植物乳杆菌胞外多糖发酵、结构鉴定及其功能特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳酸菌(Lactic acid bacteria, LAB)胞外多糖(exopolysaccharides, EPS)是LAB在生长代谢过程中分泌到细胞壁外的黏液多糖和荚膜多糖的总称。由于其独特的理化性质及流变学特性,LAB EPS被作为增稠剂、乳化剂、胶凝剂和稳定剂,广泛的用于食品企业的生产中。目前的一些研究表明,LAB EPS具有抗肿瘤、增强免疫力、抗炎性、抗病毒、抗突变和抗氧化等功效。由于LAB被公认为是安全的(generally regarded as safe, GRAS)食品级微生物,因此其产生的EPS也相应地被认为是安全的,可以直接用于食品中。
     本论文对从自然发酵泡菜中筛选到的一株产EPS的LAB进行了鉴定,并对其EPS进行了较系统的研究。主要结果如下:
     1.采用菌落拉丝法这一简便的筛选技术从植物源性的天然发酵制品(泡菜)中筛选到一株高产EPS的LAB70810,通过形态学观察、生理生化鉴定、以及分子生物学的手段对该菌株进行了鉴定,最终将菌株70810判定为植物乳杆菌(Lactobacillus plant arum)。以Lb. plantarum70810EPS的产量为指标,通过单因素优化得出结果分别为:MRS培养基,最佳碳源为蔗糖,蔗糖30g/L,最佳氮源为大豆蛋白胨,大豆蛋白胨10g/L,接种量4%,pH6,发酵时间24h,发酵温度30℃。通过Plackett-Burman设计对Lb. plantarum70810生产EPS的培养基成分和培养条件共计14个因素进行了优化,通过SAS软件分析得到影响EPS产量的三个主要因素是蔗糖、接种量以及发酵温度。对由Plackett-Burman设计筛选出的蔗糖、接种量以及发酵温度,采用中心组合设计(CCD)及响应面分析法,得到Lb. plantarum70810发酵产EPS的最优条件为:蔗糖34g/L、接种量5%、发酵温度31℃。在此条件下发酵Lb. plantarum70810实际所得EPS产量为425.16mg/L,与预测值基本吻合。
     2.通过Sevag法、三氯乙酸法脱蛋白的效果比较,认为终浓度4%的三氯乙酸法脱蛋白的效果好,蛋白质脱除率可达到86.4%。通过单因素试验分析了Lb.plantarum70810EPS醇沉的最佳条件;采用Box-Behnken的中心组合设计及响应面分析,建立了Lb.plantarum70810EPS醇沉条件的二次多项式数学模型。通过模型分析并修正后得到醇沉的最佳工艺参数为:静置时间13h、乙醇添加倍数4倍、发酵液浓缩倍数3.50倍。在此条件下进行验证实验所得EPS平均提取量为320.17mg/L。大孔吸附树脂对Lb.plantarum70810EPS脱色纯化的结果表明:选择S-8树脂,树脂用量为4%,多糖溶液浓度为2mg/mL,调节多糖溶液的pH值为6.0,在25℃条件下,静态吸附4h,脱色率为72.58%,糖保留率为69.15%。经S-8树脂脱色后的粗多糖样品依次使用DEAE-52和Sephadex G-100进行分级纯化后主要得到两个组分(EPS-1和EPS-2),采用HPLC法对EPS-1和EPS-2进行纯度鉴定和分子量测定,结果表明,EPS-1和EPS-2为均一的多糖组分,平均相对分子量(Mw)分别为1.75×104和1.20×105Da。分别采用硫酸-苯酚法、硫酸-间羟基联苯比色法、考马斯亮蓝法和氯化钡-明胶比色法,测定粗多糖、EPS-1和EPS-2中的总糖、糖醛酸、蛋白质和硫酸基的含量,结果表明,粗多糖、EPS-1、EPS-2的总糖含量分别为76.75%、94.45%、90.55%;糖醛酸含量分别为3.19%、2.09%、1.71%;蛋白质含量分别为0.32%、0.82%、1.58%;硫酸基未检出。
     3.通过多种方法对EPS-1和EPS-2的结构特征进行了测定。采用三甲基硅醚衍生化法及气相色谱法对多糖样品的单糖组成进行分析,结果表明,EPS-1单糖组成及摩尔比为葡萄糖:甘露糖:半乳糖=53.24:10.41:1.00。EPS-2单糖组成及摩尔比为葡萄糖:甘露糖:岩藻糖=3.48:9.61:1.00。综合单糖组成分析、红外扫描、甲基化反应和NMR分析的结果,基本可以确定EPS-1是以1→4连接的α-型吡喃葡萄糖、甘露糖为主链并含有少量半乳糖的中性多糖。EPS-2是以1→4连接的α-型吡喃葡萄糖为主链、以1→2,6连接的甘露糖为支链,并含有少量岩藻糖的酸性多糖。
     4.透析吸附试验结果表明,Lb. plantarum70810EPS对Pb(Ⅱ)离子的最佳吸附pH为5.0,吸附平衡时间为6h,吸附温度为30℃。当EPS溶液浓度为5g/L、Pb(Ⅱ)离子浓度在0.1mg/L到1000mg/L之间时,随着初始Pb(Ⅱ)离子浓度的增加,EPS对Pb(Ⅱ)离子的吸附量也增加。EPS用量从0.0005g(浓度为0.1g/L)增加到0.001g(浓度为0.2g/L)时,其对Pb(Ⅱ)离子的吸附量随着EPS用量的增加而增加;当EPS用量进一步增加时,其对Pb(Ⅱ)离子的吸附量则逐渐降低。EPS吸附Pb(Ⅱ)离子前后的红外光谱分析表明,羧基是EPS起吸附作用的主要官能团。
     5.采用CCK-8法探讨了Lb.plantarum70810胞外粗多糖(Crude EPS)及纯化组分EPS-1和EPS-2对人前列腺癌细胞PC-3,人结肠癌细胞HCT-116,人肝癌细胞HepG2,及人大肠癌细胞HT-29的体外增殖抑制作用。结果表明,Crude EPS. EPS-1和EPS-2对人前列腺癌细胞PC-3,人结肠癌细胞HCT-116,人肝癌细胞Hep G2,及人大肠癌细胞HT-29的生长均具有明显的体外抑制作用,且呈现出一定的量效关系和时间-效能关系。当多糖样品浓度为400μg/mL时,处理72h后,Crude EPS、EPS-1和EPS-2对人前列腺癌细胞PC-3的增殖抑制率分别为93.74%、38.54%和39.40%;对人结肠癌细胞HCT-116的增殖抑制率分别为57.35%、55.01%和57.48%;对人肝癌细胞Hep G2的抑制率分别为96.76%、52.73%和59.76%;对人大肠癌细胞HT-29的抑制率分别为46.10%、39.78%和57.45%。
Lactic acid bacteria (LAB) exopolysaccharides (EPS) are long-chain polysaccharides secreted by LAB into the extracellular environment during growth. Due to their unique physical and rheological properties, EPS are widely used in the food industry as thickeners, emulsifiers, gelling agents and stabilizers. In addition, these polysaccharides have been demonstrated to possess important biological properties, such as antitumor, immunomodulatory, immunostimulatory, antinociceptive and antiinflammatory, antiviral, antimutagenicity and antioxidant activities. EPS produced by LAB have gained considerable attention mainly because LAB are food-grade bacteria known as GRAS and their EPS could be easily utilized in foods in a juridical point of view.
     The isolation and identification of this EPS-producing Lb. plantarum strain70810from Chinese Paocai and the analysis of its EPS were carried out systemically. The main results are as follows:
     1. LAB isolated from various traditional Chinese fermented foods were screened for the production of EPS. The rod-shaped strain70810from Chinese Paocai, which was identified as Lb. plantarum (HQ259238) by morphological, physiological, biochemical and16S rDNA tests, was selected due to its highest EPS production capability for further study. Effects of various culture conditions (media, carbon, nitrogen, inoculation volume, initial pH, temperature, and culture time) on EPS production were investigated firstly by single factor method. For EPS production with, the preferable culture conditions were30℃and pH6for24h with sucrose30g/L, soybean peptone10g/L, as the carbon, nitrogen of MRS meadium, respectively. The fermentation conditions of exopolysaccharides produced by Lb. plantarum70810were optimized. Three main factors were screened by Plackett-Burman (PB) design from fourteen nutritional and cultural factors affecting Lb. plantarum70810EPS yield. The screened significant factors were then optimized by response surface methodology (RSM). The PB experimental results showed that sucrose, inoculation volume and temperature were significant factors for the production of EPS. The optimal conditions were confirmed by RSM as follows:sucrose34g/L, inoculation volume5%(V/V) and temperature31℃. Under these optimal conditions, the70810EPS yield reached425.16mg/L. Conclusion:It is feasible to apply PB design and RSM to optimize the fermentation conditions of exopolysaccharides from Lb. plantarum70810.
     2. To remove proteins, two methods were tested:Sevage method and trichloroacetic acid (TCA) method. The results indicated that TCA method is better. TCA final concentration4%was selected and the deproteinization rate was86.4%. The optimal conditions of ethanol precipitation of EPS produced by Lb. plantarum70810were investigated by single-factor experiments and response surface methodology. A mathematical model was then developed to show the significant effect of each factor and their interactions on the yield of EPS. The optimal parameters for ethanol precipitation of Lb. plantarum70810EPS were confirmed as follows:precipitation time12.56h, volume of ethanol3.9times, concentration multiple of original fermentation supernatant3.54times. Under the optimal condition, the model-predicted and experimental values of EPS yield were323.11mg/L and320.17mg/L, respectively, revealing0.91%relative error between them. The optimal decolorization conditions of EPS from Lb. plantarum70810were studied with macroporous adsorptive resin by single-factor experiments. The results showed that resin S-8demonstrated the highest decolorization ratio among various resins tested. The optimized decolorization conditions were determined as follows:resin S-8of4%(W/V), pH value of EPS solution6, concentration of EPS solution2mg/mL, for4h at25℃in static state. Under these conditions, the decolorization ratio and retention ratio of EPS were72.58%and69.15%, respectively. The decolorized and deproteinized EPS obtained from S-8resin was further purified by chromatography of DEAE-52and Sephadex G-100to afford two polysaccharide fractions (EPS-1and EPS-2). EPS-1and EPS-2both showed only one symmetrical peak on HPLC with the molecular weights estimated to be1.75×104and1.20×105Da, respectively. As to crude EPS, EPS-1, and EPS-2, polysaccharides content, measured by employing the method of sulfuric acid-phenol coloration, was76.75%、94.45%and90.55%, respectively. Uronic acid content, determined by using the method of cartazole-sulfuric acid assay, was3.19%、2.09%and1.71%, respectively. Protein content, measured by applying the method of coomassie brilliant blue coloration, was0.32%、0.82%and1.58%, respectively. Sulfuric radical content, determined by employing the method of gelatin-barium chloride assay, was not detected, respectively.
     3. The structural characterizations of EPS-1and EPS-2were investigated by various methods. The analysis of monosaccharide compositions of EPS-1and EPS-2were carried out by GC. EPS-1was composed of glucose, mannose and galactose with a molar ratio of53.24:10.41:1.00. EPS-2was composed of glucose, mannose and fucose with a molar ratio of3.48:9.61:1.00. Spectra of FTIR implied that there were a-glycosidic bond and pyranose rings in EPS-1and EPS-2. On the base of the results of monosaccharide compositions, FTIR, methylation analysis, GC/MS,1H and13C NMR, it was possible to conclude that the repeated unit of EPS-1contained a backbone composed of1→4-linked-glucose and mannose, which attached to galactose. EPS-2contained a backbone composed of1→4-linked-glucose and branched by1→2,6-linked-mannose, which attached to fucose.
     4. Biosorption of Pb(II) from aqueous solutions by70810EPS was studied with parameters of initial pH, contact time, initial Pb(II) concentration, adsorbent dosage, and temperature, respectively. Maximum adsorption of Pb (II) was observed at pH5,30℃, and contact time6h, respectively. The adsorption capacity was also found to be dependent on initial Pb(II) concentration and adsorbent dosage. The adsorption capacity increased when initial Pb(II) concentration increased from0.1to1000mg/L. The metals uptake increased from25.44to160.62mg/g with70810EPS dosage between0.5and1mg in5mL volume, but decreased as70810EPS dosage further increased. Fourier transform infrared spectroscopy (FT-IR) spectra analysis indicated that some functional groups (e.g.,-OH, COO-, C=O and-NH) of70810EPS were involved in Pb(II) biosorption process.
     5. The inhibition effects of crude EPS, EPS-1and EPS-2on the growth of PC-3cells, HCT-116cells, Hep G2cells and HT-29cells were evaluated in vitro by using Cell Counting Kit-8(CCK-8) method. The results showed that, crude EPS, EPS-1and EPS-2all presented significantly higher antitumor activity against the PC-3cells, HCT-116cells, Hep G2cells and HT-29cells in vitro than blank control groups, and the inhibition ability was dose-dependent and time-dependent. At the concentration of400μg/ml for72h, the inhibition rates of crude EPS, EPS-1and EPS-2against the PC-3cells were93.74%,38.54%and39.40%, respectively. The inhibition rates of crude EPS, EPS-1and EPS-2against the HCT-116cells were57.35%,55.01%and57.48%, respectively. The inhibition rates of crude EPS, EPS-1and EPS-2against the Hep G2cells were96.76%,52.73%and59.76%, respectively. The inhibition rates of crude EPS, EPS-1and EPS-2against the HT-29cells were46.10%,39.78%and57.45%, respectively.
引文
[1]凌代文.乳酸细菌分类鉴定及实验方法[M].北京:中国轻工业出版社,1999
    [2]郭兴华.益生菌基础与应用[M].北京:科学技术出版社,2002
    [3]Lindgre S W, Dobrogosz W J. Antagonistic activities of lactic acid bacteria in food and feed fermentation [J]. FEMS Microbiology Reviews,1990,87:149-164
    [4]姜竹茂主译.酸乳科学与技术[M].北京:中国农业出版社,2003
    [5]胡东良.乳酸菌的抗肿瘤抗变异原及免疫增强作用.中国乳品工业,1997,25(6):12-14
    [6]Yasui H, et al. Immunomodulatory function of lactic bacteria [J]. Antonie van Leeuwenhoek,1999, 76:383-389
    [7]顾笑梅,孔健,王富生等.一株乳酸菌所产胞外多糖对荷瘤小鼠机体免疫功能影响的研究[J].微生物学报,2003,43(2):251-256
    [8]Luc D V, Bart D. Hetetopolysaccharidees from lactic acid bacteria [J]. FEMS Microbiology Reviews, 1999,23:153-177
    [9]Kitazawa H, Yamaguchi T, Itoh T. B-cell mitogenicactivity of slime products produced from slime-forming encapsulated Lactococcus lactis subsp. Cremoris [J]. Journal of Dairy Science,1992, 75:2946-2951
    [10]Petronella J L, Ingeborg C B, Michiel K B, et al. Regulation of exopolysaccharide production by lactococcus lactis subsp. Cremoric by the sugar source [J]. Applied Environment Microbiology, 1999,65:5003-5008
    [11]Ai L Z, Zhang H, Guo B H, et al. Preparation, partial characterization and bioactivity of exopolysaccharides from Lactobacillus casei LC2W [J]. Carbohydrate Polymers,2008,74: 353-357
    [12]Yang Z N, Li S Y, Zhang X, et al. Capsular and slimepolysaccharide production by Lactobacillus rhamnosus JAAS8 isolated from Chinese sauerkraut:potential application in fermented milk products [J]. Journal of Bioscience and Bioengineering,2010,11(1):53-57
    [13]陈若雯.高产胞外多糖乳酸乳杆菌的选育及其发酵条件的优化[D].武汉:华中农业大学,2010
    [14]Andaloussi S A, Talbaoui H, Marczak R, et al. Isolation and characterization of exocellular polysaccharides produced by Bifidobacterium longum[J]. Applied Microbiology Biotechnology, 1995,43:995-1000
    [15]Roberts C M, Fett W F, Osman S F, et al. Exopolysaccharide production by Bifidobacterium longurn 88-79 [J]. Journal of Applied Bacteriology,1995,78:463-468
    [16]Robijn G W, Thomas J R, Haas H, et al. The structure of the exopolysaccharide produced by Lactobacillus helveticus 766[J]. Carbohydrate Research,1995,276:137-154
    [17]Yang Z, Staaf M, Huttunen E, et al. Structure of a viscous exopolysaccharide produced by Lactobacillus helveticus K16 [J]. Carbohydrate Research,2000,329:465-469
    [18]Hosono A, Lee J, Ametani A, et al. Characterization of a water-soluble polysaccharide fraction with immunopotentiating activity from Bifidobacterium adolescentis M101-4[J]. Bioscience, Biotechnology and Biochemistry,1997,61(2):312-316
    [19]Robijn G W, Gallego R G, Van D B D, et al. Structural characterization of the exopolysaccharide produced by Lactobacillus acidophilus LMG9433 [J]. Carbohydrate Research,1996,288:203-218
    [20]Laws A P, Chadha M J, Chacon-Romero M, et al. Determination of the structure and molecular weights of the exopolysaccharide produced by Lactobacillus acidophilus 5e2 when grown on different carbon feeds [J]. Carbohydrate Research,2008,343:301-307
    [21]Harding L P, Marshall V M, Hernadez Y, et al. Structural characterisation of a highly branched exopolysaccharide produced by Lactobacillus delbrueckii subsp. bulgaricus NCFB2074 [J]. Carbohydrate Research,2005,340:1107-1111
    [22]Kitazawa H, Iahii Y, Uemura J, et al. Augmentation of macrophage functions by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus [J]. Food Microbiology, 2000,17:109-118
    [23]Van C W, De Waard P, Dukema C, et al. Structural characterisation and enzymic modification of the exopolysaccharide produced by Lactococcus lactis subsp. cremoris B891[J]. Carbohydrate Research,2000,327:411-422
    [24]Looijesteijn P J, Van Casteren W, Tuiner R, et al. Influence of different substrate limitations on the yield, composition and molecular mass of exopolysaccharides produced by Lactococcus lactis subsp. cremoris in continuous cultures [J]. Journal of Applied Microbiology,2000,89:116-122
    [25]Kleerebezem M, Hola P, Hugenholtz J. Lactic acid bacteria as a cell factory:rerouting of carbon metabolism in Lactococcus lactis by metabolic engineering [J]. Enzyme and Microbial Technology, 2000,26:840-848
    [26]Tuinier R, Van Casteren W, Looijesteijn P J, et al. Effects of structural modifications on some physical characteristics of exopolysaccharides from Lactococcus lactis [J]. Biopolymers,2001,59: 160-166
    [27]Levander F, Svensson M, Radstrom P. Enhanced exopolysaccharide production by metabolic engineering of Streptococcus thermophilus [J]. Applied and Environmental Microbiology,2002, 68(2):784-790
    [28]Vaningelgem F, Zamfir M, Mozzi F, et al. Biodiversity of exopolysaccharides produced by Streptococcus thermophilus strains is reflected in their production and their molecular and functional characteristics [J]. Applied and Environmental Microbiology,2004,70 (2):900-912
    [29]Tallon R, Bressollier P, Urdaci M C. Isolation and characterization of two exopolysaccharides produced by Lactobacillus plantarum EP56[J]. Research in Microbiology,2003,154:705-712
    [30]Desai K M, Akolkar S K, Badhe Y P, et al. Optimization of fermentation media for exopolysaccharide production from Lactobacillus plantarum using artificial intelligence-based techniques [J]. Process Biochemistry,2006,41:1842-1848
    [31]Lipinski T, Jones C, Lemercinier X, et al. Structural analysis of the Lactobacillus rhamnosus strain KL37C exopolysaccharide [J]. Carbohydrate Research,2003,338:605-609
    [32]Macedo M G, Lacroix C, Gardner N J, et al. Effect of Medium supplementation on exopolysaccharide production by Lactobacillus rhamnosus RW-9595M in whey permeate [J]. Internatio Dairy Journal,2002,12:419-426
    [33]Ai L, Zhang H, Guo B, et al. Preparation, partial characterization and bioactivity of exopolysaccharides from Lactobacillus casei LC2W[J]. Carbohydrate Polymers,2008,74:353-357
    [34]Maeda H, Zhu X, Suzuki S, et al. Structural characterization and biological activities of an exopolysaccharide Kefiran produced by Lactobacillus kefiranofaciens WT-2BT [J]. Journal of Agricultural and Food Chemistry,2004,52:5533-5538
    [35]Wang Y, Ahmed Z, Feng W, et al. Physicochemical properties of exopolysaccharide produced by Lactobacillus kefiranofaciens ZW3 isolated from Tibet kefir [J]. International Journal of Biological Macromolecules,2008,43:283-288
    [36]Vijayedra S V N, Palanivel G, Mahadevamma S, et al. Physico-chemical characterization of an exopolysaccharide produced by a non-ropy strain of Leuconostoc sp. CFR 2181 isolated from dahi, an indian traditional lactic fermented milk product[J]. Carbohydrate Polymers,2008,72:300-307
    [37]Montersino S, Prieto A, Munoz R, et al. Evaluation of exopolysaccharide production by Leuconostoc mesenteroides strains isolated from wine[J]. Journal of Food Science,2008,73: 196-199
    [38]陈晓红.乳酸菌胞外多糖的生物合成及其组成和体外抑瘤活性研究[D].南京:南京农业大学,2003
    [39]Kojima M, Hosoda H, Date Y, et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach [J]. Nature,1999,402:656-660
    [40]Tsehop M, Smiley N, Date Y, et al. Ghrelin in induces adiposity in rodents [J]. Nature 2000,407: 194-198
    [41]Funane K, Ishii T, Matsushita M, et al. Water-soluble and water-insoluble glucans produced by Escherichia coli recombinant dextransucrases from Leuconostoc mesenteroides NRRL B-512F [J]. Carbohydrate Research,2001,334:19-25
    [42]Duefias-Chasco M T, Rodriguez-Carvajal M A, Mateo P T, et al. Structural analysis of the exopolysaccharide produced by Pediococcus damnosus 2.6[J]. Carbohydrate Research,1997,303: 453-458
    [43]Ebisu S, Kato K, Kotani S, et al. Structural differences in fructans elaborated by Streptococcus mutans and Streptococcus salivarius [J]. Journal of Biochemistry,1975,78:879-887
    [44]Gruter M, Leeflang B R, Kuiper J, et al. Structure of the exopolysaccharide produced by Lactococcus lactis subsp. cremoris H414 grown in a defined medium or skimmed milk[J]. Carbohydrate Research,1992,231:273-291
    [45]De Vuyst L, Degeest B. Heteropolysaccharides from lactic acid bacteria[J]. FEMS Microbiology Reviews,1999,23:153-177
    [46]戴大海.植物乳杆菌C88胞外多糖的结构分析及生物合成基因的克隆[D].哈尔滨:东北师范大学,2010
    [47]Weiner R, Langille, S, Qniniero, E. Structure, faction and immunochemistry of bacterial exopolysaccharides [J]. Industry Microbiology,1995,15,339-346
    [48]Postma P, Lengeler J, Jacobson G. Phosphoenolpyruvate:carbohydrate hosphotransferase systems of bacteria [J]. Microbiology Reviews,1993,57:543-594
    [49]Degeest B, de Vuyst L. Correlation of activities of the enzymes a-phosphoglucomutase, UDP-galactose 4-epimerase and UDP-glucose pyrophosphorylase with expolysaccharid biosynthesis by Streptococcus thermophilus LY03 [J]. Applied Environment Microbiology,2000, 66:3519-3527
    [50]Kleerebezem M, van Kranenburg R, Tuinier R, et al. Exopolysaccharides produced by Lactococcus lactis:from genetic engineering to improved rheological properties [J]. Antonie Van Leeuwenhoek, 1999,76:357-365
    [51]Cerning J, Bouillanne C, Landon M, et al. Isolation and characterization of exopolysaceharides from slime-forming mesophilic lactic acid bacteria [J]. Journal of Dairy Science,1992,75:692-699
    [52]Kimmel S A, Roberts R F, Ziegler G R. Optimization of exopolysaccharides production by L.delbrueckii subsp.Bulgaricus RR grown in a semidefined medium[J]. Journal of Applied and Environmental Microbiology,1998, (64):659-664
    [53]Patricia R M, Jeroen H, Pieternela Z. An overview of the functionality of exopolysaccharides produced by lactic acidbacteria[J]. International Dairy Journal,2002,12:163-171
    [54]艾连中.干酪乳杆菌LC2W胞外多糖制备、功能及结构的研究[D].无锡:江南大学,2007
    [55]Hugenhotz J, Kleerebeezem M. Metabic engineering of lactic acid bacteria:overview of the approaches and results of pathway rerouting involved in food infermentation [J]. Current Opinion in Biotechnology,1999,10:492-497
    [56]Gassem M A, Sellinidtand K A, Frank J F. Exopolysaecharide production in different media by lacteric acid bacteria [J].1995,30(3):18-21
    [57]Gancel F, Novel G Exoplysaecharide production by streptococcus salivarius ssp. Thermophilus cultures condition of production [J]. Journal of Dairy Science,1994,77:685-688
    [58]Grobben G J, Smith M R, Sikkema J, et al. Influence of fructose and glucose on the production of exopolysaccharides and the activities of enzymes involved in the sugar metabolism and the synthesis of sugar nucleotides in Lactococcus delbruckii subsp. bulgaricus NCFB 2772 [J]. Applied Microbiology and Biotechnology,1996,46,279-284
    [59]Petry S, Furlan S, Crepeau M J, et al. Factors affecting exocellular polysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus grown in a chemically defined medium [J]. Applied and Environmental Microbiology,2000,66,3427-3431
    [60]Degeest B, De Vuyst L. Correlation of activities of the enzymes-phosphoglucomutase, UDP-galactose 4-epi-merase, and UDP-glucose pyrophosphorylase with exopolysaccharide biosynthesis by Streptococcus thermophilus LY03 [J]. Applied and Environmental Microbiology, 2000,66,3519-3527
    [61]Escalante A, Wacher-Rodarte C, Garcia-Garibay M, et al. Enzymes involved in carbohydrate metabolism and their role on exopolysaccharide production in Streptococcus thermophilus [J]. Journal of Applied Microbiology,1998,84,108-114
    [62]Zisu B, Shah N P. Effects of pH, temperature, supplementation with whey protein concentrate and adjunct cultures on the production of exopolysaccharides by streptococcus thermophilus 1275 [J]. Journal of Dairy Science,2003,86:3405-3415
    [63]Mozzi F, de Giori G S, Oliver G, et al. Exopolysaccharide production by Lactobacillus casei. I. Influence of salts [J]. Milchwissenschaft,1995,50,186-188
    [64]Grobben G J, Boels I C, Sikkema J, et al. Influence of ions on growth and production of exopolysaccharides by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772 [J]. Journal of Dairy Research,2000,67,131-135
    [65]van den Begr D J C, Robjin G W, Janssen A C, et al. Production of a novel extracellular Polysaccharide by Lactobacillus sake 0-1 and characterization of the Polysaccharide[J]. Applied Environment Microbiology,1995,61:2840-2844
    [66]Kimmel S A, Roberts R F, Ziegler G R. Optimization of exopolysaccharide production by Lactobaccillus delbrueckii subsp. Bulgaricus, RR grown in a semidefined medium [J]. Applied Environment Microbiology,1998,64:659-664
    [67]Gassem M A, Sellinidtand K A, Frank J F. Exopolysaecharide production from whey lactose by fermentation with Laetobacillus delbrueckii spp.Bulgaricus[J]. Food science,1997,62:171-173
    [68]Morin A. Screening of polysaccharide-producing microorganisms, factors influencing the production and recovery of microbial polysaccharides [M]. In:Polysaccharides-structural diversity and functional versatility. Dumitriu S (Ed.), Marcel Dekker Inc. Publication, New York,1998, pp. 275-296
    [69]Sutherland I W. Biotechnology of microbial exopolysaccharides [M]. In:Cambridge Studies in Biotechnology 9. Cambridge University Press, Cambridge,1990, pp.1-163
    [70]刘丽波,李春,孟祥晨,等.乳酸杆菌胞外多糖高纯度提取工艺的优化[J].食品工业科技,2009,3:182-184
    [71]Yang L, Zhang L M. Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources [J]. Carbohydrate Polymers,2009,76: 349-361
    [72]Yu R, Yin Y, Yang W, et al. Structural elucidation and biological activity of a novel polysaccharide by alkaline extraction from cultured Cordyceps militaris [J]. Carbohydrate Polymers,2009,75: 166-171
    [73]Wu S, Jin Z, Kim J, et al. Downstream processing of pullulan from fermentation broth [J]. Carbohydrate Polymers,2009,77:750-753
    [74]Crini G Non-conventional low-cost adsorbents for dye removal:A review [J]. Bioresource Technology,2006,97:1061-1085
    [75]付学鹏,杨晓杰.植物多糖脱色技术的研究[J].食品研究与开发,2007,28:166--169
    [76]谢红旗,周春山.香菇多糖脱色工艺研究[J].离子交换与吸附,2007,23:158--165
    [77]李丹丹,金征宇.牛蒡菊糖脱色工艺的研究[J].农业工程学报,2007,23:241-244
    [78]夏玮,吕庆,张文清,等.大孔吸附树脂脱色桑叶多糖的研究[J].食品与发酵工业,2007,33:141-144
    [79]李瑞军,李德耀,张现峰,等.大孔吸附树脂法去除淫羊藿多糖中蛋白的研究[J].高等学校化学学报,2006,27:67-70
    [80]张惟杰.糖复合物生化研究技术[M].杭州:浙江大学出版社,1999,1-260
    [81]赵玉臣,王迎俊,王忠凤.乳酸菌胞外多糖[J].中国乳业,2003,4:32-35
    [82]马静,裴家伟,吴荣荣等.影响影响乳酸菌胞外多糖产量的因素研究[J].中国乳业,2003,31(5):12-16
    [83]周鹏,谢明勇,傅博强.多糖的结构研究[J].南昌大学学报(理科版),2001,25:197-204
    [84]方积年.多糖体的结构分析[M].国外医学.药学分册,1981,4,222-228.
    [85]Ali T, Weintraub A, Widmalm, G. Structural studies of the O-antigenic polysaccharides from the enteroaggregative Escherichia coli strain 87/D2 and international type strains from E. coli 0128 [J]. Carbohydrate Research,2008,343(4):695-702
    [86]Ghosh K, Chandra K, Roy S K, et al. Structural investigation of a polysaccharide (Fr. I) isolated from the aqueous extract of an edible mushroom, Volvariella diplasia [J]. Carbohydrate Research, 2008,343(6):1071-1078
    [87]Leone S, Lanzetta R, Scognamiglio R, et al. The structure of the O-specific polysaccharide from the lipopolysaccharide of Pseudomonas sp. OX1 cultivated in the presence of the azo dye Orange II [J]. Carbohydrate Research,2008,343(4):674-684
    [88]Li S, Wang D, Tian W, et al. Characterization and anti-tumor activity of a polysaccharide from Hedysarum polybotrys Hand.-Mazz [J]. Carbohydrate Polymers,2008,73(2):344-350
    [89]Liu C, Li X, Li Y, et al. Structural characterisation and antimutagenic activity of a novel polysaccharide isolated from Sepiella maindroni ink [J]. Food Chemistry,2008,110(4):807-813
    [90]Mondal S, Chandra K, Maiti D, et al. Chemical analysis of a new fucoglucan isolated from an edible mushroom, Termitomyces robustus [J]. Carbohydrate Research,2008,343(6):1062-1070
    [91]Ojha A K, Maiti D, Chandra K, et al. Structural assignment of a heteropolysaccharide isolated from the gum of Cochlospermum religiosum (Katira gum) [J]. Carbohydrate Research,2008,343(7): 1222-1231
    [92]Rout D, Mondal S, Chakraborty I, et al. The structure and conformation of a water-insoluble (1-->3)-,(1-->6)-β-D-glucan from the fruiting bodies of Pleurotus florida [J]. Carbohydrate Research,2008,343(5):982-987
    [93]Serrato R V, Sassaki G L, Gorin P A J, et al. Structural characterization of an acidic exoheteropolysaccharide produced by the nitrogen-fixing bacterium Burkholderia tropica [J]. Carbohydrate Polymers,2008,73(4):564-572
    [94]霍光华,李来生,高荫榆.波谱在多糖结构分析上的应用[J].生命的化学,2002,22:194-196
    [95]夏尔宁.多糖的结构分析[J].中国生化药物杂志,1985,4:28-33
    [96]Wack M, Blaschek W. Determination of the structure and degree of polymerisation of fructans from Echinacea purpurea roots [J]. Carbohydrate Research,2006,341:1147-1153
    [97]Arifkhodzhaev A O. Galactans and galactan-containing polysaccharides of Higher Plants[J].Chemistry Nature Compd,2000,36(3):229-244
    [98]Duus J, Gotfredsen C H, Bock K, et al. Carbohydrate structural determination by NMR spectroscopy:Modern methods and limitations [J]. Chemical Review,2000,100:4589-4614
    [99]Adeyeye J, Azurmendi H F, Stroop J M, et al. Conformation of the hexasaccharide repeating subunit from the Vibrio cholerae 0139 capsular polysaccharide [J]. Biochemistry,2003,42: 3979-3988
    [100]Niedziela T, Dag S, Lukasiewicz J, et al. Complete lipopolysaccharide of Plesiomonas shigelloides O74:H5 (strain CNCTC 144/92).1. Structural analysis of the highly hydrophobic lipopolysaccharide, including the O-Antigen, Its biological repeating unit, the core oligosaccharide, and the linkage between them [J]. Biochemistry,2006,45:10422-10433
    [101]Yongye A B, Gonzalez-Outeirino J, Glushka J, et al. The vonformational properties of methyl R-(2,8)-di/trisialosides and their N-acyl analogues:Implications for anti-neisseria meningitidis B vaccine design [J]. Biochemistry,2008,47:12493-12514
    [102]Raju S, Kelmani R C, Patil S A. High-Level oxacillin and gentamycin resistance with reduced susceptibility to vancomycin in Staphylococcus aureus-carrying mecA and femA gene complex [J]. Current Microbiology Vol,2007,54:429-434
    [103]Kitazawa H, Yamaguchi T, Fujimoto Y, et al. Comparative activity of B-cell mitogen, a phosphopolysaccharide, produced by L.lactis ssp. cremoris on various lymphocytes [J]. Animal Science and Technology,1993,64:605-607
    [104]Kitazawa H, Ishii Y, Uemura J, et al. Augmentation of macrophage functions by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp.bulgaricus. Food Microbiology,2000, 17:109-111
    [105]许启泰,张瑜,杜钢军等.嗜酸乳杆菌胞外多糖对小鼠免疫功能的影响[J].中国药理学通报,2004,20(12):1401-1403
    [106]Borchers A T, Keen C L, Gershwin M E. Mushrooms, tumors, and immunity:an update [J]. Experimental Biology and Medicine (Maywood),2004,229:393-406
    [107]杨焱.桑黄多糖的分离纯化、结构鉴定和生物活性的研究[D].无锡:江南大学,2007
    [108]Shiomi M, Sasaki K, Murofusi M, et al. Anti-tumor activity in mice of orally administered polysaccharide from kefir grain [J]. Japanese Journal of medical science and Biology,1982,35: 75-80
    [109]Oda M, Hasegawa H, Komatsu S, et al. Anti-tumor polysaccharide from Lactobacillu ssp[J]. Agricultural and Biological Chemistry,1983,47:1623-1625
    [110]Ebina T,Ogama N, Murata K.Antitumor effect of Lactobacillus bulgaricus 878R. Biotherapy,1995, 9:65-70
    [111]Yoshiaki F, Youichi S, Ko-ichi O. Selective tumoricidal effect of soluble Proteoglucan extracted from the basidiomycete, Agaricus blazei Murill, mediated via natural killer cell activation and apoptosis[J].Cancer Immunol Immunother,1998,46:147-159
    [112]Yoshiaki F. Tumor-SPPecific cytocidal and immunopotentiating effects of relatively low molecular weight products derived from the Basidiomycete, Agaricus blazei Murill [J]. Anticancer Research, 1999,19:113-118
    [113]Skiver A H, Roemerand K B Q. Reologieal charaeterization of stirred yoghurt [J]. Viscometry journal Texture Study,1993,24:185-198
    [114]Hassan A N, Psen R I, Janzen T, et al. Microstruture and Rheology of yoghurt made with cultures differing only in their ability to Produce exopolysaceharides[J]. Journal of Dairy Science,2003,86: 1632-1638
    [115]Faber.E.J, et al. The exopolysaccharides produced by streptococcus Thermophilus Rs have the same repeating unit but differ in viseosity of their rmilk cultures.Carbohydrate Research,1998,310: 269-276
    [116]Van den berg, et al. production of a novel extracellular polysaceharide by Lactobacillus sake 0-1 and characterization of the Polysaccharide.Applied and Environmental Mierobiology,1995,61: 2840-2844
    [1]Lindgre S W, Dobrogosz W J. Antagonistic activities of lactic acid bacteria in food and feed fermentation [J]. FEMS Microbial Rev,1990,87:149-164
    [2]Ai L Z, Zhang H, Guo B H, et al. Preparation, partial characterization and bioactivity of exopolysaccharides from Lactobacillus casei LC2W [J]. Carbohydrate Polymers,2008,74: 353-357
    [3]Yang Z N, Li S Y, Zhang X, et al. Capsular and slimepolysaccharide production by Lactobacillus rhamnosus JAAS8 isolated from Chinese sauerkraut:potential application in fermented milk products [J]. Journal of Bioscience and Bioengineering,2010,11(1):53-57
    [4]Ruas-madiedo P, Hugenholtz J, Zoon P. An overview of the functionality of exopolysaccharides produced by lactic acid bacteria [J]. International Dairy Journal,2002,12(2/3):163-171
    [5]Ruas-madiedo P, Alting A C, Zoon P. Effect of exopolysaccharides and proteolytic activity of Lactococcus lactis subsp. cremoris strains on the viscosity and structure of fermented milks [J]. International Dairy Journal,2005,15:155-164
    [6]Kanmani P, Satish K R, Yuvaraj N, et al. Production and purification of a novel exoploysaccharide from lactic acid bacterium Streptococcus phocae P180 and its functional characteristics activity in vitro[J]. Bioresource Technology,2011,102:4827-4833
    [7]Doleyres Y, Schaub L, Lacroix C. Comparison of the functionality of exopolysaccharides produced in situ or added as bioingredients on yogurt properties [J]. Journal of Dairy Science,2005,88: 4146-4156
    [8]Pan D D, Mei X M. Antioxidant activity of an exopolysaccharide purified from Lactococcus lactis subsp. lactis 12[J]. Carbohydrate Polymers,2010,80:908-914
    [9]Badel S, Bernardi T, Michaud P. New perspectives for Lactobacilli exopolysaccharides [J]. Biotechnology Advances,2011,29:54-66
    [10]Desai K M, Akolkar S K, Badhe Y P, et al. Optimization of fermentationmedia for exopolysaccharide production from Lactobacillus plantarum using artificial intelligence-based techniques[J]. Process Biochemistry,2006,41:1842-1848
    [11]Mostafa H, Daba A, El-mezawy A. Screening of potential lactobacilli protein-bound exopolysaccharides [J]. Deutsche Lebensmittel-Rundschau,2006,102:62-66
    [12]Wang Y P, Li C, Liu P, et al. Physical characterization of exopolysaccharide produced by Lactobacillus plantarum KF5 isolated from Tibet Kefir [J]. Carbohydrate Polymers,2010,82: 895-903
    [13]陈晓红.乳酸菌胞外多糖的生物合成及其组成和体外抑瘤活性研究[D].南京:南京农业大学,2003:11-14
    [14]杨贞耐,Eine H.乳酸菌分泌胞外多糖的生物学基础和多糖分子结构修饰[C].第三届中国乳业科技大会论文集,2006,95-100
    [15]李盛钰,曾宪鹏,杨贞耐.提高乳酸菌胞外多糖产量的途径[J].食品与生物技术学报,2008,28(3):289-293
    [16]Welman A D, Maddox I S. Exopolysaccharides from lactic acid bacteria:perspectives and challenges[J]. Trends in Biotechnology,2003,21(6):269-274
    [17]Degeest B, de Vuyst L. Indication that the nitrogen source Influences both amount and size of exopolysaccharides produced by streptococcus thermophilus LY03 and modelling of the bacterial growth and exopolysaccharide production in a complex medium[J]. Applied and Environmental Microbiology,1999,65(7):2863-2870
    [18]Vinderola C G, Reinheimer J A. Culture media for the enumeration of Bixdobacterium bixdum and Lactobacillus acidophilus in the presence of yoghurt bacteria[J]. International Dairy Journal, 1999(9):497-505
    [19]Cerning J, Renard C M G, Thibault J E, et al. Carbon source requirements for exopolysaccharide production by Lacto-bacillus casei CG11 and partial structure analysis of the polymer[J]. Applied and Environmental Microbiology,1994,60(11):3914-3919
    [20]Zisu B, Shah N P. Effects of pH, temperature, supplementation with whey protein concentrate, and adjunct cultures on the production of exopolysaccharides by Streptococcus thermophilus 1275[J]. Journal of Dairy Science,2003,86(11):3405-3415
    [21]Degeest B, Mozzi F, de Vuyst L. Effect of medium composition and temperature and pH changes on exopolysaccharide yields and stability during Streptococcus thermophilus LY03 fermentations[J]. International Journal of Food Microbiology,2002,79(3):161-174
    [22]Vaningelgem F, Zamfir M, Adriany T, et al. Fermentation conditions affecting the bacterial growth and exopolysaccharide production by Streptococcus thermophilus ST 111 in milk-based medium[J]. Journal of Applied Microbiology,2004,97(6):1257-1273
    [23]Lin T Y, Chang Chien M F. Exopolysaccharides production as affected by lactic acid bacteria and fermentation time[J]. Food Chemistry,2007,100(4):1419-1423
    [24]Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric methods for determination of sugars and related substances [J]. Analytical Chemistry,1956,28:350-356
    [25]Torino M I, Taranto M P, Sesma F, et al. Heterofermentative pattern and exopolysaccharide production by Lactobacillus helveticus ATCC 15807 in response to environmental pH[J]. Journal of Applied Mmicrobiology,2001,91:846-852
    [26]杨冀艳,胡磊,许杨.Plackett-Burman设计和响应面法优化荷叶总黄酮的提取工艺[J].食品科学,2009,30(6):29-33
    [27]吕思伊,刘齐,黄行健,等.嗜酸乳杆菌胞外多糖发酵条件的优化[J].食品科学,2009,30(19):255-258
    [28]Wu Q L, Chen T, Chen X, et al. Optimization of nboflavin production by recombinant Bacilus subtilis RH44 using statistical design[J]. Applied Microbiology and Biotechnology,2007,76(4): 783-794
    [29]Mozzi F, Rollan G, Savoy G de Diori, et al. Effect of galactose and glucose on the exopolysaccharide production and the activities of biosynthetic enzymes in Lactobacillus casei CRL 87[J]. Journal of Applied Microbiology,2001,91:160-167
    [30]De Vuyst L, Vanderveken F, Van de Ven S, et al. Production by and isolation of exopolysaccharide from Streptococcus thermophilus grown in a milk medium and evidence of their growth-associated biosynthesis[J]. Journal of Applied Microbiology,1998,84:1059-1068
    [31]Kimmel S A, Roberts R F, Ziegler G R. Optimization of exopolysaccharide production by Lactobaccillus delbrueckii subsp. bulgaricus, RR grown in a semidefined medium[J]. Applied Environment Microbiology,1998,64:659-664
    [32]van den Begr D J C, Robjin G W, Janssen A C, et al. Production of a novel extracellular Polysaccharide by Lactobacillus sake 0-1 and characterization of the Polysaccharide[J]. Applied Environment Microbiology,1995,61:2840-2844
    [33]Jolly L, Stingele. Molecular organization and functionality of exopolysaccharide gene clusters in lactic acid bacteria. Int.Dairy[J]. Current Opinion in Biotechnology,2001,11:733-746
    [34]Cheirrsilp B, Shimizu H, Shioya S. Modelling and optimisation of environmental conditions for kefiran production by Lactobacillus kefiranofaciens[J]. Applied Microbiology and Biotechnology, 2001,57:639-646
    [35]Gassem M A, Sellinidtand K A, Frank J F. Exopolysaecharide production from whey lactose by fermentation with Laetobacillus delbrueckii spp.Bulgaricus[J]. Food science,1997,62:171-173
    [36]Gancel F, Novel G Exoplysaecharide production by streptococcus salivarius ssp. Thermophilus cultures condition of production[J]. Journal of Dairy Science,1994,77:685-688
    [37]贺小贤.生物工艺原理[M].北京:化学工业出版社,2003:168-171
    [38]Salvador A, Fiszman S M. Textural and sensory characteristics of whole and skimmed flavored set-type yogurt during long storage[J]. Journal of Dairy Science,2004,87(12):4033-4041
    [39]田丰伟,丁虎生,丁纳,等.产胞外多糖的乳酸菌的简便筛选与鉴定[J].食品与发酵工业,2008,34(3):15-19
    [40]Muyanja C M B K, Narvhus J A, Treimo J, et al. Isolation, characterisation and identification of lactic acid bacteria from bushera:a Ugandan traditional fermented beverage [J]. International Journal of Food Microbiology,2003,80:201-210
    [41]郭亮,谭强来,万翠香,等.Viili中乳酸菌的分离、鉴定及其产胞外多糖的初步研究[J].食品科学,2009,30,(19):263-267
    [42]Hensiek R, Krupp G, Stackebrandt E. Development of diagnostic oligonucleotide probes for four Lactobacillus species occurring in the intestinal tract [J]. Syst. Appl. Bacteriol.,1992,15:123-128
    [43]Qing Q Y, Qiu H Z. Isolation and Identification of the Dominant Lactobacillus in Gut and Faeces of Pigs Using Carbohydrate Fermentation and 16S rDNA Analysis [J]. Journal of Food Engineering, 2003,56:195-200
    [44]Cerning J, Marshall V M. ExoPolysaeeharides produced by the dairy lactic acid bacteria [J].Recent Research Development in Microbiology,1999,3:195-209
    [45]Ricciardi A, Clementi F. Exopolysaeeharides from lactic acid bacteria:Strueture, production and technological applications [J]. Italian Journal of Food Science,2000,12:23-45
    [46]Catley B J. Utilization of carbon sources by Pullularia pulluians for the elaboration of extracellular polysaccharides[J]. Applied Microbiology,1971,22,641-649
    [47]Wu J Z, Cheung P C K, Wong K H, et al. Studies on submerged fermentation of Pleurotus tuber-regium (Fr.) Singer. Part 2. Effect of carbonto-nitrogen ration of the culture medium on the content and composition of the mycelial dietary fibre[J]. Food Chemistry,2004,85:101-105
    [48]Desai K M, Akolkar S K, Badhe Y P, et al. Optimization of fermentation media for exopolysaecharide production from Lactobaeillus Plantarum using artificial inielligenee-based teehlliques[J]. Process Biochemistry,2006,41:1842-1848
    [1]刘丽波,李春,孟祥晨,等.乳酸杆菌胞外多糖高纯度提取工艺的优化[J].食品工业科技,2009,3:182-184
    [2]罗玲泉.酸乳胞外多糖提取及高产胞外多糖发酵剂研究[D].长沙:湖南农业大学,2007:8-24
    [3]陈晓红.乳酸菌胞外多糖的生物合成及其组成和体外抑瘤活性研究[D].南京:南京农业大学,2003
    [4]李静.一株多糖高产菌株的研究与应用[D].贵阳:贵州大学,2006:37-43
    [5]Staub A M. Removal of protein-Sevag method [J]. Methods in Carbohydrate Chemistry,1965,5:5-6
    [6]Wang X, Yuan Y, Wang K. Deproteinization of gellan gum produced by Sphingomonas paucimobilis ATCC 31461 [J]. Journal of Biotechnology,2007,128:403-407
    [7]Ye H, Wang K, Zhou C, et al. Purification, antitumor and antioxidant activities in vitro of polysaccharides from the brown seaweed Sargassum pallidum [J]. Food Chemistry,2008,111: 428-432
    [8]Yang L, Zhang L M. Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources [J]. Carbohydrate Polymers,2009,76: 349-361
    [9]Yu R, Yin Y, Yang W, et al. Structural elucidation and biological activity of a novel polysaccharide by alkaline extraction from cultured Cordyceps militaris [J]. Carbohydrate Polymers,2009,75: 166-171
    [10]Wu S, Jin Z, Kim J, et al. Downstream processing of pullulan from fermentation broth [J]. Carbohydrate Polymers,2009,77:750-753
    [11]Crini G. Non-conventional low-cost adsorbents for dye removal:A review [J]. Bioresource Technology,2006,97:1061-1085
    [12]付学鹏,杨晓杰.植物多糖脱色技术的研究[J].食品研究与开发,2007,28:166-169
    [13]谢红旗,周春山.香菇多糖脱色工艺研究[J].离子交换与吸附,2007,23:158-165
    [14]李丹丹,金征宇.牛蒡菊糖脱色工艺的研究[J].农业工程学报,2007,23:241-244
    [15]夏玮,吕庆,张文清,等.大孔吸附树脂脱色桑叶多糖的研究[J].食品与发酵工业,2007,33:141-144
    [16]李瑞军,李德耀,张现峰,等.大孔吸附树脂法去除淫羊藿多糖中蛋白的研究[J].高等学校化学学报,2006,27:67-70
    [17]赵亚萍.生物化学实验技术教程[M].华南理工大学,2000
    [18]Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric methods for determination of sugars and related substances [J]. Analytical Chemistry,1956,28:350-356
    [19]Torino M I, Taranto M P, Sesma F, et al. Heterofermentative pattern and exopolysaccharide production by Lactobacillus helveticus ATCC 15807 in response to environmental pH[J]. Journal of Applied Mmicrobiology,2001,91:846-852
    [20]Qiao D, Hu B, Gan D, et al. Extraction optimized by using response surface methodology, purification and preliminary characterization of polysaccharides from Hyriopsis cumingii [J]. Carbohydrate Polymers,2009,76:422-429
    [21]Liu J, Luo J, Ye H, et al. Production, characterization and antioxidant activities in vitro of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3 [J]. Carbohydrate Polymers,2009,78:275-281
    [22]Blumenkrantz M, Asboe-Hansen G. New method for quantitative determination of uronic acids[J]. Analytical Biochemistry,1973,54:484-489
    [23]Kawai Y, Seno N, Anno K. A modified method for chondrosulfatase assay [J]. Analytical Biochemistry,1969,32:314-321
    [24]万琴,萧伟,王振中,等.女贞子多糖除蛋白工艺的研究[J].中草药,2010,41(3):407-410
    [25]梅秀明,潘道东.乳酸菌胞外多糖的纯化及对小鼠血清和肝组织抗氧化性的影响[J].食品科学,2009,30(7):220-224
    [26]李丹丹,金征宇.牛蒡菊糖脱色工艺的研究[J].农业工程学报,2007,23(8):241-244
    [27]谢红旗,周春山.香菇多糖脱色工艺研究[J].离子交换与吸附,2007,23(2):158-65
    [28]易阳,张名位,廖森泰,等.龙眼多糖树脂脱色工艺优化[J].农业机械学报,2010,41(8):146-150
    [29]袁红波,张劲松,贾薇,等.利用大孔树脂对低分子量灵芝多糖脱色的研究[J].食品工业科技,2009,30(3):204-206
    [30]Liu J, Luo J G, Sun Y, et al. A simple method for the simultaneous decoloration and deproteinization of crude levan extract from Paenibacillus polymyxa EJS-3 by macroporous resin[J]. Bioresource Technology,2010,101:6077-6083
    [31]Fu Y J, Zu Y G, Liu W, et al. Optimization of luteolin separation from pigeonpea [Cajanus cajan (L.) Millsp.] leaves by macroporous resins[J]. Journal of Chromatography A,2006,1137:145-152
    [32]王鹏.新型胞外多糖产生菌Phyllobacterium sp.nov.921F及其多糖结构的研究[D].青岛:中国海洋大学,2008:76-79
    [33]张准杰.糖复合物生化研究技术[M].杭州:浙江大学出版社,1999:93-126
    [34]Yu R, Wang L, Zhang H, et al. Isolation, purification and identification of polysaccharides from cultured Cordyceps militaris [J]. Fitoterapia,2004,75(7-8):662-666
    [1]Yang L, Zhang L M. Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources [J]. Carbohydrate Polymers,2009,76: 349-361
    [2]周鹏,谢明勇,傅博强.多糖的结构研究[J].南昌大学学报(理科版),2001,25:197-204
    [3]张惟杰.糖复合物生化研究技术[M].杭州:浙江大学出版社,1999,93-126.
    [4]方积年.多糖体的结构分析[M].国外医学.药学分册,1981,4,222-228.
    [5]Ali T, Weintraub A, Widmalm, G. Structural studies of the O-antigenic polysaccharides from the enteroaggregative Escherichia coli strain 87/D2 and international type strains from E. coli O128 [J]. Carbohydrate Research,2008,343(4):695-702
    [6]Ghosh K, Chandra K, Roy S K, et al. Structural investigation of a polysaccharide (Fr. Ⅰ) isolated from the aqueous extract of an edible mushroom, Volvariella diplasia [J]. Carbohydrate Research,2008, 343(6):1071-1078
    [7]Leone S, Lanzetta R, Scognamiglio R, et al. The structure of the O-specific polysaccharide from the lipopolysaccharide of Pseudomonas sp. OX1 cultivated in the presence of the azo dye Orange Ⅱ[J]. Carbohydrate Research,2008,343(4):674-684
    [8]Li S, Wang D, Tian W, et al. Characterization and anti-tumor activity of a polysaccharide from Hedysarum polybotrys Hand.-Mazz [J]. Carbohydrate Polymers,2008,73(2):344-350
    [9]Liu C, Li X, Li Y, et al. Structural characterisation and antimutagenic activity of a novel polysaccharide isolated from Sepiella maindroni ink [J]. Food Chemistry,2008,110(4):807-813
    [10]Mondal S, Chandra K, Maiti D, et al. Chemical analysis of a new fucoglucan isolated from an edible mushroom, Termitomyces robustus [J]. Carbohydrate Research,2008,343(6):1062-1070
    [11]Ojha A K, Maiti D, Chandra K, et al. Structural assignment of a heteropolysaccharide isolated from the gum of Cochlospermum religiosum (Katira gum) [J]. Carbohydrate Research,2008,343(7): 1222-1231
    [12]Rout D, Mondal S, Chakraborty I, et al. The structure and conformation of a water-insoluble (1->3)-,(1->6)-β-D-glucan from the fruiting bodies of Pleurotus florida [J]. Carbohydrate Research,2008,343(5):982-987
    [13]Serrato R V, Sassaki G L, Gorin P A J, et al. Structural characterization of an acidic exoheteropolysaccharide produced by the nitrogen-fixing bacterium Burkholderia tropica [J]. Carbohydrate Polymers,2008,73(4):564-572
    [14]Wack M, Blaschek W. Determination of the structure and degree of polymerisation of fructans from Echinacea purpurea roots [J]. Carbohydrate Research,2006,341:1147-1153
    [15]Wu Y, Cui S W, Tang J, et al. Preparation, partial characterization and bioactivity of water-soluble polysaccharides from boat-fruited sterculia seeds [J]. Carbohydrate Polymers,2007,70:437-443
    [16]Liu L, Dong Q, Dong X, et al. Structural investigation of two neutral polysaccharides isolated from rhizome of Polygonatum sibiricum [J]. Carbohydrate Polymers,2007,70:304-309
    [17]Hineno M. Infrared spectra and normal vibration of β-D-glucopyranose [J]. Carbohydrate Research, 1997,56:219-227
    [18]Lim J M, Joo J H, Kim H O, et al. Structural analysis and molecular characterization of exopolysaccharides produced by submerged mycelial culture of Collybia maculata TG-1 [J]. Carbohydrate Polymers,2005,61:296-303
    [19]Ciucanu I, Kerek F. A simple and rapid method for the permethylation of carbohydrates [J]. Carbohydrate Research,1984,131(2),209-217
    [20]方积年.多糖的甲基化分析方法[M].国外医学(药学分册),1986,(4):222-226
    [21]Arifkhodzhaev A O. Galactans and galactan-containing polysaccharides of Higher Plants[J].Chemistry Nature Compd,2000,36(3):229-244
    [22]李波,陈海华,许时婴.二维核磁共振谱在多糖结构研究中的应用[J].天然产物研究与开发,2005,17:523-526
    [23]Busmarinov I S, Ovehinnikova O G, Kocharova N A, et al. Structure of the 0-polysaccharide of rovidencia stuartii 049 [J]. Carbohydrate Research,2004,339:1557-1560
    [24]Luc D V, Filip D V F V. Recent deveploments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria [J]. International Dairy journal,2001,11:687-707
    [25]Tallon R, Bressollier P, Urdaci M C. Isolation and characterization of two exopolysaccharides produced by Lactobacillus plantarum EP56[J]. Research Microbiology,2003,154:705-712
    [26]Miyazaki T, Oikawa N, Yamada H, et al. Structural exanunation of antitumour, watersoluble glucans from Grifora umbellate by use of four types of glucanase[J]. Carbohydrate Research,1978,65: 235-243
    [27]Laws A P, Marshall V M. The relevance of exopolysaccharides to the rheological properties in milk fermented with ropy strains of lactic acid bacteria [J]. International Dairy Journal,2001,11: 709-721
    [1]Lalhruaitluanga H, Jayaram K, Prasad M N V, et al. Lead (II) adsorption from aqueous solutions by raw and activated charcoals of Melocanna baccifera Roxburgh (bamboo)-A comparative study [J]. Journal of Hazardous Materials,2010,175:311-318
    [2]Falq G, Zeghnoun A, Pascal M, et al. Blood lead levels in the adult population living in France the French Nutrition and Health Survey (ENNS 2006-2007) [J]. Environment International,2011,37: 565-571
    [3]Topcu A, Bulat T. Removal of Cadmium and Lead from Aqueous Solution by Enterococcus faecium Strains [J]. Journal of Food Science,2010,75(1):13-17
    [4]Lai Y L, Annadurai G, Huang F C, et al. Biosorption of Zn(II) on the different Ca-alginate beads from aqueous solution [J]. Bioresource Technology,2008,99:6480-6487
    [5]Wang J L, Chen C. Biosorbents for heavy metals removal and their future [J]. Biotechnology Advances,2009,27:195-226
    [6]Moppert X, Costaouec T L, Raguenes G, et al. Investigations into the uptake of copper, iron and selenium by a highly sulphated bacterial exopolysaccharide isolated from microbial mats [J]. Journal of Industrial Microbiology and Biotechnology,2009,36:599-604
    [7]Morillo Perez J A, Garcia-Ribera R, Quesada T, et al. Biosorption of heavy metals by the exopolysaccharide produced by Paenibacillus jamilae [J]. World Journal of Microbiology and Biotechnology,2008,24:2699-2704
    [8]Salehizadeh H, Shojaosadati S A. Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus [J]. Water Research,2003,37:4231-4235
    [9]Yin Y R, Hu Y Y, Xiong F. Sorption of Cu(II) and Cd(II) by extracellular polymeric substances (EPS) from Aspergillus fumigatus [J]. International Biodeterior Biodegrade,2011,65:1012-1018
    [10]Kiran B, Kaushik A. Chromium binding capacity of Lyngbya putealis exopolysaccharides [J]. Biochemistry Engineering Journal,2008,38:47-54
    [11]Geddie L, Sutherland I W. Uptake of metals by bacterial polysaccharides [J]. Journal of Applied Bacteriology,1993,74:467-472
    [12]Bayramoglu G, Anca M Y. Construction a hybrid biosorbent using Scenedesmus quadricauda and Ca-alginate for biosorption of Cu(II), Zn(II) and Ni(II):Kinetics and equilibrium studies[J]. Bioresource Technology,2009,100:186-193
    [13]Gao J F, Zhang Q, Wang J H, et al. Contributions of functional groups and extracellular polymeric substances on the biosorption of dyes by aerobic granules[J]. Bioresource Technology,2011,102: 805-813
    [14]Nadeem R, Hanif M A, Shaheen F, et al. Physical and chemical modification of distillery sludge for Pb(II) biosorption[J]. Journal of Hazardous Materials,2008,150:335-342
    [15]Zhou W Z, Wang J, Shen B L, et al. Biosorption of copper(II) and cadmium(II) by a novel exopolysaccharide secreted from deep-sea mesophilic bacterium[J]. Colloids and Surfaces B: Biointerfaces,2009,72:295-302
    [16]Matheickal J T, Yu Q M. Biosorption of lead(II) and copper(II) from aqueous solutions by pre-treated biomass of Australian marine algae[J]. Bioresource Technology,1999,69:223-229
    [17]Nasir M H, Nadeem R, Akhtar K, et al. Efficacy of modified distillation sludge of rose (Rosa centifolia) petals for Pb(II) and Zn(Ⅱ) removal from aqueous solutions[J]. Journal of Hazardous Materials,2007,147:1006-1014
    [18]Lu D D, Cao Q L, Cao X J, et al. Removal of Pb(II) using the modified lawny grass:Mechanism, kinetics, equilibrium and thermodynamic studies[J]. Journal of Hazardous Materials,2009,166: 239-247
    [19]Bhaskar P V, Bhosle N B. Bacterial extracellular polymeric substance (EPS):A carrier of heavy metals in the marine food-chain [J]. Environment International,2006,32:191-198
    [20]Schiewer S, Balaria A. Biosorption of Pb2+by original and protonated citrus peels:Equilibrium, kinetics, and mechanism [J]. Chemical Engineering Journal,2009,146:211-219
    [21]Fiol N, Villaescusa I, Martinez M, et al. Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste[J]. Separation and Purification Technology,2006,50:132-140
    [22]Iqbal M, Saeed A, Zafar S I. FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+and Pb2+removal by mango peel waste[J]. Journal of Hazardous Materials,2009,164:161-171
    [23]Lopez F A, Perez C, Sainz E, et al. Adsorption of Pb2+on blast furnace sludge [J]. Journal of Chemical Technology and Biotechnology,1995,62:200-206
    [24]Fourest E, Roux J C. Heavy metal biosorption by fungal mycelial by-products:mechanisms and influence of pH [J]. Applied Microbiology and Biotechnology,1992,37:399-403
    [25]Loaec M, Olier R, Guezennec J. Uptake of lead, cadmium and zinc by a novel bacterial exopolysaccharide[J]. Water Research,1997,31:1171-1179
    [26]Kahraman S, Asma (Hamamci) D, Erdemoglu S, et al. Biosorption of copper(II) by live and dried biomass of the white rot fungi Phanerochaete chrysosporium and Funalia trogii [J]. Engineering in Life Sciences,2005,5(1):72-77
    [27]Pal A A, Ghosh S, Paul A K. Biosorption of cobalt by fungi from serpentine soil [J]. Bioresource Technology,2006,97:1253-1258
    [28]Ozer A, Ozer D. Comparative study of the biosorption of Pb(II), Ni(II) and Cr(VI) ions onto S. cerevisiae:determination of biosorption heats [J]. Journal of Hazardous Materials,2003, B100: 219-229
    [29]Uslu G, Tanyol M. Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead (II) and copper (II) ions onto Pseudomonas putida:Effect of temperature [J]. Journal of Hazardous Materials,2006, B135:87-93
    [30]Zhang Z Q, Xia S Q, Wang X J, et al. A novel biosorbent for dye removal:Extracellular polymeric substance (EPS) of Proteus mirabilis TJ-1 [J]. Journal of Hazardous Materials,2009,163:279-284
    [31]Blazquez G, Calero M, Hernainz F, et al. Equilibrium biosorption of lead(II) from aqueous solutions by solid waste from olive-oil production [J]. Chemical Engineering Journal,2010,160:615-622
    [32]Cao Y Y, Wei X, Cai P, et al. Preferential adsorption of extracellular polymeric substances from bacteria on clay minerals and iron oxide [J]. Colloids and Surfaces B:Biointerfaces,2011, 83:122-127
    [33]Wang J L, Chen C. Biosorption of heavy metals by Saccharomyces cerevisiae:A review [J]. Biotechnology Advances,2006,24:427-451
    [34]Guibaud G, Hullebusch E V, Bordas F, et al. Sorption of Cd(II) and Pb(II) by exopolymeric substances (EPS) extracted from activated sludges and pure bacterial strains:Modeling of the metal/ligand ratio effect and role of the mineral fraction[J]. Bioresource Technology,2009,100: 2959-2968
    [1]杨焱.桑黄多糖的分离纯化、结构鉴定和生物活性的研究[D].无锡:江南大学,2007
    [2]Pan D D, Mei X M. Antioxidant activity of an exopolysaccharide purified from Lactococcus lactis subsp. lactis 12[J]. Carbohydrate Polymers,2010,80(3):908-914.
    [3]Yang Z., Huttunen E, Staaf M., Widmalm G, Tenhu H. Separation, purification and characterization of extracellular polysaccharide produced by slime-forming Lactococcus lactis ssp.cremoris strains[J].International Dairy Journal,1999,9:631-638
    [4]Van Calsteren M.R., Pau-Roblot C., Begin A., Roy D. Structure determination of the exopolysaccharide produced by Lactobacillus rhamnosus strains RW-9595M and R[J].Biochemical Journal,2002,363:7-17
    [5]Doleyres Y., Schaub L., Lacroix C. Comparison of the functionality of exopolysaccharides produced in situ or added as bioingredients on yogurt properties[J]. Journal of Dairy Science,2005, 88:4146-4156
    [6]Yoshiaki F, Youichi S, Ko-ichi O. Selective tumoricidal effect of soluble Proteoglucan extracted from the basidiomycete, Agaricus blazei Murill, mediated via natural killer cell activation and apoptosis[J].Cancer Immunol Immunother,1998,46:147-159
    [7]Yoshiaki F. Tumor-SPPecific cytocidal and immunopotentiating effects of relatively low molecular weight products derived from the Basidiomycete, Agaricus blazei Murill [J].Anticancer Research, 1999,19:113-118
    [8]毛俊好.白术多糖对小鼠淋巴细胞功能的调节[J].免疫学杂志,1996,12(4):233-236
    [9]向道斌,李晓玉.牛膝多糖的抗肿瘤活性及其抗肿瘤作用(英文)[J].中国药理学报,1993,14(6):556-561
    [10]王葡文主编.实验肿瘤学基础[M].北京:人民卫生出版社,1992:279-300
    [11]Mosman T. Rapid colorinetric assay for cellular growth and survival application to proliferation and cytotoxicity assays [J]. Journal of Immunol Methods,1983,65 (1-2):55-63
    [12]Gary B, Alison N B, Ralan N, et al. Identification of amino acid residues contributing to the pore of a P2X receptor [J]. The Embo Journal,1997,16 (12):3446-3454
    [13]Wang K Y, Fang C Y, Peng G J. A study on the inhibited proliferation and induced apoptosis of peripheral blood lymphocytes by hyd rocortison e in children with acute idiopathic thrombocytopenic purpura [J]. Chinese Jouran 1 of Histochemistry and Cytochemistry,2000,19 (2): 149-152
    [14]Tominaga H, Ishiyama M, Ohseto F, et al. A water soluble tetrazolium salt useful for colorimetric c ell viability assay[J]. Anal Commun,1999,36:47-50
    [15]熊建文,肖化,张镇西.MTT法和CCK-8法检测细胞活性之测试条件比较[J].激光生物学报,2007,16(5):559-562
    [16]李宁,万文婷,金林红.CCK-8法和MTT法检测人前列腺癌PC3细胞活性的最佳条件比较研究[J].贵州大学学报(自然科学版),2009,26(3):18-20
    [17]叶红.马尾藻多糖的分离纯化、生物活性及结构分析[D].南京:南京农业大学,2008
    [18]Zhang M, Zhang L, Cheng P C K, et al. Molecular weight and anti-tumor activity of the water-soluble polysaccharides isolated by hot water and ultrasonic treatment from the sclerotia and mycelia of Pleurotus tuber-regium [J].Carbohydrate Polymers,2004,56:123-128
    [19]Leung M Y K, Liu C, Koon J C M, et al. Polysaccharide biological response modifiers[J]. Immunology Letter,2006,105,101-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700