新基因HA117在肿瘤细胞株及裸鼠体内的耐药功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     采用基因转染和RNA干扰技术,以人淋巴瘤Raji细胞株和人结肠癌CW-2细胞株作为实验细胞,研究新基因HA117的耐药功能,并初步探讨HA117基因影响CW-2细胞耐药性的机制;通过建立裸鼠结肠癌皮下移植瘤模型,进一步对HA117基因的耐药功能进行裸鼠体内实验验证。
     方法
     1构建双克隆质粒pSOS-HUS-HA117-HAi筛选靶向HA117基因的最佳siRNA。提取质粒pSOS-HUS的DNA,经酶切后与HA117基因进行克隆重组,得到重组质粒pSOS-HUS-HA117;设计合成5对靶向HA117基因的siRNA模板DNA,使其与重组质粒pSOS-HUS-HA117分别进行再重组,构建了5个双克隆质粒pSOS-HUS-HA117-HAi。把5个双克隆质粒分别转染293细胞,通过镜下观察、流式细胞仪及RT-PCR检测,筛选鉴定出对HA117基因RNA干扰效果最强的siRNA。
     2应用基因重组技术构建靶向HA117基因的RNA干扰载体pSES-HUS-HAi5及Ad-HAi5。提取pSES-HUS腺病毒穿梭质粒DNA,经酶切后与筛选出的最佳siRNA模板HAi5连接,转导感受态细菌DH5α,构建HA117基因的RNA干扰重组质粒pSES-HUS-HAi5;将pSES-HUS-HAi5导入腺病毒同源骨架质粒BJ-Adeasy中产生腺病毒质粒Adeasy- HAi5,脂质体介导的方法将Adeasy-HAi5转染入产病毒包装细胞HEK 293,通过乒乓感染收获高滴度HA117基因的RNA干扰重组腺病毒Ad-HAi5。
     3通过基因转染研究HA117基因对Raji、CW-2细胞株耐药性的影响。Raji细胞实验分3组:实验组(转染HA117基因的Raji/HA117细胞),RNA干扰组(转染HA117基因及其RNA干扰载体的Raji/ HA117/HAi细胞),空白对照组(未转染的Raji细胞); CW-2细胞分组同Raji。采用脂质体介导重组质粒及重组腺病毒直接感染的方法分别对Raji细胞和CW-2细胞进行基因转染。用荧光显微镜、流式细胞仪检测各组细胞转染率,RT-PCR检测各组细胞HA117基因表达,MTT检测各组细胞对柔红霉素(DNR)、阿霉素(ADM)、甲氨喋呤(CTX)、长春新碱(VCR)及5-氟尿嘧啶(5-FU)的敏感性。用AnnexinV-FITC和碘化丙啶(PI)双染结合流式细胞仪的方法检测各组CW-2细胞的凋亡率。
     4通过建立裸鼠结肠癌皮下移植瘤模型对HA117基因的耐药功进行裸鼠体内实验验证。在Balb/c裸鼠皮下接种具有HA117耐药性的CT26细胞悬液,建立Balb/c裸鼠结肠癌皮下移植瘤模型。建模7天后把荷瘤裸鼠随机分为实验组(10只)和对照组(10只)。于当日在实验组裸鼠肿瘤内直接注射Ad-HA117病毒液,对照组裸鼠肿瘤内直接注射等量的Ad-null空病毒液。首次瘤内注射病毒24h后,从裸鼠腹腔注射5-FU对两组荷瘤裸鼠进行化疗。化疗2周后用B超测量肿瘤直径计算瘤体积, RT-PCR检测瘤组织内HA117基因mRNA的表达。通过比较2组荷瘤裸鼠化疗后瘤体积,研究HA117基因对裸鼠结肠癌移植瘤耐药性的影响。
     结果
     1经两次克隆重组,成功构建了5个双克隆质粒pSOS-HUS-HA117-HAi。经荧光显微镜观察、流式细胞仪及RT-PCR检测,5对模板DNA中HAi5转录的siRNA对HA117基因的干扰效果最强
     2经酶切及测序鉴定,成功构建了重组腺病毒穿梭质粒pSES-HUS-HAi5,将其与Bj-Adeasy同源重组及HEK293细胞包装得到重组腺病毒Ad-HAi5。经乒乓交互感染,收获的Ad-HAi5病毒感染液滴度达2.3×1011pfu/ml。
     3与未转染的Raji、CW-2细胞相比,转染HA117基因的Raji/HA117、CW-2/HA117细胞对DNR、ADM、VCR、CTX和5-FU的耐药指数均增高3~7倍(P<0.05),同时转染HA117基因及其RNA干扰载体的Raji/HA117/HAi、CW-2/HA117/HAi细胞对上述五种化疗药物的耐药指数与未转染的Raji、CW-2细胞相比均无显著差异(P>0.05)。
     4转染HA117基因的CW-2细胞凋亡率为6.77%,未转染的CW-2细胞凋亡率11.47%(P<0.05),两者具有显著性差异。同时转染HA117基因及其RNA干扰载体的CW-2细胞凋亡率为12.06%,与未转染的CW-2细胞凋亡率差异无显著性(p>0.05)。
     5用CT26细胞皮下接种裸鼠7 d后,20只裸鼠接种部位均出现直径在5 mm~10mm的皮下结节,移植瘤模型建立成功。化疗前实验组和对照组组荷瘤裸鼠肿瘤的体积大小差异无显著性(P>0.05),化疗2周后,实验组裸鼠瘤体积大于对照组裸鼠瘤体积(P<0.05)。
     结论
     1从靶向HA117基因的5对siRNA模板中,成功筛选鉴定出了对HA117基因RNAi效果最强的HAi5,为应用RNAi技术成功沉默HA117基因表达奠定了基础。
     2成功构建了HA117基因的RNA干扰重组质粒pSES-HUS-HAi5及重组腺病毒Ad-HAi5,收获的Ad-HAi5病毒液滴度为2.3×1011pfu/ml。
     3高表达外源性HA117基因的CW-2、Raji细胞对DNR、ADM、VCR、CTX和5-FU的耐药性增强,外源性HA117基因表达被沉默后的CW-2、Raji细胞对上述五种药物的耐药性消失,提示外源性HA117基因可使Raji、CW-2细胞产生多药耐药,表明HA117基因具有多药耐药功能;初步探讨HA117基因可能是通过抑制细胞凋亡的途径使瘤细胞产生多药耐药性。
     4新基因HA117可增强裸鼠结肠癌皮下移植瘤对5-FU的耐受性,进一步在动物体内实验表明HA117基因可使肿瘤细胞产生耐药性,是一个参与调控肿瘤细胞产生耐药性的新基因。
Objectives
     To research on the drug resistant function of the novel HA117 gene in human lymphoma cell lines (Raji cells) and in human colon carcinoma cell line(CW-2 cells) through gene transfection and RNA interference. And to investigate initially the possible mechanism how the HA117 gene could affect on the multi-drug resistance of CW-2 cells. As well to investigate the drug resistant function of HA117 gene further in vivo through establishing the nude mice subcutaneou transplanted carcinoma model.
     Methods
     1 Selecting the optimal siRNA target sites of HA117 gene through constructing the double clone recombined plasmid pSOS-HUS-HA117-HAi The pSOS-HUS DNA were extracted and digested by enzymes. Then it linked with HA117 gene to get the recombined plasmid pSOS-HUS-HA117;Five pairs siRNA target sites of HA117 gene were designed and synthesized and cloned them into recombined plasmid pSOS-HUS-HA117 respectively to construct five double clone recombined plasmid pSOS-HUS-HA117-HAi. Then the five kinds of double clone plasmids were transfected into 293 cells respectively. The optimal siRNA target sites were selected and validated through detecting and comparing intensity of green fluorescence by fluorescent microscope and flow cytometry, as well expression of HA117 gene mRNA was detcted by RT-PCR.
     2 Constructing RNA interferential vector pSES-HUS-HAi5 and Ad- HAi5 targetting to HA117 gene by recombinant DNA technology. The pSES-HUS DNA were extracted and digested by enzymes. Then it linked with the optimal siRNA target sites to get the RNA interferential recombined vector pSES-HUS-HAi5 targetting to HA117 gene. The plasimid pSES- HUS-HAi were transducted into the adenoviral homologous frame plasimid BJ-Adeasy to produce the adenoviral plasimid Adeasy-HAi. Then the Adeasy-HAi was transfected into HEK293 cells , and the recombined adenoviral Ad-HAi5 with high titer were gained through ping-pong infection.
     3 Investigating the drug resistant function of HA117 gene in Raji、CW-2 cells through gene transfection. The Raji cells were divided into three groups: the experimental group ( the Raji/HA117 cells with HA117 gene transfected), the RNA interferential group(the Raji/ HA117/HAi cells with HA117 gene and it’s RNA interferential vector transfected), the blank control group (the untransfected Raji cells). The groups of CW-2 cells were same as Raji cells’. The gene transfection to Raji cells and CW-2 cells were carried out by transfected the reombind plasmid with lipidosome mediated and infected directly the recombind adenovirus, respectively. The transfection or infection efficiencies of cells in every groups were detected by fluorescence and flow cytometry. The HA117 gene mRNA expression levels of cells in every group were detected by RT-PCR. The drug sensitivities to daunorubicin(DNR), adriamycin(ADM), methopterin (CTX), vincristine (VCR), 5-fluorouracil(5-FU)of cells in each group were detected by MTT. The apoptosis rates of CW-2 cells in every group were detected by AnnexinV-FITC and flow cytometry.
     4 Investigating drug resistant function of HA117 gene in vivo through establishing the nude mice subcutaneou transplanted carcinoma model. The transplanted mice colon carcinoma models were established by subcutaneous injecting CT26 cells which had HA117 gene drug resistance to the Balb/c nude mice. Seven days after injection when the diameter of the tumor reached about 5-10mm, 20 nude mice were divided randomly into exprimental group (10 mice) and control group (10 mice) . Nude mice in exprimental group were directly injected the recombined adenovirus Ad-HA117 suspension to the bearing-colon carcinomas. While the nude mice in control group were directly injected blank adenovirus Ad-null suspension to the bearing-colon carcinomas. After injected adenovirus 24 hours, nude mice in each group were received chemotherapy with intraperitoneal(i.p.) injection of 5-FU. After two weeks, the diameters of the bearing-colon carcinomas were measureed by type-B ultrasonic. The HA117 gene mRNA expressions in the bearing-colon carcinoma tissue of nude mice in each group were detected by RT-PCR. The effect of HA117 gene on the drug senstivity of mouse colon tumor cells in vivo was investigated through comparing the subcutaneou transplanted carcinomas volumes of nude mice in expremental group to of which in control group.
     Results
     1 Five double clone recombined plasmid pSOS-HUS-HA117-HAi were constructed successfully. The optimal siRNA target sites HAi5 was selected and validated from five siRNA sites targetting to HA117 gene by by fluorescent microscope , flow cytometry and RT-PCR.
     2 The RNA interferential recombined plasmid pSES-HUS-HAi5 targetting to HA117 gene was constructed successfully. After homologous recombined with BJ-Adeasy, it was pakaged to be the recombined adenovirus HAi5 in 293 cells. And the HA117 gene’s RNA interferential recombind adenovirus Ad-HAi5 with 2.3×1011pfu/ml were gained through ping-pong infection.
     3 The drug resistance to DNR、ADM、VCR、CTX and 5-FU of the Raji/HA117 and CW-2 /HA117 cells with HA117 gene transfected were increased(p<0.05) 3~7 times than of which untransfected Raji and CW-2 cells respectively. Campared to of which untransfected Raji and CW-2 cells, the drug resistance to the five kinds of drugs above-mentioned of Raji/ HA117/HAi cells and CW-2/HA117/HAi cells with HA117 gene and it’s RNA interferential vector transfected were no significant difference (P>0.05), respectively.
     4 The apoptosis rate of CW-2 /HA117 cells with HA117 gene transfected was 6.77% and lower than the untransfected CW-2 cells’apoptosisi rate 11.47%(P<0.05).Campared to of untransfected CW-2 cells the apoptosis rate of CW-2/HA117/HAi cells with HA117 gene and it’s RNA interferential vector transfected was 12.06%, and no significant difference (P>0.05).
     5 After injected CT26 cells seven days, the inoculated positions of nude mice developed subcutaneous nodules which diameters were between 5mm and 10mm, and the subcutaneou transplanted carcinoma models of nude mice were established successfully. There was no significance difference between tumor volume of carcinoma-bearing nude mice in experimental group and of that in control group before chemo(P>0.05). After used chem tow weeks , the tumor volume of carcinoma-bearing nude mice in control group exceeded than of which in control group(P<0.05).
     Conclusions
     1 The optimal siRNA target sites HAi5 that had strongest RNA interferencial effect tagetting to HA117 gene was selected and validated from five pairs siRNA target sites of HA117 gene, which pave the way for silencing HA117 gene expression successfully using RNA interference technology.
     2 The RNA interferential recombined plasmid pSES-HUS-HAi5 and recombined adenovirus Ad-HAi5 which express the selected optimal siRNA sites targeting to HA117 gene were constructed successfully. The titer of the abtained recombined adenovirus Ad-HAi5 was 2.3×1011pfu/ml.
     3 The multi-drug resistance to DNR、ADM、VCR、CTX and 5-FU of the Raji and CW-2 cells expressing highly exogenous HA117 gene increased, while the multidrug resistance of Raji and CW-2 cells were disappeared after the exogenous HA117 gene expression silenced, Which indecated that the novel gene HA117 the multi-drug resistance of Raji cells and CW-2 cells and HA117 gene might have multi-drug resistant function. And the possible mechanism how the HA117 gene could affect on the multi-drug resistance of CW-2 cells might be through inhibitting CW-2 cells apoptosis.
     4 The novel gene HA117 could increase the resistance of the nude mice subcutaneou transplanted carcinoma to 5-FU in vivo, which indicated further that the HA117 gene might have drug resistant function and be one of important genes which regulated development of tumor cells’drug resisitance.
引文
[1] Downing JR. Targeted therapy in leukemia[J]. Mod Pathol. 2008,21( 2):S2-7.
    [2] Ullah MF.Cancer multidrug resistance (MDR): a major impediment to effective chemotherapy[J]. Asian Pac J Cancer Prev. 2008, 9(1):1-6.
    [3]付劲蓉李成荣杨锡强白血病细胞多药耐药细胞系的建立及白细胞介素4对其多药耐药的逆转研究[J].中华儿科杂志2000, 38(10):614-617.
    [4]付劲蓉,刘文励,周剑锋,等.急性髓系白血病细胞多药耐药相关基因的筛选[J].华中科技大学学报(医学版).2005, 34(6):659-661(665).
    [5] Zheng GH, Fu JR, Xu YH, et al. Screening and cloning of multi-drug resistant genes in HL-60/MDR cells[J]. Leuk Res (2008),doi:10.1016/j.
    [6]郭玉霞罗庆徐酉华.耐药相关新基因HA117的克隆及重组腺病毒制备[J].重庆医科大学学报. 2008, 33(6): 641-645.
    [7] Yuxia Guo, Xianqing Jin, Youhua Xu, et al. HA117 gene increased the multidrug resistance of K562 cells in vitro: an investigation to the drug related function of a novel drug related gene. Journal of Experimental & Clinical Cancer Research 2009,(in press).
    [8] Rácz Z, Hamar P. SiRNA technology, the gene therapy of the future? [J] Orv Hetil. 2008, 149(4):153-9.
    [9] Castanotto D, Rossi JJ. The promises and pitfalls of RNA-interference-based therapeutics[J]. Nature. 2009 , 457(7228):426-33.
    [10] Luo Q, Kang Q, Song WX, et al. Selection and validation of optimal siRNA target sites for RNAi-mediated gene silencing[J]. Gene. 2007 , 395(1-2):160-9.
    [11] Bellamy SR, Mina P, Retter SE,et al. Fidelity of DNA sequence recognition by the SfiI restriction endonuclease is determined by communications between its two DNA-binding sites. J Mol Biol. 2008, 384(3):557-63.
    [12] Embleton ML, Vologodskii AV, Halford SE.Dynamics of DNA loop capture by the SfiI restriction endonuclease on supercoiled and relaxed DNA.J Mol Biol. 2004 , 339(1):53-66.
    [13] Kim D, Rossi J. RNAi mechanisms and applications[J]. Biotechniques. 2008 , 44(5):613-616.
    [14] Boutros M, Ahringer J. The art and design of genetic screens: RNA interference[J]. Nat Rev Genet. 2008, 9(7):554-566.
    [15] Naqvi AR, Islam MN, Choudhury NR, Haq QM. The fascinating world of RNA interference[J]. Int J Biol Sci. 20095(2):97-117.
    [16] Kurreck J.RNA interference: from basic research to therapeutic applications[J]. Angew Chem Int Ed Engl. 2009, 48(8):1378-1398.
    [17] Pushparaj PN, Aarthi JJ, Manikandan J, Kumar SD.siRNA, miRNA, and shRNA: in vivo applications[J]. J Dent Res. 2008, 87(11):992-1003.
    [18] Bingbing Yuan, Robert Latek, Markus Hossbach,et, al. siRNA Selection Server: an automated siRNA oligonucleotide prediction server[J]. Nucleic Acids Res. 2004, 1(32) 130-134.
    [19] Kumiko Ui-Tei, Yuki Naito, Fumitaka Takahashi, et al. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference[J]. Nucleic Acids Res. 2004, 32(3): 936–948.
    [20] Leonard J N,Schaffer D V.Computational design of antiviral RNA interference strategies that resist human immunodeficiency virus escape[J].J Virol, 2005, 79(3):1645-1654.
    [21] Zhao H F,L Abbe D,Jolicoeur N,et a1.High-through-put screening of effective siRNAs from RNAi libraries delivered via bacterial invasion[J].Nat Methods. 2005, 2(12):967-973.
    [22]张勤丽,石樱桃,牛侨. bax基因siRNA序列的筛选及其对铝致神经胶质瘤细胞凋亡的影响[J].卫生研究. 37(3):269-275.
    [23]彭伟,张咸伟,田学愎等.永生化小鼠小胶质细胞P2 X4 siRNA靶点的筛选[J].华中科技大学学报(医学版). 2008, 37(5):657-662.
    [24]蒋建伟,史金桃,吴智慧等.增殖细胞核抗原siRNA序列的设计、合成与筛选[J].中国病理生理杂志. 2008, 24(3):484-489.
    [25]荆春霞,张洹. VEGF siRNA的筛选、评价及siRNA的设计规则探讨[J].基础医学与临床. 2006, 26(6):579-586.
    [26]马建民,赵家良,卞爱琳等.大鼠结膜囊成纤维细胞TGFI32特异性siRNA的筛选及其载体构建的研究[J].眼科研究. 2006,4(6):577-582.
    [27]张涛,程通,张雅丽等.靶向HIV-1 vif的高效siRNA的筛选及慢病毒介导的体外抗病毒研究[J].病毒学报. 2008, 24(2): 88-96.
    [28]赖延东,李秀英,宾晓农等.快速筛选芳香烃受体基因特异RNA干扰序列的初步研究[J].中国职业医学. 2005, 32(6):5-8。
    [29]朱晓燕,刘书漫,张钦宪. siRNA抑制SOM基因表达的有效序列筛选[J].肿瘤基础与临床. 2006, 19(5): 357-363.
    [30]李立华,霍晓芳,熊霞辉等.利用人转录因子siRNA文库筛选凋亡相关siRNA[J].中国分子心脏病学杂志.2008, 8(4):191-196.
    [31] Palma Rocchi, Paul Jugpal Alan So,et al. Small interference RNA targeting heat-shock protein 27 inhibits the growth of prostatic cell lines and induces apoptosis via caspase-3 activation in vitro[J]. BJU International. 2006, 98(5): 1082-1089.
    [32] Jie FU, Zhong-ming TANG, Xin GAO, et al. Optimal design and validation of antiviral siRNA for targeting hepatitis B virus[J]. Acta Pharmacologica Sinica 2008; 29 (12): 1522-1528.
    [33] Zhi John Lu, David H, Mathews. Efficient siRNA selection using hybridization thermodynamics[J]. Nucleic Acids Res. 2008 , 36(2): 640–647.
    [34] Glasgow JN, Everts M, Curiel DT.Transductional targeting of adenovirus vectors for gene therapy[J]. Cancer Gene Ther. 2006, 13(9):830-844.
    [35] Kazachenko KIu, Avdonin PV. Vector systems of RNA interference[J]. Ontogenez. 2006 , 37(3):163-170.
    [36] Mikhaylova M, Stasinopoulos I, Kato Y, Artemov D, Bhujwalla ZM.Imaging of cationic multifunctional liposome-mediated delivery of COX-2 siRNA[J]. Cancer Gene Ther. 2009, 16(3):217-226.
    [37] Howard KA, Paludan SR, Behlke MA, et al. Chitosan/siRNA nanoparticle-mediated TNF-alpha knockdown in peritoneal macrophages for anti-inflammatory treatment in a murine arthritis model[J]. 2009, 17(1):162-168.
    [38] Amarzguioui M, Rossi JJ, Kim D. Approaches for chemically synthesized siRNA and vector-mediated RNAi[J]. FEBS Lett. 2005, 579(26):5974-5981.
    [39] Aalto AP, Sarin LP, van Dijk AA, et al. Large-scale production of dsRNA and siRNA pools for RNA interference utilizing bacteriophage phi6 RNA-dependent [J]. RNA polymerase. 2007, 13(3):422-429.
    [40] Sugiyama T, Cam H, Verdel A, et al. RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assemblyto siRNA production[J]. Proc Natl Acad Sci U S A. 2005, 102(1):152-157.
    [41] Magkouras I, M?tzener P, Rümenapf T, et al. RNase-dependent inhibition of extracellular, but not intracellular, dsRNA-induced interferon synthesis by Erns of pestiviruses[J]. 2008, 89(10):2501-2506.
    [42] Lamontagne B, Larose S, Boulanger J, et al. The RNase III family: a conserved structure and expanding functions in eukaryotic dsRNA metabolism[J].Curr Issues Mol Biol. 2001,3(4):71-78.
    [43] Wang S, Shi Z, Liu W, Jules J, et al. Development and validation of vectors containing multiple siRNA expression cassettes for maximizing the efficiency of gene silencing[J].BMC Biotechnol. 2006 , 6:50.
    [44] Amarzguioui M, Rossi JJ, Kim D. Approaches for chemically synthesized siRNA and vector-mediated RNAi[J]. FEBS Lett. 2005 Oct 31;579(26):5974-81
    [45] Kurreck J. RNA interference: from basic research to therapeutic applications[J]. Angew Chem Int Ed Engl. 2009, 48(8):1378-1398.
    [46] Kaykas A, Moon R. A plasmid-based system for expressing small interfering RNA libraries in mammalian cells[J]. BMC Cell Biol. 2004, 5:16.
    [47] Scherer LJ, Yildiz Y, Kim J, Cagnon L, et al. Rapid assessment of anti-HIV siRNA efficacy using PCR-derived Pol III shRNA cassettes[J]. Mol Ther. 2004 10(3):597-603.
    [48] Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells[J]. Science. 2002, 296:550–553.
    [49] Miyagishi M, Taira K. U6 promoter-driven siRNAs with four uridine 3′overhangs efficiently suppress targeted gene expression in mammalian cells[J]. Nat Biotechnol. 2002;19:497–500.
    [50] Tran N, Cairns M, Dawes IW, Arndt GM. Expressing functional siRNAs in mammalian cells using convergent transcription[J]. BMC Biotechnol. 2003;3:21.
    [51] Zheng L, Lui J, Batalov S, Zhou D, Orth A, et al. An approach to genomewide screens of expressed small interfering RNAs in mammalian cells[J]. Proc Natl Acad Sci. 2004;101:135–140.
    [52] Ro S, Hwang SJ, Ord?g T, Sanders KM. Adenovirus-based short hairpin RNA vectors containing an EGFP marker and mouse U6, human H1, or human U6 promoter[J]. Biotechniques. 2005, 38(4):625-627.
    [53] Henriksen JR, L?kke C, Hammer? M, et al. Comparison of RNAi efficiencymediated by tetracycline-responsive H1 and U6 promoter variants in mammalian cell lines[J].Nucleic Acids Res. 2007, 35(9):e67.
    [54] Cheng TL, Chang WT. Construction of simple and efficient DNA vector-based short hairpin RNA expression systems for specific gene silencing in mammalian cells[J]. Methods Mol Biol. 2007, 408:223-241.
    [55] orf M, Meyer A, Jarczak D, et al. Inhibition of HCV subgenomic replicons by siRNAs derived from plasmids with opposing U6 and H1 promoters[J]. J Viral Hepat. 2007 ,14(2):122-132.
    [56] Jian R, Peng T, Deng S, et al. A simple strategy for generation of gene knockdown constructs with convergent H1 and U6 promoters[J]. Eur J Cell Biol, 2006, 85(5):433-440.
    [57] Nassanian H, Sanchez AM, Lo A, et al. Efficient construction of an inverted minimal H1 promoter driven siRNA expression cassette: facilitation of promoter and siRNA sequence exchange[J]. PLoS ONE. 2007, 2(1):e767
    [58] Luo J, Deng ZL, Luo X, et al. A protocol for rapid generation of recombinant adenoviruses using the AdEasy system[J]. Nat Protoc. 2007, 2(5):1236-1247.
    [59] He TC.Adenoviral vectors. Curr Protoc Hum Genet. 2004 May;Chapter 12:Unit 12.4.
    [60] Shirakawa T.The current status of adenovirus-based cancer gene therapy[J]. Mol Cells. 2008, 25(4):462-466.
    [61] Kazachenko KIu, Avdonin PV. Vector systems of RNA interference. Ontogenez, 2006, 37(3):163-170.
    [62] Kondo S, Terashima M, Fukuda H, et al. Gene engineering of the adenovirus vector[J]. Uirusu, 2007,57(1):37-45.
    [63] Rekosh DM, Russell WC. Processing of the precursor to the major core polypeptide of Ad5enovirus type 5 removes a region near the amino terminus[J]. Virology. 1977 Oct 15; 82(2): 513-517.
    [64] Anderson CW, Young ME, Flint SJ. Characterization of the Adenovirus 2 virion protein, mu[J]. Virology. 1989, 172(2): 506-512.
    [65] Matthews DA, Russell WC. Adenovirus protein-protein interactions: molecular parameters governing the binding of protein VI to hexon and the activation of the Adenovirus 23K protease[J]. Gen Virol. 1995, 76 ( Pt 8): 1959-1569.
    [66] Weber J. Genetic analysis of Adenovirus type 2 III. Temperature sensitivity ofprocessing viral proteins[J]. Virol. 1976 , 17(2): 462-471
    [67] Webster A, Russell WC, Kemp GD. Characterization of the Adenovirus proteinase: development and use of a specific peptide assay[J]. Gen Virol. 1989 , 70 ( Pt 12): 3215-3223
    [68] Shirakawa T. The current status of adenovirus-based cancer gene therapy[J]. Mol Cells. 2008, 25(4):462-466.
    [69] Amalfitano A, Hauser MA, Hu H, et al. Production and characterization of improved adenovirus vectors with the E1, E2b, and E3 genes deleted[J]. J Virol. 1998 , 72(2):926-933.
    [70] Ballay A, Levrero M, Buendia MA et al. In vitro and in vivo synthesis of the hepatitis B virus surface antigen and of the receptor for polymerized human serum albumin from recombinant human Ad5enoviruses[J]. EMBO J. 1985, 4(13B): 3861-3865.
    [71] Rosenfeld MA, Siegfried W, Yoshimura K, et al. Adenovirus-mediated transfer of a recombinant alpha 1-antitrypsin gene to the lung epithelium in vivo[J]. Science. 1991, 252(5004): 431-4
    [72] Hayashi S,Ieu D,Yamii Y ,et a1. Effect of Adenovirus-mediated transfer of the CTI A4 IG gene in hamster-to-rat xenotransplantation[J]. Transplantation. 2005, 80:494.
    [73] Kanerva A,Hemminki A. Adenoviruses for treatment of cancer[J]. Ann Med.2005 , 37:33-43.
    [74] Lage H. An overview of cancer multidrug resistance: a still unsolved problem[J]. Cell Mol Life Sci. 2008, 65(20):3145-3167.
    [75] Ozben T.Mechanisms and strategies to overcome multiple drug resistance in cancer. FEBS Lett, 2006 , 580(12):2903-2909.
    [76] Pedersen JM, Matsson P, Bergstr?m CA, et al. Prediction and identification of drug interactions with the human ATP-binding cassette transporter multidrug-resistance associated protein 2 (MRP2; ABCC2) [J]. J Med Chem. 2008, 51(11):3275-3287.
    [77] Russo D, Marie JP, Zhou DC, et al. Coexpression of anionic glutathione-S-transferase (GST pi) and multidrug resistance (mdr1) genes in acute myeloid and lymphoid leukemias [J] . Leukemia. 1994 8(5):881-884.
    [78] Lacreusette A, Barbieux I, Nguyen JM, et al. Defective activations of STAT3Ser727 and PKC isoforms lead to oncostatin M resistance in metastatic melanoma cells[J]. J Pathol, 2009, 217(5):665-576.
    [79] Zhan M, Yu D, Lang A, Li L, Pollock RE . Wild type p53 sensitizes soft tissue sarcoma cells to doxorubicin by down-regulating multidrug resistance-1 expression[J]. Cancer. 2001, 92(6):1556-1566.
    [80] Voorzanger, Rousselot N, Alberti L, Blay JY. CD40L induces multidrug resistance to apoptosis in breast carcinoma and lymphoma cells through caspase independent and dependent pathways [J]. BMC Cancer. 2006, 18;6:75.
    [81] Lu L, Katsaros D, Wiley A, et al. Expression of MDR1 in epithelial ovarian cancer and its association with disease progression[J]. Oncol Res. 2007, 16(8):395-403.
    [82] Chu F, Chou PM, Zheng X, et al. Control of multidrug resistance gene mdr1 and cancer resistance to chemotherapy by the longevity gene sirt1[J]. Cancer Res. 2005,65(22):10183-10187.
    [83] Dulucq S, Bouchet S, Turcq B, et al. Multidrug resistance gene (MDR1) polymorphisms are associated with major molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood. 2008 , 112(5):2024-7.
    [84] Lee TB, Park JH, Min YD, et al. Epigenetic mechanisms involved in differential MDR1 mRNA expression between gastric and colon cancer cell lines and rationales for clinical chemotherapy[J]. BMC Gastroenterol, 2008 , 1(8):33.
    [85] Pan JH, Han JX, Wu JM, et al. MDR1 single nucleotide polymorphisms predict response to vinorelbine-based chemotherapy in patients with non-small cell lung cancer[J]. Respiration. 2008;75(4):380-385.
    [86]郭玉霞,徐酉华.全反式维甲酸相关多药耐药机制及其逆转的研究进展[J]。儿科药学杂志. 2007,13(6):54-58。
    [87] Wang T, Ma X, Krausz KW, Idle JR, Gonzalez FJ.Role of pregnane X receptor in control of all-trans retinoic acid (ATRA) metabolism and its potential contribution to ATRA resistance[J]. J Pharmacol Exp Ther. 2008, 324(2):674-684.
    [88] Pfoertner S, Goelden U, Hansen W, et al. Cellular retinoic acid binding protein I: expression and functional influence in renal cell carcinoma[J]. Tumour Biol. 2005 , 26(6):313-323.
    [89] Coradini D. New chemical strategies for overcoming ATRA resistance in APL cells[J]. Leuk Res. 2007, 31(3):291-392.
    [90] van der Kolk DM, de Vries EGE, Noordhoek L, et al. Activity and expression ofthe multidrug resistance proteins P-glycoprotein, MRP1, MRP2, MRP3 and MRP5 in de novo and relapsed acute myeloid leukemia[J]. Leukemia. 2001, 15(10):1544-1553.
    [91] Takeshita A, Shinjo K, Naito K, et al. Role of P-glycoprotein in all-trans retinoic acid (ATRA) resistance in acute promyelocytic leukaemia cells: analysis of intracellular concentration of ATRA[J]. Br J Haematol. 2000, 108(1):90-92.
    [92] Takeshita A, Shigeno K, Shinjo K, et al. All-trans retinoic acid (ATRA) differentiates acute promyelocytic leukemia cells independently of P-glycoprotein (P-gp) related multidrug resistance[J]. Leuk Lymphoma. 2001, 42(4): 739-746.
    [93] Tan FL, Yin JQ. Application of RNAi to cancer research and therapy[J]. Front Biosci. 2005, 10(1):1946-1960.
    [94] Meng F, Dong B, Li H, et al. RNAi-mediated inhibition of Raf-1 leads to decreased angiogenesis and tumor growth in gastric cancer[J]. Cancer Biol Ther. 2009, 8(2):174-179.
    [95] Singh A, Boldin-Adamsky S, Thimmulappa RK, et al. RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy[J]. Cancer Res. 2008, 68(19):7975-7984.
    [96] Bulk E, Hascher A, Liersch R, et al. Adjuvant therapy with small hairpin RNA interference prevents non-small cell lung cancer metastasis development in mice[J]. Cancer Res. 2008, 68(6):1896-1904.
    [97] Ito K, Chen J, Asano T, et al. Liposome-mediated gene therapy in the kidney[J]. Hum Cell. 2004, 17(1):17-28.
    [98] Chae JJ, Wood G, Richard K, et al. The familial Mediterranean fever protein, pyrin, is cleaved by caspase-1 and activates NF-kappaB through its N-terminal fragment. Blood, 2008, 112(5):1794-1803.
    [99] Natarajan A, Ghose R, Hill JM.Structure and dynamics of ASC2, a pyrin domain-only protein that regulates inflammatory signaling[J]. J Biol Chem. 2006, 281(42):31863-31875
    [100] Khan N, Asim M, Afaq F,A novel dietary flavonoid fisetin inhibits androgen receptor signaling and tumor growth in athymic nude mice[J]. Cancer Res. 2008 ,68(20):8555-8563.
    [101]刘恩岐,尹海林,顾为望.医学实验动物学[M].科学出版社. 2008,第五章.
    [102] Kelland LR.Of mice and men: values and liabilities of the athymic nude mouse model in anticancer drug development.Eur J Cancer. 2004 , 40(6):827-836.
    [103] Mohamad NA, Cricco GP, Sambuco LA, et al. Aminoguanidine impedes human pancreatic tumor growth and metastasis development in nude mice[J]. World J Gastroenterol. 2009 , 15(9):1065-1071.
    [104] Staffhorst RW, van der Born K, Erkelens CA, et al. Antitumor activity and biodistribution of cisplatin nanocapsules in nude mice bearing human ovarian carcinoma xenografts[J]. Anticancer Drugs. 2008, 19(7):721-727.
    [105] Zhu DE, H?ti N, Song Z, Jin L, et al. Suppression of tumor growth using a recombinant adenoviral vector carrying the dominant-negative mutant gene Survivin-D53A in a nude mice model[J]. Cancer Gene Ther. 2006, 13(8):762-770.
    [106] Koyanagi Y, Tanaka Y, Ito M, et al. Humanized mice for human retrovirus infection[J] .Curr Top Microbiol Immunol. 2008;324:133-148.
    [107] Zeng ZJ, Li ZB, Luo SQ, Hu WX. Retrovirus-mediated tk gene therapy of implanted human breast cancer in nude mice under the regulation of Tet-On[J]. Cancer Gene Ther. 2006 , 13(3):290-297.
    [108] Uchida K, Nakajima H, Inukai T, et al. Adenovirus-mediated retrograde transfer of neurotrophin-3 gene enhances survival of anterior horn neurons of twy/twy mice with chronic mechanical compression of the spinal cord[J]. J Neurosci Res. 2008, 86(8):1789-1800.
    [109] Ganesh S, Gonzalez Edick M, Idamakanti N, et al. Relaxin-expressing, fiber chimeric oncolytic adenovirus prolongs survival of tumor-bearing mice[J]. Cancer Res. 2007 , 67(9):4399-4407.
    [110]高悠水,梅炯,童天朗等.腺病毒介导人VEGF—siRNA对裸鼠移植骨肉瘤的抑制作用[J].中国肿瘤生物治疗杂志. 2008,15(3):243-248.
    [111] Chen J, Ding WH, Lu GX,Impact of p27mt gene on transplantation model of human colorectal cancer in nude mice[J]. World J Gastroenterol. 2009 , 15(3):369-372.
    [112] Davies LA, Varathalingam A, Painter H, et al.Adenovirus-mediated in utero expression of CFTR does not improve survival of CFTR knockout mice[J]. Mol Ther. 2008, 16(5):812-818.
    [113] Zhu DE, H?ti N, Song Z, et al. Suppression of tumor growth using a recombinant adenoviral vector carrying the dominant-negative mutant gene Survivin-D53A in anude mice model[J]. Cancer Gene Ther. 2006, 13(8):762-770.
    [114] Tang XY, Zhu YQ, Tao WH, et al. Synergistic effect of triptolide combined with 5-fluorouracil on colon carcinoma[J]. Postgrad Med J. 2007, 83(979):338-343.
    [115] Nakata E, Fukushima M, Takai Y, et al. S-1, an oral fluoropyrimidine, enhances radiation response of DLD-1/FU human colon cancer xenografts resistant to 5-FU[J]. Oncol Rep. 2006, 16(3):465-471.
    [1]. Mistry AR, Pedersen EW, Solomon E, et al. The molecular pathogenesis ofacute promyelocytic leukaemia: implications for the clinical management of the disease. Blood Rev. 2003, 17(2): 71-97.
    [2]. Degos L. The history of acute promyelocytic leukamemia. Br J Haematol. 2003,122(4):539–553.
    [3]. Scotto KW. Transcriptional regulation of ABC drug transporters. Oncogene. 2003, 22(47):7496-7511.
    [4]. Rybarova S, Batekova M, Hodorova I, et al. Immunohistochemial detection of LRP protein in the normal human lung. Bratisl Lek Listy. 2001, 102(2):66-72.
    [5]. Schaich M, Soucek S, Thiede C, et al. MDR1 and MRP1 gene expression are independent predictors for treatment outcome in adult acute myeloid leukaemia. Br J Haematol. 2005,128(3):324-332.
    [6]. Casale F, D'Angelo V , Addeo R, et al. P-glycoprotein 170 expression and function as an adverse independent prognostic factor in childhood acute lymphoblastic leukemia. Oncol Rep. 2004, 12(6):1201-1207.
    [7]. Burger H, van Tol H, Boersma AW, et al. Imatinib mesylate(STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood. 2004, 104(9): 2940-2942.
    [8]. Michieli M, Damiani D, Ermacora A, et al. Pglycoprotein (PGP), lung resistancerelated protein (LRP) and multidrug resistance-associated protein (MRP) expression in acute promyelocytic leukaemia. Br J Heamatol. 2000, 108(4):703-709.
    [9]. Damiani D, Michieli M, Michelutti A, et al. Antibody binding capacity for evaluation of MDR-related proteins in acute promyelocytic leukemia: Onset versus relapse expression. Cytometry B Clin Cytom . 2004 , 59(1):40-45.
    [10]. Candoni A, Damiani D, Michelutti A, et al. Clinical characteristics prognostic factors and multidrug-resistance related protein expression in 36 adult patients with acute promyelocytic leukemia. Eur J Haematol. 2003, 71(1): 1-8.
    [11]. Galimberti S, Testi R, Guerrini F, et al. The clinical relevance of the expression of several multidrug-resistant-related genes in patients with primary acute myeloid leukemia. J Chemother, 2003, 15(4):374-379.
    [12]. Schaich M, Koch R, Soucek S, et al. A sensitive model for prediction of relapse in adult acute myeloid leukaemia with t(8;21) using white blood cell count, CD56 and MDR1 gene expression at diagnosis. Br J Haematol. 2004, 125(4):477-479.
    [13]. van den Heuvel-Eibrink MM, Sonneveld P, Pieters R. The prognostic significance of membrane transport-associated multidrug resistance (MDR) proteins in leukemia. Int J Clin Pharmacol Ther. 2000, 38(3): 94-110.
    [14]. Dahl GV, Lacayo NJ, Brophy N, et al. Mitoxantrone, etoposide, and cyclosporine therapy in pediatric patients with recurrent or refractory acute myeloid leukemia. J Clin Oncol. 2000, 18(9):1867-1875.
    [15]. Avivi I, Rowe JM. Prognostic factors in acute myeloid leukemia .Curr Opin Hematol.2005. 12(1):62-67.
    [16]. Ross DD, Karp JE, Chen TT, et al. Expression of breast cancer resistance protein in blast cells from patients with acute leukemia. Blood. 2000, 96(1):365-368.
    [17]. van der Kolk DM, Vellenga E, Scheffer GL,et al. Expression and activity of breast cancer resistance protein (BCRP) in de novo and relapsed acute myeloid leukemia. Blood. 2002, 99(10): 3763-3770.
    [18]. Abbott BL, Colapietro AM, Barnes Y, et al. Low levels of ABCG2 expression in adult AML blast samples. Blood. 2002, 100(13):4594-4601.
    [19].任金海,杜行严,郭晓楠等.急性白血病细胞的乳腺癌耐药蛋白基因表达与化疗耐药的关系.中国实验血液学杂志, 2004, 12(1):55-58。
    [20]. Tokura Y, Shikami M, Miwa H, et al. Augmented expression of P-gp/multi-drug resistance gene by all-trans retinoic acid in monocytic leukemic cells. Leuk Res, 2002, 26:29-36.
    [21]. Stromskaya TP, Rybalkina EY, Zabotina TN,et al. Influence of RARαgene on MDR1 expression and P-glycoprotein function in human leukemic cells. Cancer Cell Int . 2005,5:15.
    [22]. van der Kolk DM, de Vries EGE, Noordhoek L, et al. Activity and expression of the multidrug resistance proteins P-glycoprotein, MRP1, MRP2, MRP3 and MRP5 in de novo and relapsed acute myeloid leukemia. Leukemia. 2001, 15(10):1544-1553.
    [23]. Takeshita A, Shinjo K, Naito K, et al. Role of P-glycoprotein in all-trans retinoic acid (ATRA) resistance in acute promyelocytic leukaemia cells: analysis of intracellular concentration of ATRA. Br J Haematol. 2000, 108(1):90-92.
    [24]. Takeshita A, Shigeno K, Shinjo K, et al. All-trans retinoic acid (ATRA) differentiates acute promyelocytic leukemia cells independently of P-glycoprotein (P-gp) related multidrug resistance. Leuk Lymphoma. 2001, 42(4): 739-746.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700