生物保鲜乳酸菌的筛选鉴定及培养条件的优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳酸菌及其代谢物质,以其抗菌性强、无毒性等优势,成为开发研究生物保鲜剂的热点;冷却肉以其外观新鲜、口感好等优势成为消费趋势,而其保质期成为束缚其市场发展的瓶颈,因此筛选具生物保鲜价值的乳酸菌,并将其应用于冷却肉保鲜成为本试验的内容和目的。
     本试验从多年收集保藏的菌种中,筛选得到5株对大肠杆菌、荧光假单胞菌、蜡状芽孢杆菌、单核细胞增生李氏杆菌和金黄色葡萄球菌均有良好抑菌效果的乳酸菌,分别是11118、11050、11052、10171和11095。经过生理生化试验和16SrDNA同源性比对,鉴定11118、10171和11095为植物乳杆菌(Lactobacillus planatarum),11050和11052为干酪乳杆菌(Lactobacillus casei)。
     筛出5株菌株的代谢产物经121℃高温处理20min,仍保持80%左右的抑菌活性,但只在酸性条件下(pH4左右)才表现良好的抑菌效果。在排除酸性末端产物和过氧化氢干扰后,用蛋白酶k等多种蛋白酶处理其代谢产物粗品,发现它们的抑菌活性都会有所降低,甚至是丧失。因此,其代谢产物中均含有一定的蛋白质类物质。
     通过单因素试验和正交设计,对这5株菌产抑菌物质的发酵条件进行了优化。初始pH6,37℃培养16h,筛出各乳酸菌的最佳接种量和培养基成分因菌株不同而表现出一定的差异性:
     (1) 11118最佳接种量为2%,最佳培养基成分为蔗糖2.5%、大豆蛋白胨2.5%、乙酸钠0.7%、K_2HPO_4 0.2%、吐温-80 1 mL、蒸馏水1000mL;
     (2) 11050最佳接种量为3%,最佳培养基成分为乳糖2%、大豆蛋白胨3%、乙酸钠0.5%、K_2HPO_4 0.1%、吐温-80 1 mL、蒸馏水1000mL;
     (3) 11052最佳接种量为4%,最佳培养基成分为葡萄糖2.5%、蛋白胨1.6%、酵母粉为0.8%、乙酸钠0.5%、K_2HPO_4 0.3%、吐温-80 1 mL、蒸馏水1000mL;
     (4) 10171最佳接种量为4%,最佳培养基成分为蔗糖2%、大豆蛋白胨3%、乙酸钠0.5%、K_2HPO_4 0.1%、吐温-80 1 mL、蒸馏水1000mL;
     (5) 11095最佳接种量是4%,最佳培养基成分为麦芽糖2%、大豆蛋白胨2%、乙酸钠0.5%、K_2HPO_4 0.3%、吐温-80 1 mL、蒸馏水1000mL。
     将这5株菌的代谢产物应用于冷却肉保鲜,以细菌总数作为评价保鲜效果的指标。4℃时,经筛出乳酸菌代谢产物处理的冷却肉较参照组的菌落总数低一个数量级左右,可延长保质期1d以上;处理组在28℃保持8h后,菌落总数仍低于10~5CFU/g,而参照组高于10~6CFU/g。10171较其它菌株对冷却肉表现出更好的保鲜效果。
Lactic acid bacteria and its fermentation production for fresh-keeping usage attract attentions of many researchers because of its nontoxicity and stronge inhibitory activity against many bacerias associate with food spoilage; while chilled meat is becoming a consume trend because of its fresh appearance and good taste.However, the preservation of chilled meat has been the chock point of its marketing development. So the object of this study was to screen lactic acid bacterias as natural food preservtives and apply them to chilled meat.
     5 stains of lactic acid bacteria was screened from the collection of ACCC, the supernate of which exhibited strong inhibitory acticity against Escherichia coli、Staphylococcus aureus、Bacillus cereus、Listeria monocytogenes and Pseudomomas fluorescens. According to the morphological features, physiological and biochemical features with 16S rDNA sequence analyse of the strains, 11118, 10171 and 11095 were identified as LactobacilIus plantarum, while 11050 and 11052 were identified as Lactobucillus casei.
     The supernate of the 5 strains screened was steady in acid conditions (about pH4) and remained about 80% baceriostasis activity after boiled at 121℃for 20 minutes. Excluded hydrogen peroxide and lactic acid, the inhibitive activity of them was decreased and even totally lost after treatment with papain, which showed that inhibitory materials included the contents with the the features of protein, could be classed as bactericin.
     Different factors were investigated such as the ingredients of medium, temperature, pH and inoculating amount on inhibitory activity of the supernate in order to optimize the fermentation condition. The optimum incubation time was 16h, the optimum temperature was 37℃, the optimum broth initial pH was about 6, while the optimum inoculating amount and medium component varied from strains to strains:
     1. The optimum inoculating amount of 11118 was 2% and its optimum medium component was: sucrose 2.5%, soybean peptone 2.5%, NaAc 0.7%, K_2HPO_4 0.2%, Tween-80 1mL, H_2O 1000 mL;
     2. The optimum inoculating amount of 11050 was 3% and its optimum medium component was: lactose 2%, soybean peptone 3%, NaAc 0.5%, K_2HPO_4 0.1%, Tween-80 1mL, H_2O 1000 mL;
     3. The optimum inoculating amount of 11052 was 4% and its optimum medium component was: glucose 2.5%, peptone 1.6%, yeast extract 0.8%, NaAc 0.5%, K_2HPO_4 0.3%, Tween-80 1mL, H_2O 1000 mL;
     4. The optimum inoculating amount of 10171 was 4% and its optimum medium component was: sucrose 2%, soybean peptone 3%, NaAc 0.5%, K_2HPO_4 0.1%, Tween-80 1mL, H_2O 1000 mL;
     5. The optimum inoculating amount of 11095 was 4% and its optimum medium component was: maltose 2%, soybean peptone 2%, NaAc 0.5%, K_2HPO_4 0.3%, Tween-80 1mL, H_2O 1000 mL.
     The fermented production of the 5 strains was applied as fresh-keeping agent on chilled pork, with the total bacteria as the parameter to value the effects of storing. When stored at 4℃, the total bacteria of the comparision group was about 10 times more than that of the groups treated with the supernate of the 5 strains, in which situation the shelf life of chilled pork could be extended about 1d; while after stored at 28℃for 8h, the total bacteria of the comparision group was more than 10~6CFU/g and the other groups were less than 10~5CFU/g. The fermented production of 10171 exhibited the best effect on the preservation of chilled pork.
引文
1.布坎南R E,吉本斯N E.伯杰细菌鉴定手册(第八版).北京:科学出版社,1984,347-365
    2.陈秀珠,何松,龙力红.乳链菌肽高产菌株AL2的发酵条件研究.微生物学通报,1995,27(4):215-218
    3.崔建超.乳酸菌产生的细菌素的生物学特性及其在乳品中的应用.[硕士学位论文].合肥:河北农业大学图书馆,2002
    4.付丽,夏秀芳,孔保华.生姜乙醇提取物对气调包装冷却猪肉的护色效果.肉类工业,2005,8:23-25
    5.宫正,薛平海,颜世发.乳酸菌产细菌素研究进展.本溪冶金高等专科学校学报,2004,6(2):34-36
    6.候运华,孔健,郝运伟,马桂荣,冯德荣.一株乳酸菌产细菌素Enteriocin LK-S1的初步研究.山东大学学报,2002,37(5):463-466
    7.还连栋,陈透珠,董可宁,薛禹谷.天然食品防腐剂-乳链菌肽(Nisin).中国食品添加剂,1995(1):8-13
    8.黄艾祥,葛长荣,胡永金,李全旺,管毓丽,梁中伟.冷却肉的保鲜试验.食品工业科技,2002,23(5):17-19
    9.蒋建平,陈洪,周晓媛.以茶多酚为主体的抗氧化剂联用对冷却肉保鲜作用的研究.株洲工学院学报,2005,19(1):17-19
    10.李孱,白景华,蔡昭玲.细菌素发酵培养基的优化及动力学初步研究.生物工程学报,2001,17(2):187-191
    11.李科德,韩木兰,柏建玲.乳酸链球菌的研究与应用.微生物学通报,2002,29(4):101-104
    12.李兰平,张篪.乳链菌肽的特性及应用.中国乳品工业,1997,25(4):18-20
    13.李铁军,李爱云,张晓峰.乳酸菌抗菌机理研究进展.微生物学通报,2002,29(5):81-85
    14.凌代文.乳酸细菌分类鉴定及试验方法.北京:中国轻工业出版社,1999,6-15
    15.吕克E.食品抗菌添加剂性质、应用效果.上海:上海翻译出版公司,1988,23-34
    16.吕燕妮.戊糖乳杆菌31-1菌株产细菌素研究.[硕士学位论文].北京:中国农业大学图书馆,2004
    17.罗爱平,朱劲秋,郑虹,马帮明,俞露.综合保鲜技术对冷却牛肉的保质研究.食品科学,2004,25(2):174-179
    18.罗欣,朱燕.乳酸钠在牛肉冷却肉保鲜中的应用研究.食品与发酵工业,2000,26(3):1-5
    19.马丽珍,南庆贤,戴瑞彤,李红伟,程文新.乳酸菌发酵液保鲜冷却猪肉的效果研究.中国农业科学,2004,37(8):1222-1228
    20.彭勇.冷却猪肉常见腐败微生物致腐能力的研究.[硕士学位论文].北京:中国农业大学图书馆,2005
    21.孙承锋,戴瑞彤,曲富春,陈斌.微生物与肉类食品的腐败.肉类研究,2001,1:32-35
    22.田晓乐,孟庆繁,周杰.微生物防腐剂——细菌素的研究与应用.食品工业科技,2004,25(1):120-123
    23.万素英,李琳.食品防腐与食品防腐剂.北京:中国轻工业出版社,1998,14-46
    24.许杨,孙红斌.乳酸菌细菌素的作用方式及其活性的影响因素.中国畜产与食品,1998,5(3):131-133
    25.杨洁彬,葛兴华.乳酸生物学基础与应用.北京:中国轻工业出版社,1996,132-153
    26.张曼,周光宏,徐幸莲.天然防腐剂与冷却牛肉保鲜相关特性的研究.黄牛杂志,2005,31(1):18-22
    27.赵玲艳,邓放明,杨细平,杨抚林.细菌素的生物学特性及作为防腐剂在熟肉制品中的应用.中国食品添加剂,2005,3:72-77
    28.赵瑞香,李元瑞,郭洋.嗜酸乳杆菌抑菌特性的研究.中国微生态学杂志,2001,13(6):318-319
    29. Aasen I M, Moretro T, Katla T. Influence of complex nutrients, temperature and pH on bacteriocin producing by Lactobacillus sakei CCUG 42687. Appl Microbiol Biotechnol, 2000, 53: 159-166
    30. Abee T, Kroeket L, Hill C. Bacterioeins: modes of action and potentials in food preservation and control of food poisoning. Int J Food Microbiol, 1995, 28: 169-185
    31. Adams M R, Hall C J. Growth-inhibition of foodborne pathogens by lactic and acetic-acids and their mixture. Int J Food Sci and Tech, 1988, 23: 287-292
    32. Baird-parker A C, Organic acids in microbial ecology of foods. London: Academic Press, 1980, 243-268
    33. Biswas S R, Ray P. Influence of growth conditions on the production of a bacteriocin, pediocin A, by Pediococcus acidilactici H. Appl Environ Microbiol, 1991, 57: 1265-1267
    34. Brashears M M, Reilly S S, Gilliland S E. Antagonistic action of cells Lactobaeillus lactis toward Escheriehia coli O11: H7 on refrigerated raw chicken meat. J Food Prot, 1998,61(2): 166-170
    
    35. Cleveland J. Bacteriocins: safe, natural antimicrobials for food preservation. Int.J.Food. Microbial, 2001(71): 1-20
    
    36. Dahiya R S, Spech M L. Hydrogen Peroxide by lactobacilli and its effects on Staphylococcus aureus. J Dairy Sci, 1968,51: 568
    
    37. Frederic L, Lucde V. The presence of salt and a curing agent reduces bacteriocin production by Lactobacillus sakei CTC 494, a potential starter cultrue for sausage fermentation. Appl Environ Microbiol, 1999,65(12): 5350-5356
    
    38. Gilliand S E, Speck M L. Inhibiton of psychrotrophic bacteria by Lactobacilli and Pediococci in nonfermented refrigerated foods. J Food Sci, 1975,40: 903-904
    
    39. Jay J M. Effect of diacetyl on food-borne microorganism. J Food Sci, 1982, 47:1831
    
    40. Kulshrestha D C, Marth E M. Inhibition of bacteria by some volatile and non-wolatile compounds associated with milk Staphylococcus aureu. J Milk Food Technol, 1974,37: 545
    
    41. Leroy F, Vankrunkelsven S, De Greef J. The stimulating effect of a harsh environment on the bacteriocin activity by Enterococcus faecium RZSC5 and dependency on the environmental stress factor used. Food Microbiol, 2003, 83(1): 27-38
    
    42. Leroy F, Vuyst L D. Growth of the baceriocin-producing Lactobacillus sakei strain CTC 494 in MRS broth is strongly reduced due to nutrient exhaustion: a nutrient depletion model for the growth of lactic acid bacteria. Appl Enviro Microbiol, 2001, 67(10): 4407-4413
    
    43. Marilin V I, Willianm E. S. Standardized method for Determining the Effect of Various Antibiotics on Lactococcal Cultures. J Food Prot, 1994, 57(3): 235-239
    
    44. Minor T E, Marth E H. Growth of Staphylococcus aureus in acidified pasteurized milk. J Milk Food Tech, 1961, 33: 516
    
    45. Montville T J, Winkowski K, Ludescher R D. Models and mechanisms for bacteriocin action and application. Int J Dairy, 1995, 5: 797-814
    
    46. Motta A S, Brandelli A. Influence of growth conditins on bacteriocin production by Brevibacterium linens .Appl Microbiol Biotechnol. 2003, 62(223): 163-167
    
    47. Nettles C, Susan G,Barefoot F. Biochemical and genetic characteristics of bacteriocin of food-associated lactic acid bacteria. J Food Protection, 1993, 50(4): 338-356
    
    48. Newtom K G, Gill C O. The development of anaerobic spoilage flora of meat stored at chill temperature. J Appl Bacteriology, 1978, 44: 91-95
    
    49. Price R J, Lee J S. Inhibition of Pseudomonas species by hydrogen peroxide producing lactobacilli. J Milk Food Technol, 1970, 33:13
    
    50. Raf C, Helge H, Bart D. Characterization and production of amylovo rin L471, a bacteriocin purified from Lactobacillus amy lovorus DCE 471 by a novel three-step method. Microbiology, 1999,145: 2559-2568
    
    51. Ralph W J, John R T, Biberk R. Bacteriocins of Gram-positive bacteria. J Review, 1995(1): 171-200
    
    52. Ray B, Kalchayan N, Field R A. Isolation of a Clostridium spp. From spoiled vacuum-packaged refrigerated beef and its susceptibility to bacterocin from Pediococcus acidilactici. In Review paper, session 2. Proceedings of the 35th International Congress of Meat Science and Technology, Copenhagen, Denmark, 1989, 285-294
    
    53. Ryan M P, Rea M C, Hill C, Ross R P. An application in chaddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147. Appl Environ Microbiol, 1996, 62(2): 612-619
    
    54. Schillinger U, Stiles M E, Holzapf W H. Bacteriocin production by Camobacterium piscicola LV 61. Int J Food Microbiol, 1993(20): 131-147
    
    55. Sorrells K M, Enigl D C, Hatfield J R. The effect of pH, acidulant, time and despreration on the growth and survival of Listerial monocytogenes. J Food Prot, 1989,52: 571
    
    56. Vescovo M, Torriani S, Orsi C, Macchiarolo F, Scolari G Application of antimicrobial-producing lactic acid bacteria to control pathogens in ready-to-use vegetable. J Appl Bacteriology, 1996, 81:113-119
    
    57. Yusof R M, Morgan J B, Adams M R. Bacteriological safety of a fermented weaning food containing L-lactate and nisin J Food Prot, 1993, 56: 414-417
    
    58. Zhang S S, Mustapha A. Reduction of Listeria monocytogenes and Escherichia coli O157: H7 numbers on vacuum-packaged fresh beef treated with nisin or nisin combined with EDTA. J Food Prot, 1999, 62:1123-112

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700