJ,Schefffer G L,et al.Overexpression of a M(r)110,000 vesicular protein in non-P-glycoprotein-mediated multidrug resistance[J].Cancer Res,1993,53(7): 1475-1479.
    [56]Plaat BE, Molenaar WM, Sagrudny J,et al.The 16p11 breakpoint in myxoid liposarcomas might affect the expression of the LRP gene on 16p11.2 encoding the multidrug resistance associated major vault protein[J].Eur J Clin Invest,2000,30(5):447-453.
    [57]Scheffer G L,Wijingaard P L,Izquierdo M A,et al. The drug resistance-related protein LRP is the human major vault protein[J].Nat-Med,1995,1(6):578-582.
    [58]Flens M J,Zaman G J,van der Valk P,et al.Tissue distribution of the multidrug resistance protein[J].Am J Pathol,1996,148(4):1237-1247.
    [59]Scheffer GL,Schroeijers AB,Izquierdo MA, et al.Lung resistance-related protein/ major vault protein and vaults in multidrug-resistant cancer[J].Curr Opin Oncol,2000,12(6):550-556.
    [60]Yu DQ,Yi YF.Expression and significance of MRP,GST-pi,Topo IIalpha,and LRP in gastric carcinoma [J].Prac J Cancer,2003,22(5):496-499.
    [61]Schuurhuis GJ,BroxtermanHJ,deLange JH,et al.Early multidrug resistance, defined by changes in intracellular doxorubicin distribution, independent of P-glycoprotein[J].Int J Cancer,1991,64 (5):857-861.
    [62]Doyle LA,Yang W,Abruzzo LA,et al.A multidrug transporter from human MCF-7 breast cancer cells[J].Proc Natl Sci USA,1998,95(26):15665-15670.
    [63]朱文兴,裴再军,孙晓东.乳腺癌耐药蛋白在人体正常和肿瘤组织中的表达[J].江西医药,2005,40(2):74-76.
    [64]Ross DD,Karp JE,Chen TT,et al. Expression ofbreast cancerresistance protein in blast cells from patients with acute leukemia[J].Blood,2000,96(1):365-368.
    [65]Shiozawa K,Oka M,Soda H,et al.Reversal of breast cancerresistance protein (BCRP/ABCG2) mediated drug resistance bynovobiocin, a coumermycin antibiotic[J].Int J Cancer,2004,108 (1):146.
    [66]Leontiou C, Watters GP, Gilroy KL, et al. Differential selection of acridine resistance mutations in human DNA topoisomerase Ⅱ beta is dependent on the acridine structure[J].Mol Pharmacol, 2007,71(4):1006-1014.
    [67]陈万源,毛伟敏,赵力,等.P-糖蛋白谷胱甘肽S-转移酶-π和拓扑异构酶Ⅱα在胃肠肿瘤组织中的表达及意义[J].中华肿瘤杂志,2005,27(12):738-740.
    [68]Shi H,Lu D,Shu Y,et al.Expression of multidrug resistancerelated proteins p-glycoproteinglutathione-s-transferases,topoisomerase II and lung resistance protein in primary gastric ardiac adenocarcinoma[J].Cancer Invest,2008,26 (4):344-351.
    [69]徐守余,杨道华,邱承敏,等.p-糖蛋白、谷胱苷肽-s-转移酶和DNA拓扑异构酶Ⅱ在胃癌中的表达及意义[J].实用肿瘤学杂志,2004,18(3):213-215.
    [70]贾长河,康谊,王文玉,等.胃癌耐药基因检测对临床化疗的指导意义[J].肿瘤防治研究2008,8,10(5):711-714.
    [71]Naniwa J, Kigawa J, Kanamori Y, et al. Genetic diagnosis for chemosensitivity with drug-resistance genes in epithelial ovarian cancer[J].Int J Gynecol Cancer,2007,17(1):76-82.
    [72]Wang W, Liu G, Zheng J,et al. Human renal UOK130 tumor cells:a drug resistant cell line with highly selective over-expression of glutathione S-transferase-pi isozyme [J]. Eur Pharmacol, 2007,568(1-3):61-67.
    [73]Lo HW,Ali-Osman F.Genetic polymorphism and function of glutathione S-transferases in tumor drug resistance[J].CurrOpin Pharmacol,2007,7(4):367-374.
    [74]Hayes JD,Flanagan JU,Jowsey IR.Glutathione transferases[J].Annu Rev Pharmacol Toxicol, 2005,45:51-88.
    [75]Zhang D, Fan D. Multidrug resistance in gastric cancer:recent research advances and ongoing therapeutic challenges[J].Expert Rev Anticancer Ther,2007,7 (10):1369-1378.
    [76]Kusama M,Kubota T,Matsukura Y,et al. Influence of glutathione S-transferase Alpolymorphism on the pharmacokinetics of busulfan [J]. Clin Chim Acta,2006,368(1-2):93-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700