四株乳杆菌产细菌素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳酸菌代谢产生很多物质如有机酸、过氧化氢和双乙酰等都可以通过改变食品的内在特性来抑制腐败菌的生长,人们很久以前就开始认识和使用这些终产物,但是人们却忽略了乳酸菌产生的细菌素的作用。人们在食品中无意识的使用了几千年的乳酸菌细菌素,但直到最近几十年才开始真正研究它们。细菌素是某些细菌产生的抑菌肽或蛋白,这些物质可以杀灭和抑制与之相同或相似生境的其他微生物。虽然许多细菌都能产生细菌素,但乳酸菌产生的细菌素更适合在食品工业中应用。现在只有几种商品化的细菌素面市,如nisin和pediocin PA-1,nisin作为食品添加剂可以非常有效的抑制许多食品中的腐败菌,并延长其货价期。但由于其不能抑制革兰氏阴性菌和抑菌活性的不稳定限制了它在食品工业中的发展,所以我们要继续大力开发其他乳酸菌细菌素。
     本研究从67株乳杆菌中筛选出四株具有抑菌活性的乳杆菌菌株:短乳杆菌(KLDS1.0355)、马乳酒样乳杆菌(KLDS1.0373)、棒状乳杆菌棒状亚种(KLDS1.0391)和布氏乳杆菌(KLDS1.0364),这四株乳杆菌均分离自内蒙古传统乳制品中。在排除有机酸和过氧化氢的干扰后,四株菌的无细胞发酵上清液对指示菌还有强烈的抑制作用。经蛋白酶K处理后,抑菌活性丧失,证明无细胞发酵上清液中含有蛋白性质的抑菌物质,即细菌素。四株菌经初步鉴定为短乳杆菌、马乳酒样乳杆菌、棒状乳杆菌棒状亚种和布氏乳杆菌。
     优化四株乳杆菌产细菌素的条件,确定了最大产量时的培养时间和培养温度,即KLDS1.0355、KLDS1.0373、KLDS1.0364 30℃培养24h,KLDS1.0391 30℃培养28h。优化了培养基的氮源和碳源成分,培养基氮源为1%胰蛋白胨、0.5%蛋白胨、0.5%牛肉膏、0.5%酵母提取物,碳源为4%葡萄糖时,四株菌产生的细菌素抑菌活力最强,分别达到270.64IU/ml、333.91 IU/ml、574.72IU/ml和295.49IU/ml。
     对细菌素进行了纯化,首先采用硫酸铵沉淀蛋白,然后用SP Sepharose Fast Flow阳离子交换树脂层析,条件为:流速1ml/min,用含0.5mol/L NaCl的0.02mol/L的乙酸钠缓冲液可洗脱下细菌素峰,冻干浓缩后,四株乳杆菌细菌素的比活力可达到74.20 IU/mg、44.75 IU/mg、102.77 IU/mg和54.53IU/mg。纯化后的细菌素样品经冻干浓缩后,用Tricine-SDS-PAGE测定了它们的分子量,其中KLDS1.0355产生的细菌素分子量约为15.9kD,KLDS1.0373产生的细菌素分子量约为20.1kD,KLDS1.0364产生的细菌素分子量约为21.6 kD。
     研究了四株菌产细菌素的生物学特性。KLDS1.0373、KLDS1.0391和KLDS1.0364产生的细菌素可以被胃蛋白酶、胰蛋白酶、木瓜蛋白酶、蛋白酶K完全失活,KLDS41.355产生的细菌素可被除α-糜蛋白酶以外的其他四种蛋白酶完全失活,可被α-糜蛋白酶部分失活。四株乳杆菌产生的细菌素都不能被α-淀粉酶失活,说明这四株乳杆菌产生的细菌素没有碳水化合物部分起抑菌作用。四株乳杆菌产生的细菌素在pH2~10的范围内活性稳定。在80℃热处理30min后活性无明显变化,在121℃30min的高温下活性不降低,并有所上升。说明这四种细菌素是具有良好的热、酸稳定性的蛋白活性物质,具有较高的安全性。四种细菌素杀菌作用明显,接入四株菌的无细胞发酵上清液5h后,分别可杀灭97.76%、97.67%、97.90%、97.67%的金黄色葡萄球菌ATCC25923。四株菌的菌体细胞用0.1mol/L的NaCl(pH2.0)溶液处理后,KLDS1.0355和KLDS1.0373重新得到的上清液(含NaCl,pH6.5)对指示菌有抑制活性,说明这两株菌对自身产生的细菌素有一定的吸附作用,菌株KLDS1.0391和KLDS1.0364的处理液对指示菌没有抑制作用,说明这两株菌对自身产生的细菌素没有吸附作用。
     分离得到的四株菌产生的细菌素和nisin相比,比活力较低,说明细菌素的纯度仍然不高,以后应继续进行细菌素的分离纯化。本试验得到的细菌素不仅可以抑制金黄色葡萄球菌、单核细胞增生李斯特氏菌等大部分革兰氏阳性细菌,还可抑制大肠杆菌、沙门氏菌和假单胞菌等革兰氏阴性细菌,和nisin相比有更宽的抑菌谱,在食品工业中具有更广阔的应用前景。
Organic acids, hydrogen peroxide, diacetyl and other metabolic end products produced byLactis acid bacteria (LAB) act as bio-preservatives by altering the intrinsic properties of the food tosuch an extent as to actually inhibit spoilage microorganisms, and the role of these metabolic endproducts has long been appreciated. The contribution of LAB-derived bacteriocins may frequentlyhave been overlooked. The widespread ability of LAB to produce bacterocins implies an importantbiological role maintained over thousands of years and the precise nature of this role has been thesubject of intensive research in recent times. Bacteriocin production could be considered asadvantageous to the producer as, in sufficient amounts, these peptides can kill or inhibit bacteriacompeting for the same ecological niche or the same nutrient pool. Although bacteriocins areproduced by many Gram-positive and Gram-negative species, those produced by the LAB are ofparticular interest to the food industry. To date, the only commercially produced bacteriocins arenisin and pediocin PA-1. While nisin has been found to be extremely effective as an additive toprevent spoilage and increase shelf-life in a number of foods. But its effectiveness has been morevariable with respect to other applications. So the new bacteriocins should be attractive to explore.
     Four bacteriocin-producing strains were screened from 67 strains of lactobacilli from differentsources. They were Lactobacillus Brevis KLDS1.0355, Lactobacillus kefiranofaciens KLDS1.0373,Lactobacillus coryniformis subsp. Coryniformis KLDS1.0391 and Lactobacillus buchneriKLDS1.0364. All of four strains were isolated from traditional dairy products of Inner Mongolia.The cell-free supernatants (CFSs) of four strains can inhibit indicator strains strongly excludinginhibitive effect of hydrogen peroxide and and organic acid, but the inhibitive activity decreasedsharply after treatment with proteinase K. The results confirmed that these inhibitory materials wereproteins, could be classed as bacteriocins.
     To optimize bacteriocin production, experments were done on the respect of incubationcondition and the media components. The optimun incubation time and tempreture used to producethe largest activity of bacteriocins were 30℃and 24h for KLDS1.0355, KLDS1.0373 andKLDS1.0364, 30℃and 28h for KLDS1.0391. The optimum media nitrogen source and carbonsouce were: trypone 1%, peptone 0.5%, meat extract 0.5%, yeast extract 0.5%, glucose 4%.Productions of bacteriocin were up to 270.64IU/ml, 333.91 IU/ml, 574.72IU/ml and 295.49IU/ml forfour strains when they were incubated at optimum conditions.
     The bacteriocins were precipitated by ammonium sulphate, followed by SP-Sepharose fast flowcation exchange chromatography, and the bacteriocins were washed with 0.5mol/L NaCl (in acetatebuffer, pH5.0) at flow rate of 1ml/min. The specific activitives were 74.20 IU/mg, 44.75 IU/mg,102.77 IU/mg and 54.53IU/mg of KLDS1.0355, KLDS1.0373, KLDS1.0391 and KLDS1.0364respectively. The molecular wights of KLDS1.0355, KLDS1.0373 and KLDS1.0364 bacteriocinswere 15.9 kD, 20.1kD and 21.6kD separately.
     Biological characterization of bacteriocins had been researched. Complete inactivation ofantimicrobial activity was observed after treatment of bacteriocin-containing cell-free supernatantsof four strains with pepsin, trypsin, proteinase K, papain,α-chymotrypsin. The results showed thatbacteriocin were proteinaceous. Partially inactivation of antimicrobial activity was observed aftertreatment of KLDS1.0355 bacteriocin-containing CFSs with chymotrypsin. There were no anychanges for antimicrobial activity after treatment of bacteriocin-containing CFSs withα-amylase,indicated that carbohydrate moieties were not required for anti-microbial activity. The bacteriocinsremained stable after 2h of incubation at pH between 2.0 and 10.0. No decrease in activity wasrecorded after treatment at 80℃for 30min and increased in activity at 121℃for 30min. Themechanism of action mode for four bacteriocins is bactericidal, as shown by a obvious decrease by97.76%, 97.67%, 97.90% and 97.67% separately in the viable cell numbers of Staphylococcusaureus ATCC25923. No increase in the activity of bacteriocins produced by KLDS1.0391,KLDS1.0364 were recorded after treatment the cells with NaC1 at pH2.0, suggesting that thebacteriocins did not adhere to the surface of the producer bacteria, whereas bacteriocins produced byKLDS1.0355, KLDS1.0373 partial adsorption to producer cells were recorded.
     Bactericins produced by KLDS1.0355, KLDS1.0373, KLDS1.0391 and KLDS1.0364 had alower specific activity than nisin, because the purity of these bacteriocins was too low. The furtherresearch should be focous on the purification of these bacteriocins. Compared with nisin, bactericinsproduced by four strains had the broader spectrum, including sevaral strains of Gram-positivebacteria Staphylococcus aureus, Listeria monocytogenes and some Gram-negative bacteria,especially Escherichia coli, Salmonella and Pseudomonas. They will have the broader applicationprospect in the food industry.
引文
常峰,梁波,朱何东,等.2005.布氏乳杆菌CF10所产类细菌素lactobacillin FC-10的初步研究,(6):36~39.
    常峰,易奎星,刘小兰,等.2006.类细菌素高产菌CF10的筛选诱变及发酵条件的研究.食品科学,27(6):143~147.
    陈祥奎.1995.保证食品安全的抗菌剂.中国食品添加剂,3:16~26.
    陈秀珠,何松,龙立红,等.1995.乳链菌肽高产菌株AL2的发酵条件研究.微生物学通报,22(4):215~218.
    储卫华,曹映海,高国峰.2006.筛选产类细菌素乳酸菌及类细菌素特性研究.微生物学杂志,26(1):23~25.
    侯运华,孔健,郝运伟,等.2005.一株乳酸菌产类细菌素Enteriocin LK-S1的初步研究.山东大学学报(理学版),37(5):463~470.
    荆谷,孔健,李德冠,等.2002.乳酸乳球菌L9所产类细菌素Lactococcin GJ29的初步研究.食品与发酵工业,129(19):17~21.
    李凛,常峰,阳小成.2006.类细菌素产生菌LC47的选育及其代谢产物的初步研究.中国酿造,(9):33~37.
    李平兰,张篪 江汉湖.1998.产细菌素植物乳杆菌菌株的筛选及其细菌素生物学特征研究,25(1):1~4.
    凌代文,东秀珠.1999.乳酸细菌分类鉴定及试验方法.北京:中国轻工业出版社.117~129.
    吕燕妮,李兰平,周伟.2005.戊糖乳杆菌素31-1的纯化.肉品卫生,(1):27~29.
    吕燕妮,李平兰,孙成虎,等.2006.戊糖乳杆菌31-1菌株所产细菌素的理化及生物学特性.中国农业大学学报,11(1):39~43.
    石金舟,陈丽园,张 明.2005.1株产细菌素乳酸菌的筛选和鉴定.中国微生态学杂志,17(6):413~414.
    田宇,洪芳,胡承,等.2004.类细菌素产生菌HF08的选育及其发酵条件的研究,30(3):56~60.
    王昌禄,胡王旬,何艳贞.1999.一株新型乳酸菌素产生菌的分离及其鉴定.天津轻工业学院学报,(3):12~15.
    杨颖,陈卫,田丰伟,张灏,汤坚.2006.产抑菌物质乳杆菌的筛选及性质的研究.工业微生物,36(3):13~17.
    曾志刚,陈英,余柏松.2003.细菌素产生菌的筛选及其细菌素的分离纯化.中国抗生素杂志,28(5):257~298.
    张艾青,张书亮.2006.天然食品防腐剂Nisin及其在乳品工业中的应用.乳品加工,(11):57~60.
    周雨霞,雷霞,张颖,等.2006.传统乳制品中一产细菌素乳酸乳球菌的筛选.乳业科学与技术,(2):59~61.
    周志江.韩烨.韩雪.郑峰.从酸白菜中分离出一株产细菌素的乳酸片球菌.食品科学.2006.27(04):89~92.
    Asther M, Corrien G. 1987. Effect of Tween80 and Oleic in Liganase Production by Phanerochaete chryaoporium INA-12. Enzyme Microbiology and Technology, 9: 245~249.
    Bowdish, D. M., Davidson, D. J. and Hancock, R. E. 2005. A re-evaluation of the role of host defence peptides in mammalian immunity. Curr. Protein Pept. Sci., 6:35~51.
    Benkerroum, N., Daoudi, A., Hamraoui, T., et al. 2005. Lyophilised preparations of bacteriogenic Lactobacillus curvatus and Lactococcus lactis subsp, lactis as potential protective adjuncts to control Listeria monocytogenes in dry-fermented sausages. Journal of Applied Microbiology, 98: 56~63.
    Benz, R., Jung, G. and Sahl, H.-G. 1991. Mechanism of channelforming lantibiotics in black lipid membranes. In: Nisin and Novel Lantibiotics. (Jung, G. and Sahl, H.-G., Eds.), pp. 359^372. ESCOM, Leiden.
    Bhunia, A. K., Johnson, M. C., Ray, B. 1988. Purification, characterization and antimicrobial spectrum of a bacteriocin produced by Pediococcus acidilactici. Journal of Applied Bacteriology, 65: 261~268.
    Bhunia, A.K., Johnson, M.C., Ray, B., et al. 1990. Antigenic property of pediocin AcH produced by Pediococcus acidilactici H. J. Appl. Bacteriol., 69:211~215.
    Breukink, E., Weidemann, I., van Kraalj, C., et al. 1999. Use of cell wall precursor lipid Ⅱ by a poreforming peptide antibiotic. Science, 286:2361~2364.
    Brotz, H., Bierbaum, G., Leopold, K., et al. 1998. The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid Ⅱ. Antimicrobial Agents and Chemotherapy, 42: 154~160.
    Budde, B. B., Hornbaek, T., Jacobsen, T. et al. 2003. Leuoconostoc carnosum 4010 has the potential for use as a protective culture for vacuum-packed meats: Culture isolation, bacteriocin identification, and meat application experiments. International Journal of Food Microbiology, 83: 171~184.
    Cabo M.L., Murado M.A., Gonzalez, M.P., et al. 1999. A method for bacteriocin quantification. Journal of Applied Micrology. 87: 907~914.
    Castellano, P., Raya, R., Vignolo, G. 2003. Mode of action of lactocin 705, a two-component bacteriocin from Lactobacillus casei CRL705. Int. J. Food Microbiol., 85: 35~43.
    Chatterjee, C., Paul, M., Xie, L.,et al. 2005. Biosynthesis and mode of action of lantibiotics. Chemistry Reviews, 105: 633~683.
    Chen, H., Hoover, D. G. 2003. Bacteriocins and their food applications. Comprehensive Reviews in Food Science and Food Safety, 2:82~100.
    Chen, Y., Ludescher, R. D., Montville, T. J. 1997. Electrostatic interactions, but not the YGNGV consensus motif, govern the binding of pediocin PA-1 and its fragments to phospho lipid vesicles. Appl. Environ. Microbiol., 63: 4770~4777.
    Chikindas, M.L., Garcia-Garcera, M.J., Driessen, A.J., Ledeboer, A.M., Nissen-Meyer, J., Nes, I.F., Abee, T., Konings, W.N., Venema, G., 1993. Pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1.0, forms hydrophilic pores in the cytoplasmic membrane of target cells. Appl. Environ. Microbiol., 59: 3577~3584.
    Choi, M. H., Park, Y. H. 2000. Selective control of lactobacilli in Kimichi with nisin. Letters in Applied Microbiology, 30:173~177.
    Coakley, M., Fitzgerald, G. F., Ross, R. P. 1997. Application and evaluation of the phage resistance and bacteriocin encoding the plasmid pMRC01 for the improvement of dairy starter cultures. Applied and Enviromnental Microbiology, 63: 1434~1440.
    Collado M.C., Gonzalez A., Gonzalez R. 2005. Antimicrobialpeptides are amongthe antagonistic metabolitesproduced by Bifidobacterium againstHelicobacter pylori. International Journal of Antimicrobial Agents, 25: 385~391.
    Corvey, C. T. Stein, S. Dusterhus, et al. 2003. Activation of sub2 tilin precursors by Bacillus subtilis extracellular serine proteases subtilisin (AprE), WprA, and Vpr[J]. Biochem Biophys Res Commun, 304: 48~54.
    Cotter, P. D., Hill, C., Ross, R. P. 2005a. Bacterial lantibiotics: Strategies to improve therapeutic potential. Current Protein and Peptide Science, 6: 61~75.
    Cotter, P. D., Hill, C., & Ross, R. P. 2005b. Bacteriocins: Developing innate immunity for food. Nature Reviews Microbiology, 3: 777~788.
    Cox, C. R., Cobum, P. S. Gilmore, M. S: 2005. Enterococcal cytolysin: a novel two component peptide system that serves as a bacterial defense against eukaryotic and prokaryotic cells. Curr. Protein Pept. Sci., 6: 77~84.
    Dalet, K., Cenatiempo, Y., Cossart, P., et al. 2001. A sigma(54)-dependent PTS permease of the mannose family is responsible for sensitivity of Listeria monocytogenes to mesentericin Y105. Microbiology, 147: 3263~3269.
    Datta, V. et al. 2005. Mutational analysis of the group A streptococcal operon encoding streptolysin S and its virulence role in invasive infection. Mol. Microbiol., 56: 681~695.
    Davies, E. A., Milne, C. F., Bevis, H. E., et al. 1999. Effective use ofnisin to control lactic acid bacterial spoilage in vacuum packed bologna-type sausage. Journal of Food Protection, 62: 1004-010.
    
    Deegan L.H., Cotter P. C., Hill C., et al.. 2006. Bacteriocins: Biological tools for bio-preservation and shelf-life extension. International Dairy Journal, 16(9): 1058-1071.
    
    Delves-Broughton, J., Blackburn, P., Evans, R. J., et al.1996. Applications of the bacteriocin nisin. Antonie van Leeuwenhoek, 69: 193-202.
    
    Diep, D. B., Nes, I. F. 2002. Ribosomally synthesized antibacterial peptides in Gram-positive bacteria. Current Drug Targets, 3: 107-122.
    
    Eijsink, V. G., Skeie, M., Middelhoven, P. H., et al. Comparative studies of class IIa bacteriocins of lactic acid bacteria. Appl. Environ, Microbiol. 64:3275-3281.
    
    European Economic Community. European Economic Community Commission Directive. Official J. European Union 255, 1-6 .1983. 83/463/EEC.
    
    Fenelon, M. A., Ryan, M. P., Rea, M. C., et al. 1999. Elevated temperature ripening of reduced fat Cheddar made with or without lacticin 3147-producing starter culture. Journal of Dairy Science, 82: 10-22.
    
    Ferchichi, M., Frere, J., Mabrouk, K., Manai, M., 2001. Lactococcin MMFII, a novel class IIa bacteriocin produced by Lactococcus lactis MMFII, isolated from a Tunisian dairy product. FEMS Microbiol. Lett. 205: 49-55.
    
    Fernandez de Palencia, P., de la Plaza, M., Mohedano, M. L., et al. 2004. Enhancement of 2-methylbutanal formation in cheese by using a fluorescently tagged lacticin 3147 producing Lactococcus lactis strain. International Journal of Food Microbiology, 93:335-347.
    
    Ghrairi T., Fre're J., Berjeaud J.M. 2005. Lactococcin MMT24, a novel two-peptide bacteriocin produced by Lactococcus lactis isolated from rigouta cheese. International Journal of Food Microbiology, 105: 389-398.
    
    Ghrairi, T., Manai, M., Berjeaud, J.M.,et al. 2004. Antilisterial activity of lactic acid bacteria isolated from rigouta, a traditional Tunisian cheese. J. Appl. Microbiol. 97: 621- 628.
    
    Gratia.1925. A. Sur un remarquable exemple d'antagonisme entre deux souches de Colibacille. C. R. Soc. Biol, 93: 1040-1041 (in French).
    
    Graver K I, Muriana P M. 1994. Purification and Partial Amino Acid Sequence of Curvaticion Fs47, a Heat-stable Bacteriocin produced by Lactobacillus Curvatus Fs47. Appl. Environ. Microbiol., 60:2191-2195.
    
    Guinane, C. M., Cotter, P. D., Hill, C., et al. 2005. Microbial solutions to microbial problems: Lactococcal bacteriocins for the control of undesirable biota in food. Journal of Applied Microbiology, 98: 1316-1325.
    
    Hastings, J. W. et al. 1991. Characterization of leucocin A-UAL187 and cloning of the bacteriocin gene from Leuconostoc gelidum. J. Bacteriol., 173: 7491-7500.
    
    Havarstein, L. S., Diep, D. B., Nes, I. F. 1995. A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Molecular Microbiology, 16: 229-240.
    
    Hechard, Y., Derijard, B., Letellier, F.et al. 1992. Characterization and purification of mesentericin Y105, an snti-Listeria bacteriocin from Leuconostoc mesenteroides. J. Gen. Microbiol. 138:2725-2731.
    
    Hout E T. 1996. Tween80 Effect in Bacteriocin Sythedis by Lactococcus lactis subsp.cremoris J46. Lett. Appl. Microbiol. 22: 307-310.
    
    Jennifer C, Thomas J. M., Ingolf F. et al. 2001. Bacteriocins: safe, natural antimicrobials for food preservation. International Journal of Food Microbiology, 71: 1-20.
    
    Johnsen, L., Fimland, G. Nissen-Meyer, J. 2004. The C-terminal domain of pediocin-like antimicrobial peptides (class IIa bacteriocins) is involved in specific recognition of the C-terminal part of cognate immunity proteins and in determining the antimicrobial spectrum. J. Biol. Chem., 280: 9243-9250.
    
    Juan C. Nieto-Lozano, Juan I. Reguera-Useros, Maria del C. et al. 2006. Effect of a bacteriocin produced by Pediococcus acidilactici against Listeria monocytogenes and Clostridium perfringens on Spanish raw meat. Meat Science., 72: 57-61.
    
    Kawai, Y., Kemperman, R., Kok, J. et al. 2004a . The circular bacteriocins gassericin A and circularin A. Curr. Protein Pept. Sci. 5: 393-398.
    
    Kawai, Y., Kemperman, R., Kok, J. et al. 2004b. The circular bacteriocins gassericin A and circularin A. Curr. Protein Pept. Sci. 5, 393-398.
    
    Kawai, Y. et al. 2004c . Structural and functional differences in two cyclic bacteriocins with the same sequences produced by lactobacilli.Appl. Environ. Microbiol., 70: 2906-2911.
    
    Kazazic, M., Nissen-Meyer, J. & Fimland, G. 2002. Mutational analysis of the role of charged residues in target-cell binding, potency and specificity of the pediocin-like bacteriocin sakacin P. Microbiology, 148: 2019-2027.
    
    Kemperman, R. et al. 2003. Identification and characterization of two novel clostridial bacteriocins, circularin A and closticin 574. Appl. Environ. Microbiol., 69: 1589-1597.
    
    Klaenhammer T. R 1988. Bacteriocins of lactic acid bacteria. Biochimie 70: 337-349.
    
    Klaenhammer, T. R. (1993). Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev.,12: 39-85.
    
    Lai, A. C., Tran, S. Simmonds, R. S. 2002. Functional characterization of domains found within a lytic enzyme produced by Streptococcus equi subsp. zooepidemicus. FEMS Microbiol. Lett., 215: 133-138.
    Leroy F, Vankrunkelsven S, De Greef J. 2003. The Stimulating Effect of a Harsh Environment on the Bacteriocin Activity by Enterococcus faecium RZS C5 and Dependency on the Environmental Stress Factor Used. Int.J.Food.Microbiol, 83(1): 27-38.
    
    Maqueda, M. et al. 2004. Peptide AS-48: prototype of a new class of cyclic bacteriocins. Curr. Protein Pept. Sci. 5: 399-416.
    
    Marciset, O., Jeronimus-Stratingh, M. C., Mollet, B. et al. 1997. Thermophilin 13, a nontypical antilisterial poration complex bacteriocin, that functions without a receptor. J. Biol. Chem., 272: 14277-14284.
    
    McAuliffe, O., Hill, C., Ross, R. P. 1999. Inhibition of Listeria monocytogenes in cottage cheese manufactured with lacticin 3147 producing starter culture. Journal of Applied Microbiology, 86:251-256.
    
    McAuliffe, O., Ross, R. P., Hill, C. 2001. Lantibiotics: Structure, biosynthesis and mode of action. FEMS Microbiology Reviews, 25: 285-308.
    
    McAuliffe, O., Ryan, M. P., Ross, R. P et al. 1998. Lacticin 3147, a broad spectrum bacteriocin which selectively dissipates the membrane potential. Applied and Environmental Microbiology, 64(2): 439-445.
    
    Morgan, S., Ross, R. P., Hill, C. 1995. Bacteriolytic activity caused by the presence of a novel lactococcal plasmid encoding encoding lactococcins A, B, and M. Applied and Environmental Microbiology, 61(8): 2995-3001.
    
    Morgan, S. M., Galvin, M., Kelly, J., Ross, R. P., et al. 1999. Development of a lacticin 3147-enriched whey powder with inhibitory activity against foodborne pathogens. Journal of Food Protection, 62: 1011-1016.
    
    Morgan, S. M., Ross, R. P., Beresford, T., et al., 2000. Combination of hydrostatic pressure and lacticin 3147 causes increased killing of Staphylococcus and Listeria. Journal of Applied Microbiology, 88: 414-42.
    
    Morgan, S.M., Galvin, M., Ross, R. P., et al. 2001. Evaluation of a spray-dried lacticin 3147 powder for the control of Listeria monocytogenes and Bacillus cereus in a range of food systems. Letters in Applied Microbiology, 33: 387-391.
    
    Morgan, S. M., O'Sullivan, L., Ross, R. P., et al. 2002 . The design of a three strain starter system for Cheddar cheese manufacture exploiting bacteriocin-induced starter lysis. International Dairy Journal, 12: 985-993.
    
    Motta AS and Brandelli A. 2003. Influence of growth conditions on bactericin production by Brevibacterium linens. Appl. Environ. Microbiol., 62(2-3): 163-167.
    
    Muriana, P.M., Klaenhammer, T.R., 1991. Purification and partial characterization of lactacin F, a bacteriocin produced by Lactobacillus acidophilus 11088. Appl. Environ. Microbiol. 57: 114-121.
    Nes, I. F. et al. 1996. Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek, 70: 113-128.
    
    Nieto Lozano, J. C., Meyer, J. N., Sletten, K., et al.1992. Purification and amino acid sequence of a bacteriocin produced by Pediococcus acidilactici. J. Gen. Microbiol., 138: 1985-1990.
    
    Nissen-Meyer, J., Holo, H., Havarstein, L.S., et al.1992. A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. J. Bacteriol., 174: 5686- 5692.
    
    O'Sullivan, L., Ryan, M. P., Ross, R. P., et al. 2003. Generation of food-grade lactococcal starters which produce the lantibiotics lacticin 3147 and lacticin 481. Applied and Environmental Microbiology, 69(6): 3681-3685.
    
    Peschel, A., Gotz, F. 1996. Analysis of the Staphylococcus epidermidis genes epi F, -E and -G involved in epidermin immunity. Journal of Bacteriology, 178: 531-536.
    
    Quadri, L. E., Sailer, M., Roy, K. L., Vederas, J. C. & Stiles, M. E. 1994. Chemical and genetic characterization of bacteriocins produced by Carnobacterium piscicola LV17B. J. Biol. Chem., 269: 12204-12211.
    
    Quadri, L. E., Sailer, M., Terebiznik, M. R.,et al. 1995. Characterization of the protein conferring immunity to the antimicrobial peptide carnobacteriocin B2 and the expression of carnobacteriocin B2 and BM1. Journal of Bacteriology, 177:1144-1151.
    
    Ramnath, M., Arous, S., Gravesen, A., et al. 2004. Expression of mptC of Listeria monocytogenes induces sensitivity to class IIa bacteriocins in Lactococcus lactis. Microbiology, 150: 2663-2668.
    
    Ramnath, M., Beukes, M., Tamura, K., et al. 2000. Absence of a putative mannose-specific phosphotransferase system enzyme IIAB component in a leucocin A-resistant strain of Listeria monocytogenes, as shown by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Applied and Environmental Microbiology, 66: 3098-3101.
    
    Riley, M. A. 1998. Molecular mechanisms of bacteriocin evolution. Annu. Rev. Genet., 32: 255-278.
    
    Rodriguez, J. M., Cintas, L. M., Casaus, P., et al. 1997. Detection of pediocin PA-1 producing pediococcus by rapid molecular biology techniques. Food Microbiology, 14: 363-370.
    
    Ross, P. R., Morgan, S., Hill C. 2002 .Preservation and fermentation: Past, present and future. Int J Food Microbiol., 56: 2164-2169.
    
    Ross, R. P., Galvin, M., McAuliffe, O., et al. 1999. Developing applications for lactococcal bacteriocins. Antonie van Leeuwenhoek, 76: 337-346.
    
    Ross, R. P., Stanton, C., Hill, C., et al. 2000. Novel cultures for cheese improvement. Trends in Food Science and Technology, 11: 96-104.
    
    Sahar, F. Deraz, Eva Nordberg Karlsson, Martin Hedstr¨om, 2005. Purification and characterisation of acidocin D20079, a bacteriocin produced by Lactobacillus acidophilus DSM 20079. Journal of Biotechnology 117: 343-354.
    
    Scannell, A. G. M., Ross, R. P., Hill, C., et al. 2000. An effective lacticin biopreservative in fresh pork sausage. Journal of Food Protection, 63(3): 370-375.
    
    Schagger H, von Jagow G. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100kDa. Anal Biochem., 166(2): 368-379.
    
    Schneider R., Fernandez F.J., Aguilar M.B., et al., 2006. Partial characterization of a class IIa pediocin produced by Pediococcus parvulus 133 strain isolated from meat (Mexican "chorizo"). Food Control, 17:909-915.
    
    Seigers, K., Entian, K. D. 1995. Genes involved in immunity to the lantibiotic nisin produced by Lactococcus lactis 6F3. Applied and Environmental Microbiology, 61: 1082-1089.
    
    Stein, T., Heinzmann, S., Dusterhaus, S., et al. 2005. Expression and functional analysis of the subtilin immunity genes spaIFEG in the subtilin-sensitive host Bacillus subtilis MO1009. Journal of Bacteriology, 187(3): 822-828.
    
    Stiles, M. E., & Hasting, J. W. 1991. Bacteriocin production by lactic acid bacteria: Potential for use in meat preservation. Trends in Food Science and Technology, 2: 247-251.
    
    Stoddard, G. W., Petzel, J. P., van Belkum, et al. 1992. Molecular analyses of the lactococcin A gene cluster from Lactococcus lactis subsp. lactis biovar diacetylactis WM4. Applied and Environmental Microbiology, 58: 1952-1961.
    
    Todorov S, Onno B, Sorokin O, et al., 1999. Detection and characterization of a novel antibacterial substance produced by Lactobacillus plantarum ST31 isolated from sourdough. Int J Food Microbiol, 48: 167-177.
    
    Todorov S.D., Dicks L.M.T. 2005. Pediocin ST18, an anti-listerial bacteriocin produced by Pediococcus pentosaceus ST18 isolated from boza, a traditional cereal beverage from Bulgaria. Process Biochem, 40: 365-70.
    
    Todorov S.D., Dicks L.M.T. 2005b. Lactobacillus plantarum isolated frommolasses produces bacteriocinsactiveagainst Gram-negative bacteria. nzymeand Microbial Technology, 36: 318-326.
    
    Todorov S.D., Dicks L.M.T. 2006. Screening for bacteriocin-producing lactic acid bacteria from boza, a traditional cereal beverage from Bulgaria Comparison of the bacteriocins. Process Biochemistry, 41: 11-19.
    
    van Belkum, M. J., Stiles, M. E. 2000. Nonlantibiotic antibacterial peptides from lactic acid bacteria. Natural Product Reports, 17: 323-335.
    
    Van der Merwe LR., Bauer R., Britz T.J., et al. 2004. Characterization of thoeniicin 447, a bacteriocin isolated from Propionibacterium thoenii strain 447. International Journal of Food Microbiology, 92:153~160.
    Verna C. M., Gottlieb A., John W. H. 1997. Purification of bacteriocins of lactic acid bacteria: problems and pointers. International Journal of Food Microbiology, 34:1~16.
    Weidemann, I., Breukink, E., van Kraaij, C., et al. 2001. Specific binding of nisin to the peptidoglycan precursor lipid Ⅱ combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. Journal of Biological Chemistry, 276: 1772~1779.
    Willen D.E. Vos. et al. Properties of NisinZ and distribution of its gene nisZ in Lactococcus Lactis, Appl. Environ. Microbiol. 1993, 59 (1): 213~218.
    Xue, J. Hunter, L, Steinmetz, T., et al. Novel activator of mannose-specific phosphotransferase system permease expression in Listeria innocua, identified by screening for pediocin AcH resistance. Appl. Environ. Microbiol., 2005, 71: 1283~1290.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700