熔喷/静电纺复合法聚乳酸非织造布的制备及过滤性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用可生物降解的聚乳酸(PLA)为原料,利用熔喷法非织造技术制备熔喷非织造布(MB),再通过静电纺技术将其喷覆在熔喷非织造布上制备熔喷/静电纺复合法PLA非织造布(PLA MB/ES Nw)并用于过滤材料;该方法替代熔喷的驻极过程,在相同定量的基础上可以大大提高熔喷非织造布的过滤效率,而过滤阻力增长不大,生产工艺简单,能耗小,成本低,可用于过滤空气中的微粒且效果显著。
     本文首先通过调节热空气喷吹温度、速度、狭缝宽度、接收距离(DCD)等工艺参数,系统地研究了PLA熔喷非织造布(PLA MB)生产工艺参数与其结构和性能的关系。结果表明,随着热空气温度升高,产品的过滤性能有所降低,而透气性能增加;随着热空气狭缝宽度的增加,产品的过滤效率降低,透气性能增大;随着DCD的增加,产品的过滤效率增大,而透气量也增大,且基本与DCD成正比变化。由于工艺参数存在交互作用,本文进一步采用三层后向传播学习方法(BP)的神经网络模型处理实验数据并进行性能预测,结果表明,BP神经网络模型预测的过滤效率平均值误差在±3%以内,透气量平均值的误差在±8%以内,为优化生产工艺参数提供了一定的理论基础。
     在成功制备PLA MB的基础上,本文重点研究了PLA MB/ES Nws的制备技术。选用1,4-二氧六环/丙酮作为PLA的共混溶剂制作静电纺丝液,且当纺丝液浓度为8%、纺丝的过程中加入少量的NaCl时,纺出纤维的性能较好。在静电喷覆时间为10min时,所得PLA MB/ES Nws过滤材料的过滤效率和透气量的综合效果较好。根据所制备的PLA MB/ES Nws,本文又进一步建立了复合非织造布的结构模型,并对结构参数与工艺条件的关系进行了分析。
     通过调节电压、挤出速率和接收距离等工艺参数,本文又研究了静电复合工艺参数对PLA MB/ES Nws的结构与性能的影响。结果表明,随着静电纺电压的提高,纤维直径逐渐变细,PLA MB/ES Nws的过滤效率增大,透气性能下降;随着纺丝液挤出速率的增大,纤维的平均直径增大,PLA MB/ES Nws的过滤效率先降低后增大,透气量增加;随着接收距离的增大,纤维直径逐渐变细,且线密度的均匀度增加,PLA MB/ES Nws的过滤效率增大,透气量降低。同时,还进一步在上述结构模型基础上,建立了用于表征过滤性能的过滤模型,并分析了过滤参数及不同层次结构参数对过滤性能的影响。
     本文还采用三层BP神经网络模型分两步训练处理实验数据并进行复合工艺参数预测。结果表明,BP神经网络模型预测的过滤效率误差在±0.5%以内,透气量的误差在±2%以内,预测结果与实际用于表征产品性能的平均值之间的误差非常小,为优化工艺参数制备高效PLA MB/ES Nws过滤材料提供了依据。
Poly (lactic acid) (PLA) is an excellent biodegradable material. Through nonwovens technology it is made into meltblowns (MB). Then through electro-spinning (ES) technology the electro-spinning fibers are spun onto the MB to produce PLA MB/ES bi-layer nonwovens (MB/ES Nws) and it is used for filtrations. Using ES technology instead of electret process, the PLA MB/ES Nws exhibits better filtration performance than MB in the same GSM and its filtration resistance remains unchanged. The produce process of PLA MB/ES Mws is simple and less energy costs during its producing, so the cost is low. It exhibits excellent particle separation performance during the air filtration process.
     Through adjusting the production parameters, such as hot air temperature, velocity, the width of air gap and die to collector distance (DCD), the relationship between the PLA MB technical parameters and its structure and performance is studied systemic in the paper. The results show that with the increase of hot air temperature, the filtration efficiency of the meltblowns decreases a little and air permeability increases. With the increase of the width of air gap, the filtration efficiency of the meltblowns decreases and air permeability increases. With the increase of DCD, the filtration efficiency and air permeability increases, and it changes linearly according to DCD. Because the interaction of the technical parameters, a three-layer back-propagation (BP) neural network model is further adopted to deal with the experimental data and forecast its performance. The results show that the average error of filtration efficiency forecasted is less than±3%, the average error of air permeability forecasted is less than±8%. It provides the academic foundation of optimizing the production parameters.
     On the base of successful preparation of PLA MB, it is mainly studied preparation technology of PLA MB/ES Nws in this papaer. The performance of ES fibers are better when the mixed solvent of 1,4- dioxane/acetone is adapted and the PLA quality concentration is 8% with a small quantity of NaCl in the spinning solution. After 10 minutes for electro-spinning, the integrated performance of filtration efficiency and air permeability of MB/ES PLA Nws is better. According to the prepared PLA MB/ES Nws, a structure model is further established and the relationship between the structure parameters and the process condition is also analyzed in this paper.
     Through adjusting the production parameters, such as voltage, extrude velocity and die to collector distance (DCD), the relationship between the electro-spinning technical parameters and its structure and performance is studied systemic in the paper. The results show that with the increase of voltage, the fiber diameter turns fine and the filtration efficiency of the PLA MB/ES Nws increases but air permeability decreases. With the increase of the extrude velocity, the average fiber diameter increases and the filtration efficiency of the PLA MB/ES Nws decreases first then increases, and its air permeability increases. With the increase of DCD, the fiber diameter turns fine and becomes uniform. As a result the filtration efficiency of the PLA MB/ES Nws increases and air permeability decreases. On the base of the structure model established before, a filtration model is further established to elaborate the filtration property of PLA MB/ES Nws in this paper. And the filtration parameters and different structure parameters which influenced the filtration property are analyzed in this paper.
     A three-layer BP neural network model with two-step training is adopted to deal with the experimental data and forecast the compound technical parameters of PLA MB/ES Nws. The results show that the average error of filtration efficiency forecasted is less than±0.5%, the average error of air permeability forecasted is less than±2%. It provides the foundation of producing high performance PLA MB/ES Nws filtration materials.
引文
[1]郭秉臣主编.非织造布学.北京:中国纺织出版社,2002,8
    [2]万雅波,王善元.Tencel纤维滤材的过滤性能及其表征.纺织学报,2004,25(6):41-43
    [3]李冶,王伟民.21世纪非织造过滤材料的发展现状及趋势.非织造布,2003,11(1):13-15
    [4]何建新,全攀瑞,顾林钧.功能性非织造过滤材料.河南纺织科技,2002,23(1):12-13
    [5]沈志明.过滤材料的高性能和复合化发展.非织造布,2005,13(4):9-12
    [6]张家祥.非织造布过滤材料的开发和应用.产业用纺织品,1998(7):9-11
    [7]牛海涛,周华,郭秉臣.非织造布在环保领域中的应用.北京纺织,2005,26(1):11-14
    [8] Rory Holmes. World Nonwoven Overview. China Nonwovens Training Course 2008
    [9]杨海华,靳向煜.非织造布过滤材料的应用及发展趋势.产业用纺织品,1998,16(5):6-8
    [10] Lutz Bergman.展望21世纪全球过滤产业前景.产业用纺织品, 2003,21(9):8-9
    [11] Larry C. Wadsworth, Peter P. Tsai. Air and Liquid Filter Products and Market. Lecture of Tianjin Polytechnic University, 2005, 6
    [12]刘伟时.熔喷非织造布技术发展概况及应用.化纤与纺织技术,2007,(4):33-37
    [13]谢明,韩涛.熔喷法非织造布的现状及发展趋势.纺织导报,2005,(6):106-109
    [14] Peter P. Tsai,崔爱锋.世界非织造过滤材料的现状和未来.产业用纺织品,2001,19(3):1-3
    [15] Larry C. Wadsworth. Nonwoven Market Analysis. Lecture of Tianjin Polytechnic University, 2005, 6
    [16]郭建南,刘丽娴,李维清.新型非织造布发展前景分析与应用研究.丝绸,2008,2:12-15
    [17]裘康,焦晓宁.复合非织造布技术.产业用纺织品,2005,(5):14-18
    [18] Eileen Wubbe. A Winning Combination. Nonwovens Industry, 2003, 9: 44-46
    [19] The Top 40:DuPond Nonwovens. Nonwovens Industry, 2004, 9: 44-48
    [20]于红.非织造复合材料日益显示优势.生活用纸,2004,18(9):20-22
    [21] KarenBitz,张静峰,饶剑辉. 2002年全球非织造企业40强简介(四).产业用纺织品,2003,21(10):43
    [22] The Top 40:Kimberly-Clark. Corp. Nonwovens Industry, 2004, 9: 48-52
    [23]沈志明.非织造布在产业领域的发展前景广阔.非织造布,2003,11(2):3-6
    [24] Haynes B, Milligan M W. Experimental Investigation of Melt-Blowing. INDA Journal of Nonwovens Research, 1991, 3(4): 20-24
    [25]刘玉军,侯幕毅,肖小雄.熔喷法非织造布技术进展及熔喷布的用途.纺织导报,2006,(8):79-80
    [26] Colombo S. Fare offers range of spunbond, SMS and meltblown lines. International Fiber Journal, 2004, 19(1): 44 - 46
    [27]洪粲.熔喷非织造布生产应用及专用料的制备.化工进展,2004,23(7):778-781
    [28] Roth M, Leukel J, Muller D et al. A novel polymer modifier for improved melt blown fabric properties. Nonwovens World, 2005, 14(1): 40 - 45
    [29]严冰,赵耀明,聚丙交酯及可降解脂肪族聚酯类纤维的结构与生物降解性能,合成纤维,2000,5:16-19
    [30]朱颖先,陈大俊,李瑶君,可生物降解纤维材料,合成纤维工业,2000,5:31-33
    [31]钱志勇,刘孝波,可生物降解聚酯酰胺共聚物研究进展,材料导报,2001,9:53-56
    [32] Masao Matsui. Biodegradable Fibers Made of Poly-Lactic Acid. Chemical Fibers International, 1996, 46(5): 318-319
    [33] Unitika. Polylactic Biodegradable Fiber Products. Chemical Fibers International, 1999, 49(1):5
    [34] Schmack G, Jehnichen D, Vogel R et al. Biodegradable fibres spun from poly(lactide) generated by reactive extrusion. Journal of Biotechnology, 2001, 86(2): 151-160
    [35]张国栋,杨纪元,冯新德等.聚乳酸的研究进展.化学进展,2000,12(1):89-102
    [36]周美华,徐静波.乳酸和聚乳酸的研究进展.中国纺织大学学报,2000,26(5):111-114
    [37]陆大年,王宁,眭伟民,新型绿色材料——脂肪族聚酯,上海化工,2001,5:4-7
    [38]钱以竑,聚乳酸酯及其市场化发展,合成纤维,2004,1:5-9
    [39] James Lunt. Polylactic acid polymers for fibers and nonwovens. InternationalFiber Journal, 2000, 15(6): 48-52
    [40]金离尘.“绿色”纤维聚乳酸纤维的发展前景.中国化纤信息,2002(3):19-21
    [41] Lam K H, Nijenhuis A J, Bartels H. Reinforced poly(L-lactic acid) fibres as suture material. Journal of Applied Biomaterials, 1995, 6(3): 191–197
    [42]瞿丽曼,肖沪卫.聚乳酸领域国内外专利特点分析及我国发展对策.化工进展,2005,24(7):818-819
    [43]姚军燕,杨青芳,周应学.高性能聚乳酸纤维的研究进展.化工进展,2006,25(3):286-291
    [44]陈昂,钱明球.聚乳酸的聚合、纺丝、性能及其织物的开发.合成纤维,2005,34(9):7-10
    [45]白雁斌,黄晓琴,雷自强.聚乳酸类医用生物降解材料的研究进展.高分子通报,2006,(3):46-51
    [46] Kang HJ, Kang DW, Chun SW et a1. Effect of thermal degradation on the crystallization behavior of L-polylactic acid in melt processing. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 221(1): 400
    [47]钱明球.聚乳酸及其在非织造布方面的应用.产业用纺织品,2005,23(9):30-31
    [48]耿琴玉,胡学梅.聚乳酸纤维的性能特征及其产品开发.棉纺织技术,2004,32(4):62-64
    [49]冷纯廷,程宏,张亚天.超精细非织造布过滤袋的开发与应用.非织造布,2004,12(4):23-25
    [50] Ed Homonoff, Edward C. Homonoff. Business Overview - HVAC Market. National Air Filtration Association, April 2002
    [51]魏庭勇,靳向煜.熔喷非织造材料在液相过滤方面的新进展.产业用纺织品,2001,19(7):10-12
    [52] Roy. M. Broughton. Nonwovens Products. Nonwovens Product Tutorial, 2000, September
    [53] Kanaoka C, Emi H, Otani Y et a1. Effect of charging state of particles on electrets filtration. Aerosol Science and Technology, 1987, (7): l-l3
    [54] Baumgarmer H, LoKer F. Particle collection in electret fibers filters: a basic theoretical and experimental study. Filtration and Separation, 1987, (23): 346 -35
    [55] Ji JH, Bae CN, Kang SH, et a1. Efect of particle loading on the collection performance of all electret cabin air filter for submicron aerosols. Aerosol Science, 2003, (34): 1493-1504
    [56]康卫民,程博闻,焦晓宁等.驻极体非织造布的研究进展.产业用纺织品,2005,23(2):1-5
    [57]陈钢进,肖慧明,王耀翔.聚丙烯非织造布的驻极体电荷存储特性和稳定性.纺织学报,2007,28(9):125-128
    [58]吴大诚,杜仲良,高绪珊编著.纳米纤维.北京:化学工业出版社,2002,12
    [59] Thandavamoorthy Subbiah, G. S. Bhat, R. W. Tock et al. Electrospinning of nanofibers. Journal of Applied Polymer Science, 2005, 96(2): 557 - 569
    [60] Formhals A. Process and apparatus for preparing artificial threads, U S Patent, 1,975,504, 1934
    [61] Simons H L. Process and apparatus for producing patterned non-woven fabrics. US Patent,3,280,229, 1966
    [62] Larrondo L, John Manley R ST. Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. Journal of Polymer Science: Polymer Physics Edition, 1981, 19(6): 909-920
    [63] Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning. Polymer, 1999, 40(16): 4585-4592
    [64] Christopher J. Buchko, Loui C. Chen, Yu Shen et al. Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer, 1999, 40(26): 7397-7407
    [65] Spivak AF, Dzenis YA, Reneker DH. A model of steady state jet in the electrospinning process. Mechanics Research Communications, 2000, 27(1): 37-42
    [66] Reneker DH, Yarin AL, Fong H et al. Bending instability of electrically charged liquid jets of polymer solution in electrospinning. Journal of Applied Physics, 2000, 87(9): 4531-4547
    [67] Deitzel JM, Kleinmeyer JD, Hirvonen JK et a1. Controlled deposition of electrospun poly(ethylene oxide)fibers. Polymer, 2001, 42(19): 8163-8170
    [68]郭建.纳米纤维静电纺丝机——纳米蜘蛛.全球科技经济瞭望,2005,(2):64
    [69] Li GY, Zhou P, Shao ZZ et al. The natural silk spinning process - A nucleation - dependent aggregation mechanism. European Journal of Biochemistry, 2001, 268(24): 6600-6606
    [70]顾书英,任杰,诸静.聚乳酸的静电纺丝行为及其纤维结构研究.材料导报,2005,19(11):383-385
    [71] Taylor GI. Disintegration of water droplets in an electric field. Proc. R. Soc. London Ser. A, 1964, 280: 383–397
    [72] Forbes RG, Ljepojevic NN. Calculation of the shape of the liquid cone in a liquid-metal ion source. Surface Science, 1991, 246(1-3): 113-117
    [73] Yarin AL, Koombhongse S, Reneker DH. Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. Journal of Applied Physics, 2001, 90(9): 4836-4846
    [74] Shin YM, Hohman MM, Brenner MP et al. Experimental characterization of electrospinning: the electrically forced jet and instabilities Polymer, 2001, 42(25): 9955-9967
    [75] Deitzel JM, Kleinmeyer J, Harris D et al. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 2001, 42(1) : 261–272
    [76] Larry C. Wadsworth. New Nonwoven Technologies. Lecture of Tianjin Polytechnic University, 2005, 6
    [77] Subbiah T, Bhat G S, Tock R W et al. Electrospinning of Nanofibers. Applied Polymer Science, 2005, 96(2): 557~569
    [78] Supaphol P, Mit-uppatham C, Nithitanakul M. Macromolecular materials and engineering, 2005, 290(9), 933~942
    [79] Schreuder-Gibson HL, Gibson P. Applications of electrospun nanofibers in current and future materials. POLYMERIC NANOFIBERS, 2006, 918: 121-136
    [80] Pawlowski KJ, Belvin HL, Raney DL et a1.Electrospinning of a micro-air vehicle wing skin.Polymer,2003,44:1309-1314
    [81] Reneker DH, Kataphinan W, Theron A et a1. Nanofiber garlands of polycaprolactone by electrospinning.Polymer, 2002, 43(25): 6785-6794
    [82] Zheng-Ming Huang, Y.-Z. Zhang, M. Kotakic et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 2003, 63: 2223–2253
    [83] Gregory Ward. Meltblown Nanofibers for Nonwoven Filtration Applications. Filtration + Separation, Nov. 2001: 42-43
    [84]王波,胡平.国内外电纺丝技术新进展.塑料,2007,36(6):74-81
    [85] Buettner, John M. Leblanc, James A. Gogins et al. Industrial bag house elements. U S Patent, 6,740,142, 2004
    [86]黄齐模主编.纺织品过滤材料.北京:纺织工业出版社,1992,1
    [87]俞建勇,赵恒迎,程隆棣.新型绿色环保纤维——聚乳酸纤维性能及其应用.纺织导报,2003(3):63-66
    [88]孙俊科,李彦,姜秀溪.高效环保过滤材料的开发研制.非织造布,2005,13(2):45-46
    [89]刘呈坤,马建伟.非织造布过滤材料的性能测试及产品应用.非织造布,2005,13(1):30-34
    [90]王迎辉,沈恒根.驻极体过滤材料过滤性能的测试.产业用纺织品,2007,25(11):15-19
    [91]蔡杰著.空气过滤ABC.北京:中国建筑工业出版社,2002:15
    [92] J. H. Ji, G. N. Bae, S. H. Kang et al. Effect of particle loading on the collection performance of an electret cabin air filter for submicron aerosols. Journal of Aerosol Science, 2003 (34): 1493-1504
    [93]毕克鲁.以纳米技术提升熔喷非织造布产品的附加值.非织造布,2006,14(6):29
    [94]覃小红,王善元.静电纺纳米纤维的过滤机理及性能.东华大学学报(自然科学版),2007,33(1):52-56
    [95] Old?ich Jirsák, David Luká?, Filip Sanetrník et al. VYROBA A VLASTNOSTI NANOVLáKEN. Technical University of Liberec, Czech Republic
    [96]克莱德·奥尔编,邵启祥译.过滤理论与实践.北京:国防工业出版社,1982,4
    [97]张伟力,刘瑞霞.浅谈丙纶熔喷非织造布在过滤领域的应用.产业用纺织品,2000,18(3):26-28
    [98]喻晓玲,靳向煜.设计纤维制品过滤材料的影响因素.过滤与分离,2005,15(3):36-38
    [99]魏取福.非织造滤布过滤性能研究.纺织学报,2001,22(4):259-260
    [100]赵鸿雁,崔世忠.聚丙烯熔喷非织造布及其过滤性能.郑州纺织工学院学报,2001,12(4):29-31
    [101]石波,安树林.熔喷法聚丙烯非织造布滤材.天津纺织科技,2003,41(1):25-28
    [102] Peter P. Tsai, Heidi Schreuder-Gibson, Phillip Gibson. Different electrostatic methods for making electret filters. Journal of Electrostatics, 2002, 54(3-4): 333-341
    [103] Daniel E. Rosner, Pushkar Tandon, A. G. Konstandopoulos. Local size distribution of particles deposited by inertial impaction on cylindrical target in dust-laden streams. Journal of Aerosol Science, 1995, 26(8): 1257-1279
    [104]陈明宏.纺织过滤材料浅谈.产业用纺织品,1990,(3):26-32
    [105]张立明编著.人工神经网络的模型及其应用.上海:复旦大学出版社,1993,7
    [106]安淑芝等编著.数据仓库与数据挖掘.北京:清华大学出版社出版,2005
    [107]鲁娟娟,陈红. BP神经网络的研究进展.控制工程,2006,13(5):449-451
    [108]徐翔,黄道.一种前馈网络的新型混合算法.华东理工大学学报,2004,30(2):175-178
    [109]王青海.BP神经网络算法的一种改进.青海大学学报(自然科学版),2004,22(3):82-84
    [110]侯福均,吴祈宗.基于遗传和模拟退火算法优化神经网络的铁路营业里程预测.北京理工大学学报,2004,24(3):247-250
    [111] Dieter H.Muller, Andreas Krobjilowski. Meltblown Fabrics from Biodegradable Polymers. International Nonwoven Journal,2001,Spring:11-16
    [112] Jim Lunt.用于非织造材料的聚乳酸.产业用纺织品,2006,24(1):18-22
    [113]渠叶红,柯勤飞,靳向煜.熔喷聚乳酸非织造材料工艺与过滤性能研究.产业用纺织品,2005,(5):19-22
    [114] Kwangsok Kim, Meiki Yu, Xinhua Zong et al. Control of degradation rate and hydrophilicity in electrospun non-woven poly(d,l-lactide) nanofiber scaffolds forbiomedical applications. Biomaterials, 2003, 24: 4977-4985
    [115] Y.K. Luu, K. Kim, B.S. Hsiao, et al. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA–PEG block copolymers. Journal of Controlled Release, 2003, 89: 341-353
    [116] C.M. Vaz, S. van Tuijl, C.V.C. Bouten et al. Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomaterialia, 2005, (1): 575-582
    [117] Dapeng Li, Margaret W. Frey, Antje J. Baeumner. Electrospun polylactic acid nanofiber membranes as substrates for biosensor assemblies. Journal of Membrane Science, 2006, 279: 354-363
    [118] Xiaoyi Xu, Qingbiao Yang, Yongzhi Wang et al. Biodegradable electrospun poly(L-lactide) fiberscontaining antibacterial silver nanoparticles. European Polymer Journal, 2006, 42: 2081-2087
    [119]潘莺,王善元.模拟熔喷纤网的孔径分布及其对过滤性能的影响.中国纺织大学学报,2000,26(5):73-77
    [120]周蓉,晁岳壮等.非织造布孔隙率计算方法探讨.北京纺织,2002,3:17-18
    [121] Sung Kayser, Sung Max. From Corn to Fabric. Textile Asia, 2002, (12): 6
    [122] Ron (Rongguo) Zhao. Microfiber Nonwoven Technologies and Their Medical Applications. TANDEC Conference, 2006
    [123]渠叶红,柯勤飞.熔喷聚乳酸非织造材料的研究进展.产业用纺织品,2003,21(12):1-5
    [124] http://www.natureworksllc.com/product-and-applications.aspx
    [125]戴有刚,左保齐.静电纺丝非织造过滤材料研究进展.产业用纺织品,2008,7:1-4
    [126]练军,陆忠.熔喷非织造布过滤性能的研究.产业用纺织品,2002,9:13-15
    [127] Peter P.Tsai,严玉蓉.纳米纤维技术的新进展.产业用纺织品,2008,3:1-5
    [128]刘俊丽.纳米纤维及其在非织造布中的应用.江苏纺织,2007,11A:51-53
    [129] Matthew J A, Wnek G E, Simpson D G et a1. Electrospinning of Collagen Nanofibers. Biomacromolecules, 2002, 3(2): 232-238
    [130] Katta P, Alessandro M, Ramsier R D ea a1. Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector. NANO LETTERS, 2004, 4(11): 2215-2218
    [131] Theron A, Zussman E, Yarin A L. Electrostatic field-assisted alignment of electrospun nanofibers. Nanotechnology, 2001, 12(3): 384-390
    [132] Deitzel J M, Kleinmeyer J D, Hirvonen J K et a1. Controlled deposition of electrospun poly(ethylene oxide) fibers. Polymer, 2001, 42(19): 8163-8170
    [133]马驰,吴玥,俞建勇. PBS静电纺非织造布结构与过滤性能的关系分析.产业用纺织品,2008,5:13-15
    [134]邱芯薇,潘志娟,夏艳杰等.再生丝素纤维非织造织物的孔隙结构与性能.丝绸,2007,12:40-43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700