乳酸菌素乳酸菌的筛选及其在肉制品和碎鲜辣椒发酵中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳酸菌(LAB,Lactic acid bacteria)是一类能使可发酵性碳水化合物转化成乳酸的细菌的通称。乳酸菌在其生长代谢过程中,能产生有机酸(organic acid)、细菌素(bacteriocin)、过氧化氢(hydrogen peroxide)和丁二酮(diacetyl)等多种拮抗物质。研究表明:乳酸菌除了对人体具有许多特殊生理功能以外,乳酸菌及其代谢产物对某些腐败菌如单核细胞增生的李斯特氏菌、金黄色葡萄球菌、蜡样芽孢杆菌、肉毒梭状芽孢杆菌、产气夹膜梭菌等还具有抑制作用,同时,乳酸菌产生的乳酸菌素作为一种纯天然的无毒防腐剂可以部分取代化学防腐剂,因而,利用乳酸菌对果蔬进行纯种发酵,既可以提高产品的营养和风味,又可以防腐和降低产品亚硝酸盐的含量。随着科技的发展,乳酸菌及其代谢产物乳酸菌素因具有广泛的用途和潜在的应用领域,越来越受到重视,筛选高性能的乳酸菌素产生菌具有非常重要的意义。
     本试验以自然发酵辣椒和泡菜为分离源,选育出了3株具有较强抑菌作用的产乳酸菌素菌株,对菌株进行了鉴定,并对其发酵性能、代谢产物的理化性质、防腐保鲜作用及其在碎鲜辣椒发酵中的应用等方面进行了研究。本试验的主要研究结果如下:
     (1)被选菌株的鉴定和抑菌作用研究:3株菌株经菌种鉴定为乳酸菌,分别标为Lact.1(乳球菌)、Lact.2(短乳杆菌)和Lact.3(植物乳杆菌)。3株乳酸菌对金黄色葡萄球菌、李斯特氏菌有明显的抑制作用,每1ml Lact.1、Lact.2和Lact.3的10倍发酵浓缩液对利斯特氏菌的抑菌直径分别为12.8mm、10.1 mm和10.8 mm,对金黄色葡萄球菌的抑菌直径分别为15.6mm、12.2 mm和13.6mm,对大肠杆菌、产气杆菌、蜡样芽孢杆菌也有一定程度的抑制作用。
     (2)被选菌株的性能研究:Lact.1、Lact.2和Lact.3的最佳生长温度范围是30℃-35℃;Lact.1、Lact.2和Lact.3均具有较快的产酸速度,发酵前12h,Lact.1发酵液的pH值由6.5迅速降至3.9,Lact.2和Lact.3的发酵液pH值从6.5降到4.2左右,发酵液的pH值最终均稳定在3.5左右;食盐对Lact.1、Lact.2和Lact.3的生长有明显的抑制作用,但Lact.1、Lact.2和Lact.3在食盐的浓度为8%左右的MRS培养基中均尚能生长,若食盐的浓度大于10%,则3株乳酸菌的生长都受到一定程度的抑制。
     (3) Lact.1、Lact.2和Lact.3的抑菌成分研究:对Lact.1、Lact.2和Lact.3的抑菌成分进行分离、电泳和理化性质研究,结果表明起抑菌作用的物质均为细菌素,分别命名为Bact.1、Bact.2和Bact.3,大致分子量分别为5.7kDa、6.0kDa和3.4kDa。
     (4) Bact.1、Bact.2和Bact.3的细菌素的生物学特性研究:Bact.1、Bact.2和Bact.3在80℃左右进行热处理,其抑菌活性基本不变;经100℃、15min热处理后,Bact.1、Bact.2和Bact.3对金黄色葡萄球菌的抑菌直径分别下降19%、9%、20%左右;经121℃、15min热处理后,Bact.1、Bact.2和Bact.3对金黄色葡萄球菌的抑菌直径分别下降45%、10%h和36%左右,这说明Bact.2的热稳定性比Bact.1、和Bact.3好,属于耐热性质蛋白;Bact.1、Bact.2和Bact.3具有较好热稳定性能,作为食品生物防腐剂具有良好的应用潜力;Bact.1、Bact.3在pH4-7的范围内均表现出较高的抑菌活性,在pH6.0左右时抑菌活性最高;Bact.2在pH2-7范围内均表现出较高的抑菌活性,在pH5.0左右时抑菌活性最高
     (5)用Bact.1、Bact.2和Bact.3对肉制品防腐保鲜作用研究:通过对Bact.1、Bact.2和Bact.3在肉制品中的防腐保鲜作用的研究,结果表明处理组比对照组的微生物总数的数量级要低2-3个;Bact.1、Bact.2和Bact.3作为防腐剂在肉制品中使用时,均能抑制金黄色葡萄球菌的生长,对金黄色葡萄球菌的抑制效果与金黄色葡萄球菌的浓度有关,浓度越大,抑菌效果越差。
     (6) Lact.1、Lact.2和Lact.3在碎鲜辣椒接种发酵中的应用研究:通过正交试验,得出了碎鲜辣椒接种发酵的最佳乳酸菌接种量和食盐的添加量,Lact.1、Lact.2和Lact.3的接种量分别是1%、1%、0.5%(细胞浓度均为10~8 cfu·ml~(-1)),食盐的添加量为10%。通过比较测定,自然发酵碎鲜辣椒与接种发酵碎鲜辣椒的风味物质组成与含量无明显差异,但接种发酵碎鲜辣椒的发酵周期比自然发酵碎鲜辣椒的发酵周期短5d左右。
     (7) Lact.1、Lact.2和Lact.3对亚硝酸盐降解作用研究:Lact.1、Lact.2和Lact.3具有较强的降解亚硝酸盐能力,在72h之内将检验降解亚硝酸盐能力培养基中的亚硝酸盐含量从125.00mg/l分别降为46.20mg/l、38.32mg/l和35.26mg/l,其降解能力是植物乳杆菌1.555和干酪乳杆菌1.29的3-4倍。自然发酵碎鲜辣椒发酵过程中会出现亚硝酸盐含量明显增加的现象,其峰值为25.06μg/g;用Lact.1、Lact.2和Lact.3对碎鲜辣椒进行纯种发酵,避免了碎鲜辣椒发酵过程中亚硝酸盐含量明显增加的现象的出现,且降低了成品中亚硝酸盐的含量,自然发酵碎鲜辣椒与接种发酵碎鲜辣椒产品中亚硝酸盐的含量分别为3.1μg/g和0.1μg/g。
Lactic acid bacteria (LAB) are a group of bacteria that can fermentcarbohydrate and produce a great number of lactic acid. They can produce organic acid,bacteriocin, hydrogen peroxide and diacetyl in fermentation. Studies have shown lacticacid bacteria not only have a lot of special physiological functions to human body, theyand their metabolites can inhibit the growth of Bacillus cereus, clostridium botulinum,clostridium perfringens, Listeria monocytogenes and Staphylococcus aureus. At thesame time, bacteriocin as one pure natural nonpoisonous preservative can replacechemical preservative partly. So the method that ferments fruits and vegetables withlactic acid bacteria not only can improve the nutrition and flavor of the products butalso can preserve and reduce the content of nitrate. With the development of technology,lactic acid bacteria and their metabolites have received the extensive attention ofvarious countries because of their uses and potential applications in many fields. Soselecting antibacterial LAB has important significance.
     Three strains with stronger antibacterial function were isolated from fermentedpepper and pickles. Their fermented performance, physical and chemical characters ofmetabolites, preservative function and the application in fermenting pepper werestudied in this study. The following was the main results:
     (1) The identification and antibacterial function of the three strains were studied.Three strains were identified to be LAB and called Lact.1(L.Lactis), Lact.2(L.brevis)and Lact.3(L.plantarum). Their metabolites had obvious inhibition to Staphylococcusaureus and Listeria monocytogenes. The antibacterial diameter of the three strains toListeria monocytogenes was 12.8mm, 10.1 mm and 10.8 mm, and to Staphylococcusaureus was 15.6mm, 12.2mm and 13.6 mm respectively. Their metabolites also hadsome inhibition to Escherichia coli, Bacillus cereus and Clostridium perfringens.
     (2) The fermented performance of the three strains was studied in this paper. Thebest growth temperature of the three strains was between 30℃-35℃. The speed of acidproducing was very fast. The pH value of fermented liquid of Lact.1 was to be 3.9 from 6.5 in 12h, and the pH value of fermented liquid of Lact.2 and Lact.3 was to be 4.2from 6.5 in 12h.The last pH value of fermented liquid of three strains was to be 3.5 orso; The salt content had obvious inhibition on the growth of the three strains, but thethree strains can grow in MRS with 8% salt or so, and inhibited when salt concentrationwas more then 10%.
     (3) The three kinds of metabolites were proved to be bacteriocin afterelectrophoresis and study of physical and chemical characters. The three kinds ofmetabolites were called Bact.1, Bact.2 and Bact.3 respectively. The molecular weightwas 5.7kda, 6.0kda and 3.4kda or so respectively.
     (4) The three kinds of metabolites had good heat stability when heated at 80℃Heated at 121℃for 15min, the antibacterial diameter of the three metabolitesreduced by 19% and 9% and 20% respectively. But when heated at 121℃for 15min,the antibacterial diameter of the three metabolites reduced by 45% and 10% and 36%respectively which could prove that Bact.2 was a kind of heat-stable protain. Becauseof their heat-stable characters, they had good potential applications. Bact. 1 and Bact.3had the highest antibacterial activity at pH6 or so, and showed high activity at pH4-7;Bact.2 had the highest antibacterial activity at pH5 or so, and showed high activity atpH2-7.
     (5) Through studying preservative function of three kinds of bacteriocin in meat,the result was that the order of magnitude of total microorganism in the group with oneof the three kinds of bacteriocin was 2-3 orders of magnitude lower than those of thegroup without bacteriocin. Bact.1 and Bact.2 and Bact.3 can inhibit the growth ofStaphylococcus aureus. The inhibition effect had relation with the concentration ofStaphylococcus aureus.
     (6) The best parameter of fermented pepper was that the inoculating amount ofLact.1, Lact.2 and Lact.3 was 1%, 1% and 0.5% respectively and adding amount of saltwas 10%. Through comparing the composition and content of the flavor materials,there was no obvious difference between naturally and inoculated fermented pepper.But the production cycle of inoculated fermented pepper was 5d shorter then that ofnaturally.
     (7) Lact.1, Lact.2 and Lact.3 can make the nitrate concentration of MRS from125.00mg/l to 20mg/l, 38.32mg/l and 35.26mg/l respectively in 72h. The ability was3-4 times of other two strains preserved in lab. The maximum nitrate content innaturally and inoculated fermented pepper was 25.06μg/g and 1.56μg/g respectivelyduring the fermentation. The nitrate content of naturally fermented product was 3.1μg/g;but the nitrate content of inoculated fermented product was only 0.1μg/g.
引文
[1] 汤务霞.乳酸菌及其应用[J].四川食品与发酵,2001,37(4):35-39
    [2] 张兰威,刘威.乳酸菌及其抑菌物质的应用研究[J].肉类工业,1997(3):21-23
    [3] 凌代文主编.乳酸细菌分类鉴定及实验方法[M].北京:中国轻工业出版社,1998:22-25
    [4] 董贵成,田欢.乳酸菌在医药中的初步应用及其展望[J].内蒙古科技与经济济,2002(5):93-94
    [5] 陈世琼,李平兰.特殊性能乳酸菌在治疗仔猪腹泻中的应用前景[J].饲料研究,2003(1):20-22
    [6] 段钟平,刘青.乳酸菌对酒精引起的胃黏膜和肝脏损伤的保护作用[J],临床肝胆病杂志,2002,18(5):292-294
    [7] 孟涛,郭兴华.乳酸菌及生长因子对人畜健康的作用[J].生物工程进展,1993,13(4):48-52
    [8] 杨辅直,李伟生.乳酸菌素治疗婴幼儿腹泻疗效观察[J].中国微生态杂志,2001,13(5):304
    [9] 刘屹峰.乳酸菌的生理特性和生物学功能[J].丹东纺专学报,2002,9(2):6-7
    [10] 罗冬英,尹传武.乳酸菌制剂对人体保健功能的机理探讨[J].鄂州大学学报,2002,9(4):53-54
    [11] 余焕玲,晏萍.乳酸菌的生理功能及在食品中的应用[J].饮料工业,2000,3(4):10-13
    [12] 张红.乳酸菌的发酵性和生物学功能[J].生物学通报,1999,34(12):18-20
    [13] 韩俊华,盛晓甘.乳酸菌降胆固醇作用研究进展[J].中国乳品工业,2002,30(3):16-20
    [14] 郑坚.乳酸菌对血脂的影响[J].黄冈师范学院学报,2002,22(3):37-38
    [15] 乃用.乳酸菌和双歧杆菌对胆固醇的同化作用[J].工业微生物,2003,33(2):58
    [16] 关世斌,王祥观.乳酸菌的抗肿瘤作用[J].中国乳品工业,1990,18(5):205-206
    [17] 苏伟,曹郁生.乳酸菌抗突变活性的研究进展[J].中国乳业,2003,31(1):26-29
    [18] 李建峰.保加利亚乳杆菌具有抗肿瘤作用[J].全球科技经经济望,2002(1):61
    [19] 胡东良.乳酸菌的抗肿瘤、抗变异原及免疫增强作用[J].中国乳品工业,1997,25(6):11-15
    [20] 张英春,张兰威,马微.乳酸菌对免疫系统功能的调节作用[J].食品研究与开发,2003,24(5):80-82
    [21] 奕琼、张灏.微生物降胆固醇作用研究进展[J].食品与机械,2003(1):6-9
    [22] Scand J Gastroenterol. The Role of Latic Acid Bacterial in Colon Cancer Prevention[J]. Review, 1995, 30: 497-502
    [23] Lindgren.S.W.and Dobrogosz.W.J. Antagonistic activity of lactic acid bacteria in food and feed ferment actions[J]. FEMS Microbiol. Rev.1990 (87): 149-164
    [24] Levine GN, KEANEY JF Jr, Vita JA. Cholesterol reduction in cardiovascular disease clinical benefits and possible mechanisms[J], Engl. J. Med. 1995, 332: 512-521
    [25] Gilliland S.E.and Walker,K.K.J.Assimilation of Cholesterol by Some Culture of LAB[J]. Dariy Science, 1990(73): 905
    [26] Hosono, Aoand T. Tonon-oka. Binding of cholesterol with lactic acid bacteriacells[J].Milchwissenschaft, 1995, 50: 556-560
    [27] Gipal A, N. P. Shan and H. Roginski., Bile tolerance taurocholate deconjugation and cholesterol removal by lactobacillus acidophilus and bidobacterium spp[J], Milchwissenschaft, 1996(51): 619-623
    [28] 敬思群.优质乳酸菌的应用[J].中国乳业,2002(6):18-20
    [29] 赵红霞,詹勇.乳酸菌的研究极其应用[J].江西饲料,2003(1):9-12
    [30] 张红印,崔焕成.乳酸发酵在食品加工中的应用[J].郑州牧业高等专科学校学报,2000,20(3):193-195
    [31] 吴祖心.乳酸菌在发酵香肠中的应用研究[J].食品工业技,2002,23(8):55-57
    [32] P.R.Tittsler Alactococcal expression system for engineered nisin[J]. Microbiology, 1996,142:2385
    [33] Aymerich T, Garriga M, Ylla J, Vallier J, Monfort J M,and M Hugas.Application of enterocins as biopreservatives against Listeria innocua in meat products[J]. Journal of food protection, 2000, 6: 721-726.
    [34] 丁燕,杜金华.乳酸菌及其代谢产物在啤酒工业中的应用[J].酿造工业,2001,4:101-103
    [35] 袁静,李元端.乳酸菌的细菌素乳链菌肽在食品工业中的发酵与应用[J].哈尔滨商业大学学报,2002,18(5):544-599
    [36] 李明春.乳球菌肽(NISIN)的研究进展[J].食品科学,1999,12:10-12
    [37] M.E.Somders, T.R.Klaenhammer. The Scientific Basis of Lactobacillus.acidophilus as Probiotic[J].J.Dairy Sci. 2001, 84: 319-331
    [38] J.Delves-Broughton. 2001.The Effect of Nisin on the Keeping Quality of Reduced Heat—treated Milks[J]. J Food Prot, 64, 213-219
    [39] 陶勇.Nisin及其在食品防腐方面的应用(J).食品与发酵工业,1990(4):53-56.
    [40] Hosono A.et al.Agric.Biol_Chem, 1990(45): 1639
    [41] Hosono A. et al.Jon.J.of Dairy and Food Science,1991,40(6)A-269
    [42] 朱小乔,刘通讯.极具潜力的天然防腐剂-Nisin[J].食品与发酵工业.2001,24(4):66-69
    [43] Daeschel M A. Antimicrobial substances from lactic acid bacteria for use as food preservatives[J]. Food Technology.1989, 164-167.
    [44] Smith M B. Bacteriocins: applications in food preservation[J]. Trends in Food science & Technology. 1992, 3: 133-137
    [45] Rayman M K, Aris B and Hurst A. Nisin: a possible alternative or adjunct to nitrite in the preservation of meats[J]. Journal of Applied and Environmental Microbiology. 1981, 41(2): 375-380.
    [46] Rogers L A. The inhibiting effect of Streptococcus on Lactobacillus bulgariacus[J]. Journal of Bacteriology. 1928, 16: 321-325
    [47] Chung K T, Dickson J S, Crouse J D. Effects of nisin on growth of bacteria attached to meat[J]. Applied and Environmental Microbiology. 1989, 55: 1329-1333.
    [48] M.E.Sanders. 1999. Probiotics. Food Technol, 53(1): 67-77
    [49] M. Van de Guchte, S.D.Ehrlich and E. Maguin.2001.Production of Growth—inhibitors bv Lactobacillus delbrueckii[J]. J.Appl. Microbiol, 91: 147-153.
    [50] Broghton J.D.et al.Food Technol[J], 1990, 44:100~106
    [51] Delves-Broughton J. Nisin and its uses as a food preservative[J]. Food and Technol, 1990, 44: 100-117
    [52] Xintain M, Daeschel MA. Nisin resistance of food brone bacteria and its specific resistance responses of Listeria monocytogens[J].Food Prot, 1993, 11: 944-948
    [53] Mattick A.T.et al.Lancet[M], 1997, 2: 5~7
    [54] Hrish A.Nature(London)[M], 1951,167:1031~1032
    [55] Yerebiznik M.R, Jagus, R.J,Cerrutti P, Huergo M.S, PilosofA.M,J.Food Prot[J], 2000, 63:741-746
    [56] Song H.J, Richard J.Food Prot, 1997,36:155-161
    [57] 纪淑娟,孟宪军.大白菜发酵过程中亚硝酸盐消长规律的研究[J].食品与发酵工业,2000,27(2):42-47
    [58] 张庆芳,迟乃玉,魏毓棠.大白菜腌制发酵亚硝酸盐含量研究[J].食品工业,2001,1:39-39
    [59] 张庆芳,迟乃玉,郑艳等.关于蔬菜腌渍发酵亚硝酸盐问题的探讨[J].微生物学杂志.2003,23(4):41-45
    [60] 杨性民.人工接种对泡菜品质及亚硝酸盐含量的影响[J].浙江大学学报(农业与生命科学版).2003,29(3):291-294.
    [61] 陈有容,杨风琼.降低腌制蔬菜亚硝酸盐含量方法的研究进展[J].上海水产大学学报.2004,13(1):67-72.
    [62] 刘青梅,杨性民.腌制蔬菜亚硝酸盐含量及降低措施研究[J].2001,22(9):44-46
    [63] Yamani M I, Hammouh F G, Humeid M A, et al. Production of fermemed cucumbers and turnips with reduced levels of sodium chloride [J]. Tropical Science, 39(4): 233-237
    [64] Gierschner K, Hammes W P. Microbiological removal of nitrites from vegetable juices and other liquid vegetable products[J]. Flussiges obst, 58(5): 36-39
    [65] lndenH, Kawano Y, KodamaY, et al. Examination of dietary recommendations for salt-cured, smoked, and nitrite-Preserved foods[J]. 1997(11): 8
    [66] 郑桂富.亚硝酸盐在雪里蕻腌制过程中生成规律的研究[J].四川大学学报,2000,32(3):85-87
    [67] 赵书欣,甄清.接种乳酸菌腌制渍菜过程中亚硝酸盐变化规律的研究[J].中国畜产与食品,1998,(4):153-154
    [68] 周根娣,卢善玲.上海市主要蔬菜中硝酸益含量及加工处理后硝酸盐和亚硝酸盐含量[J].环境污染与防治,1989,11(6):31-32
    [69] 刘玉龙.大白菜腌制过程中亚硝酸盐形成规律的研究[D]:沈阳农业大学硕士学位论文,1985,5
    [70] 郭晓红,杨洁彬,张建军.甘蓝乳酸发酵过程中亚硝峰消长机制及抑制途径的研究[J].食品与发酵工业,1989,(4):26-34
    [71] 吴承广.浅谈盐渍菜的腌制及应注意的几个问题.中国调味品,1995(10):19-20
    [72] V. M. E. Marshall and A.Y. Tamime. Phyiology and biochemistry of Fermented Milks In Microbiology and Biochemistry of Cheese and Fermented Milk Blackie Academic Professional[J], 1997(5): 111
    [73] T.I.Wirjantoro,M.J.Lewis, A.S.Grandison, G.C.Williams,and J.Delves-Broughton. The Effect of Nisin on the Keeping Quality of Reduced Heat-treated Milks[J]. Food Prot, 2001, 64: 213-219
    [74] 陈天寿著.微生物培养基的制造与应用[M].北京:中国农业出版社,1995:66-88
    [75] 李平兰,张麓,江汉湖.产细菌素植物乳杆菌菌株的筛选及其细菌素生物学特性研究[[J].食品与发酵工业,1998,25(1):1-4.
    [76] C. A. Van Reenen, L. M. T. Dicks et al. Isolation, purification and partial characterization of plantaricin 423, a bacteriocin produced by Lactobacillus plantarum[J]. Journal of Applied Microbiology, 1998, 84:1131-1137
    [77] Cintas, L.M.,Rodriguez,J.M.,Femandez,et al. Isolation and characterization of pediocin L50, a new bacteriocin from Pedioeoccus acidilactic with a broad inhibitory spectrum[J]. Appl.Enviro.Microbiol,1995, 61: 2643-2648
    [78] 孔健,马贵荣等.益生素生产菌-乳链球菌SB900的分离及生物学特性的研究[J].微生物学报,1996,36(4):269-275
    [79] 祝嫦巍,王昌禄,顾晓波等.新型乳杆菌素产生菌的筛选及菌株特性的研究[J].氨基酸和生物资源,2002,24(1):22-25
    [80] 林亲录,何煜波,谭兴和等.传统芥菜发酵制品中优势乳酸菌种的分离鉴定[J].食品科学,2003,24(6):69-71.
    [81] A. Van Reenen, L. M. T. Dicks et al. Isolation, purification and partial characterization of plantaricin 423, a bacteriocin produced by Lactobacillus plantarum[J]. Journal of Applied Microbiology, 1998, 84: 1131-1137
    [82] Antonio Galvez, Eva Valdivia, Hikmate Abriouel, et al. Isolation and characterization of enterocin EJ97, a bacteriocin produced by Enterococcus faecalis[J]. Arch Microbiol1998, 171: 59-65
    [83] Vaele Benoit. Purification and Partial Amino Acid Sequence of Brevicin 27,a Bacteriocin Produced by Lactobacillus brevis SB27[M]. Current Microbiology, 1997, 34: 173-179
    [84] Gonzalez B.Detection, purification and partial characterication of plantaticin C,a bacteriocin produced by Lactobacillus plantarum strain of dairy origin[M]. Appl Environ Microbiol 2002, 163(60): 21-58.
    [85] Nissen-Meyer, J. Larsen. Purification and characterization of plantaricin A, a Lactobacillus plantarum bacteriocin whose activity depends on the action of two peptides[M]. J.Gen.Mcrobiol.1999, 139:1973-1978
    [86] Jimenez-Diaz R., Ruizbarba.Purification and partial amino acid sequence of plantaricin S,a bacteriocin produced by Lactobacillus plantarum LPC 10,the activity of which depends on the complementary action of which depends on the complementary action of two peptides[M]. Appl.Enviro.Microbiol, 1995, 61(12): 4459-4463
    [87] Gonzalez,B, Pilar, A. Detection, purification, and partial characterization of plantaricin C,abacteriocin produce by a Lactobacillus plantarum strain of dairy origin[M]. Appl. Enviro.Microbiol, 1994, 60(6): 2158-2163
    [88] Atrih, N.Rekhif, A.J.GMoir, et al, Mode of action, purification and amino acid sequence of plantaricin C19, an anti-Listeria bacteriocin produced by Lactobacillus plantarum C19.International Journal of Food Microbiology, 2001, 68: 93-104
    [89] Remiger, V.G.H.Eijsink.Purification and partial amino acid sequence of plantaricin 25a and 1.25, two bacteriocins produced by Lactobacillus plantamm TMW 1.25, J.Appl.Microbiology, 1999, 86: 1053-1058
    [90] 林亲录,谭兴和,何煜波等.Lact.3和Lact.6两株选育菌种的发酵性能研究.2003,24(7):79-82.
    [91] H.Daba.C.Lacroix. SimpIe Method of Purilication and Sequencing of a Bacteriocin Produced by Pediococcus acidilactici UL45.J[M].Appl.Bacteriol. 1994, 77: 682.
    [92] 崔建超.乳酸菌产生的细菌素的生物学特性及其在乳品中的应用[D].河北农业大学硕士论文,2002年6月.
    [93] 吕燕妮.戊糖乳杆菌31-1菌株产细菌素研究[D].中国农业大学硕士论文,2004年6月.
    [94] 吴敬.酸马奶酒中乳酸菌的分离及抗菌特性研究[D].内蒙古农业大学硕士论文,2002年6月.
    [95] 钟敏.发酵辣椒组织软化的抑制初探.食品科学,2001,22(3):33-35
    [96] 章善生.中国酱腌菜[M].中国商业出版社,1994,3
    [97] 陈惠音.超低盐多菌种快速发酵腌制技术[J].食品科学,1994,5:18-22
    [98] 梁灵.低盐乳酸辣椒加工工艺[J].农牧产品开发,1999,3:13-14
    [99] 段翰英,李远志,蒋善友等.泡菜的亚硝酸盐积累问题研究[J].食品研究与开发,2001,22(6):15-17.
    [100] 沈国华.纯菌接种发酵技术在腌制蔬菜加工上的应用研究[J].食品研究与开发,2001,22(2):11-13
    [101] 冉艳红.泡菜汁乳酸菌的分离、筛选及应用研究[D].山东农业大学硕士论文.
    [102] Ralph W.Jack, John R.Tagg, Biberk Ray. Bacteriocins of Gram-positive bacteria[M].Microbiological Reviews,1995, 1: 171-200
    [103] Juan M.Rodriguez, Maria I. Martinez, Jan Kok, Pediocin PA-1, a wide-spectrum bacteriocin from Lactic Acid Bacteria Critical Reviews in Food Science and Nutrition[J], 2002, 42: 91-12
    [104] Cintas, L.M., Rodriguez, J.M., Fernandez, et al. Isolation and characterization of pediocin L50, a new bacteriocin from Pediococcus acidilactici with a broad inhibitory spectrum[M]. Appl Enviro. Microbiol, 1995, 61: 2643-2648
    [105] Francisco B.Elegado, Wang June Kim, Dae Young Kwon. Rapid purification, partial characterization and antimicrobial spectrum of the bacteriocin, Appl Enviro. Microbiol, 1998, 55: 64-68
    [106] 何效忠、张树歧.电泳[M].科学出版社,1990:103-120
    [107] Schilinger U, Geisen R, Holzapfel W H. Potential of antagonistic microorganisms and bacteriocins for the biological preservation of foods[J]. Trends in Food Science&Technology. 1996, 7: 158-164.
    [108] Kaya.A spray-dried bacteriocin powder with anti-microbial activity Appl Enviro[M]. Microbiol, 1995, 61: 2643-2648
    [109] Vignolo. An anti-microbial effective against Gram positive pathogens[J].International Patent Application.
    [110] Almudena Soriano. Control of food spoiling bacteria in cooked meat products with nisin,and a 3147-producing starter cultur[J]e.Eru Food Res Technol.2004, 219: 6-13
    [111] Caridi. Selection of Escherichia coli-inhibiting strains of Lactobacillus paracasei subsp Paracasei[J]. Journal of Industrial Microbiology and Biotechnology.2002, 29: 303-308
    [112] 熊善柏.酸辣椒的泡制与保鲜研究[J].中国酿造,1999,2:25-28
    [113] 钟敏.辣椒自然乳酸发酵中的变化及影响发酵的几个因素[J].广州食品工业科技,2000,16(3):1-3
    [114] 李雄辉.蔬菜低盐腌制过程中的酸度变化及控制[J].中国调味品,1995,6:11-13
    [115] R.F.McFeeters,Cell Wall Monosaccharide Changes During Sorfting of Brined Cucuber Mesocarp Tissus[J]. Journal of Food Science, 1996, 57(4): 937-940
    [116] 钟敏.发酵辣椒组织软化的抑制初探[J].食品科学,2001,22(3):33-35
    [117] 苏青海.酱腌菜的脆性变化及保脆措施[J].四川食品工业科技,1995,3:29-30
    [118] 大连轻工业学院.食品微生物学[M].中国轻工业出版社.1995,10:210
    [119] 大连轻工业学院.食品分析[M].中国轻工业出版社.1994,10:75,115,124,177,234
    [120] 张灏.泡菜菌系分析及发酵研究[D].无锡轻工业大学硕士论文.2002,6
    [121] 施安辉.蔬菜传统腌制发酵工艺过程中的微生物生态学意义[J].中国调味品,2002,5:11-15
    [122] 张海.多菌种速酿发酵辣椒的研制[J].中国调味品,1992(7):16-18
    [123] 吴正奇,凌秀菊.酱腌菜生产过程中亚硝酸盐和亚硝胺的产生与预防[J].中国调味品,1996(8):8-13
    [124] 周泽义.中国蔬菜硝酸盐与亚硝酸盐污染机制及控制对策[J].资源生态环境网络研究动态,1999,10(1):13-19
    [125] 张庆芳,迟乃玉,郑燕.乳酸菌降解亚硝酸盐机理的研究[J].食品与发酵工业,2002,28(8):27-31.
    [126] 沈明珠.蔬菜硝酸盐累积的研究[J].园艺学报.1982(4):41-43
    [127] 唐勇.乳酸菌发酵对超微猪骨粉营养及理化特性的影响[J].农业工程学报.2001,18(2):118-122
    [128] 刘玺.乳酸菌发酵香肠pH值、水分活度(Aw)及游离氨基酸含量变化研究[J].食品工业,2000(4):34-36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700