生物粘合启发下渗透蒸发复合膜的制备与酯化反应强化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业应用中的渗透蒸发膜多数为复合膜,其结构稳定性直接关系到膜的使用寿命。研究高分离性能、高稳定性的复合膜有重要理论意义和应用价值。本研究以乙醇和水的渗透蒸发分离为研究对象,以增强复合膜分离层与支撑层界面相互作用、提高复合膜结构稳定性为出发点,受生物粘合现象的启发,将生物粘合剂引入复合膜中,提出了一种制备复合膜的新方法。基于生物粘合机理,对复合膜的界面相互作用进行分析和调控,获得了具有高稳定性和高分离性能的复合膜。
     首先,在壳聚糖(CS)分离层和聚丙烯腈(PAN)支撑层间引入了一层卡波姆(CP)生物粘合剂作为过渡层,制备了GCCS/CP/PAN三层结构的复合膜。T-型剥离测试证实了CP的引入增强了CS/PAN间的界面粘合强度。接触角测试结果表明了CP可改善PAN支撑层的亲水性,增强与CS分离层的界面相容性。渗透蒸发实验结果表明CP的引入可提高膜的分离选择性。在此基础上,将明胶(GE)、透明质酸(HA)生物粘合剂引入复合膜中,制备了GCGE/PAN、GCHA/HM-PAN两层结构复合膜。GE、HA生物粘合剂既能与支撑层形成牢固的粘合又具有良好成膜性和强亲水性,可直接用作复合膜的分离层。对比所考察的三种复合膜的渗透蒸发性能,GCHA/HM-PAN复合膜的脱水性能最高:当HA浓度为0.8 wt.%,交联度为0.3及采用水解改性的PAN为支撑层时,GC(0.3)HA(0.8)/HM-PAN膜的渗透通量为1.634 kg/(m2h),分离因子为233。
     尝试了采用分子动力学模拟技术从分子水平上揭示膜材料-膜微观结构-膜分离性能的关系,初步探究了三种复合膜的界面粘合机理。界面粘合键均由氢键、范德华力和静电力非键相互作用组成。在不同复合膜界面处占主导的作用力不同:CS/CP/PAN为静电力;GE/PAN为范德华力;而HA/HM-PAN为氢键。其中,HA/HM-PAN结构的界面相互作用最强,从而可以抑制分离层高分子链的运动性和溶胀,获得高分离选择性。
     考察了GCCS/CP/PAN、GCGE/PAN、GCHA/HM-PAN复合膜对乳酸与乙醇酯化反应平衡移动的影响。渗透蒸发与酯化反应的耦合,可及时将生成的水移出,打破原有化学平衡限制,使乳酸乙酯产率提高了28.2%。确定了适宜的耦合工艺参数,使得乳酸乙酯产率反应8 h时高达94.9%。
Most pervaporation members for industrial use were composite membranes, and the structural stability of the composite membrane was closely related to the service life. It is very important both in theory and practicality to develop the composite with high structural stability and separation performance. In the present work, the pervaporation separation of the water and ethanol mixture was chosen as the investigation object and the goals were to increase the interfacial interaction between the separation layer and the support layer, and enhance the structural stability of composite membrane. Inspired by the bioadhesion phenomena, a new method of fabricating composite membrane was found by introducing bioadhesives into it. Furthermore, the interfacial interaction was analyzed and adjusted basing on the bioadhesion principle, and the composite membranes with high structural stability and separation performance were fabricated.
     Firstly, the GCCS/CP/PAN composite membrane with three layers structure was fabricated by introducing CP bioadhesive as the intermediate layer. T-peel test veri?ed the interfacial adhesion strength of CS/PAN membrane was considerably increased by the introduction of CP. Contact angle measurement results suggested that CP was helpful to enhance the hydrophilic nature of PAN support layer and resulted in a better compatibility with CS separation layer. With the presence of the CP intermediate layer, the separation selectivity of CS/PAN membrane was greatly increased. Basing on this, GCGE/PAN and GCHA/HM-PAN composite membranes with two layers structure were fabricated. GE and HA bioadhesives could firmly adhere onto the support layers and displayed extremely high hydrophilicity, which acted as the separation layer of composite membrane directly. Comparing the pervaporation performance of GCCS/CP/PAN, GCGE/PAN and GCHA/HM-PAN membranes, the GCHA/HM-PAN membrane showed the best separation efficiency. Using the hydrophilically modified-PAN (HM-PAN) as the support layer, when the HA concentration was 0.8 wt.%, and the cross-linking degree was 0.3, the GA(0.3)HA(0.8)/HM-PAN membrane displayed the permeation flux of 1.634 kg/(m2 h) and the separation factor of 233 for 90 wt.% aqueous ethanol solution at 353 K with a flow rate of 60 L/h.
     Secondly, molecular dynamics simulation was employed to reveal the relationship of membrane materials, microstructure and separation performance from molecular level, and explored the interfacial adhesion principle of CS/CP/PAN, GE/PAN and HA/HM-PAN composite membranes. Interfacial energies were composed of hydrogen bond, van der Waals force and electrostatic force, and the dominant forces at the interfaces of three kinds of composite membranes were different. Electrostatic force, van der Waals force and hydrogen bond played a dominant role at the interface of CS/CP/PAN, GE/PAN and HA/HM-PAN composite membranes, respectively. Meanwhile, the HA/HM-PAN membrane showed the strongest interfacial interaction, which could further inhibit the polymer chains mobility and decrease the swelling of the separation layer, leading to an improved selectivity.
     Finally, the effects of GCCS/CP/PAN, GCGE/PAN and GCHA/HM-PAN composite membranes on the chemical balance motion of esterification between lactic acid and ethanol were investigated. Pervaporation-assisted esteri?cation results suggested that the incorporation of pervaporation process to preferentially remove water from the reaction mixture, broke the limit of initial chemical balance, and the yield of ethyl lactate was substantially enhanced by 28.2%. Furthermore, the optimum thchnological parameter for coupling process was confirmed, and the yield of ethyl lactate reached to 94.9% after 8 h.
引文
[1] Wijmans J G, Smolders C A, The solution-diffusion model: a review, J. Membr. Sci., 1995, 107(1-2): 1~21
    [2] Jonquières A, Clément R, Lonhon P, Néel J, Dresch M, Chrétien B, Industrial state-of-the-art of pervaporation and vapour permenation in the western countries, J. Membr. Sci, 2002, 206(1-2): 87~117
    [3] Zhang S, Drioli E, Review: Pervaporation membrane, Sep. Sci. Tech., 1995, 30(1): 1~31
    [4]陈镇,秦培勇,陈翠仙,渗透汽化和渗透汽化技术的研究、应用现状及发展,膜科学与技术,2003,23(4):103~109
    [5] Borgwardt R T, Methanol production from biomass and natural gas as transportation fuel, Ind. Eng. Chem. Res., 1998, 37(9): 3760~3767
    [6]李继定,陈剑,叶宏等,渗透汽化节能膜技术及其在石化领域中的应用,化工进展,2006,25(1):25~29
    [7]刘继泉,胡存,秦娟妮,膜分离技术在无水乙醇生产中的应用,酿酒,2005,32(3):38~40
    [8] Chaman P D, Oliveira T, Livingston A G , Li K, Membranes for the dehydration of solvents by pervaporation, J. Membr. Sci., 2008, 318(1-2): 5~37
    [9] Guo R L, Hu C L, Li B, Jiang Z Y, Pervaporation separation of ethylene glycol/water mixtures through surface crosslinked PVA membranes:Coupling effect and separation performance analysis, J. Membr. Sci., 2007, 289(1-2): 191~198
    [10] Ariyaskul A S, Huang R Y M, Douglas P L, Pal R, Feng X, Chen P, Liu L, Blended chitosan and polyvinyl alcohol membranes for the pervaporation dehydration of isopropanol, J. Membr. Sci., 2006, 280(1-2): 815~823
    [11] Kanti P, Srigowri K, Madhuri J, Smitha B, Sridhar S, Dehydration of ethanol through blend membranes of chitosan and sodium alginate by pervaporation, Sep. Purif. Technol., 2004, 40(3): 259~266
    [12] Ahn H, Lee H, Lee S B, Lee Y, Dehydration of TFEA/water mixture through hydrophilic zeolite membrane by pervaporation, J. Membr. Sci., 2007, 291(1-2): 46~52
    [13] Huang Z, Guan H M, Tan W L, Qiao X Y,Kulprathipanja S,Pervaporation study of aqueous ethanol solution through zeolite-incorporated multilayer poly(vinyl alcohol) membranes: Effect of zeolites, J. Membr. Sci.,2006, 276(1-2): 260~271
    [14] Kulkarni S S, Kittur A A, Aralaguppi M I, Kariduraganavar M Y, Synthesis and characterization of hybrid membranes using poly(vinyl alcohol) and tetraethylorthosilicate for the pervaporation separation of water-isoproanol mixtures, J. Appl. Polym. Sci., 2004, 94(3): 1304~1315
    [15] Gomez P, Daviou M C, Ibanez R, Eliceche A M, Ortiz I, Comparative behaviour of hydrophilic membranes in the pervaporation dehydration of cyclohexane, J. Membr. Sci., 2006, 279(1-2): 635~644
    [16] Atra R, Vatai G, Békássy-Molnár E, Isopropanol dehydration by pervaporation, Chem. Eng. Process, 1999, 38(2): 149~155
    [17] Koops G H, Nolten J A M, Mulder M H V, Smolders C A, Poly(vinylchloride) polyacrylonirile composite membranes for the dehydration of acetic acid, J. Membr. Sci., 1993, 81(1-2): 57~70
    [18]姜忠义,刘亮,冯海锋等,渗透蒸发复合膜的选材与制备,现代化工,2004,24(4):11~14
    [19]汤蓓蓓,徐铜文,武培怡,界面聚合法制备复合膜,化工进展,2007,19(9):1428~1435
    [20]崔绍波,卢忠远,刘德春等,界面聚合技术在材料制备中的应用,化工进展,2006,20(7):47~50
    [21]毕经京,后晓淮,等离子体聚合在膜分离技术中的应用,化学通报,1990,12:8~12
    [22]邓联东,孙多先,董岸杰等,聚电解质自组装复合多层膜的研究进展,化学工业与工程,2001,18(6):401~407
    [23]刘之景,王克逸,朱俊等,自组装法制备聚合物纳米复合膜的新进展,膜科学与技术,2003,23(1):50~52
    [24] Shieh J J, Huang R Y M, Pervaporation with chitosan membranes:Ⅱ. Blend membranes of chitosan and polyacrylic acid and comparison of homogeneous and composite membrane based on olyelectrolyte complexes of chitosan and polyacrylic acid for the separation of ethanol–water mixtures, J. Membr. Sci., 1997, 127(2): 185~202
    [25] Lee Y M, Nam S Y, Woo D J, Pervaporation of ionically surface crosslinked chitosan composite membranes for water–alcohol mixtures, J. Membr. Sci., 1997, 133(1): 103~110
    [26] Huang R Y M, Pal R, Moon G Y, Crosslinked chitosan composite membranefor the pervaporation dehydration of alcohol mixtures and enhancement of structural stability of chitosan/polysulfone composite membranes, J. Membr. Sci., 1999, 160(1): 17~30
    [27] Huang R Y M, Pal R, Moon G Y, Pervaporation dehydration of aqueous ethanol and isopropanol mixtures through alginate/chitosan two ply composite membranes supported by poly(vinylidene ?uoride) porous membrane, J. Membr. Sci., 2000, 167(2): 275~289
    [28] Dong Y Q , Zhang L, Shen J N, Song M Y, Chen H L, Preparation of poly(vinyl alcohol)-sodium alginate hollow-?ber composite membranes and pervaporation dehydration characterization of aqueous alcohol mixtures, Desalination, 2006, 193(1-3): 202~210
    [29] Kim J H, Lee K H, Kim S Y, Pervaporation separation of water from ethanol through polyimide composite membranes, J. Membr. Sci., 2000, 169(1): 81~93
    [30] Zhang G J, Gu W L, Ji S L, Liu Z Z, Peng Y L, Wang Z, Preparation of polyelectrolyte multilayer membranes by dynamic layer-by-layer process for pervaporation separation of alcohol/water mixtures, J. Membr. Sci., 2006, 280(1-2): 727~733
    [31] Jiraratananon R, Chanachai A, Huang R Y M, Uttapap D, Pervaporation dehydration of ethanol-water mixtures with chitosan/hydroxyethylcellulose (CS/HEC) composite membranes:Ⅰ.Effect of operating conditions, J. Membr. Sci., 2002, 195(2): 143~151
    [32]李雪辉,王乐夫,PPVA/PAN渗透汽化复合膜分离特性研究,水处理技术,2000,26(4):207~212
    [33]孟平蕊,李良波,荣凤玲等,新型聚阴离子电解质膜材料羧甲基化PVA的合成表征及性能,功能材料,2006,37(10):1566~1568
    [34]孟平蕊,李良波,陈翠仙等,壳聚糖-三聚磷酸钠聚离子复合膜的研究,高分子材料科学与工程,2004,20(2):188~190
    [35] S吴著,潘强余、吴敦汉译,高聚物的界面与粘合,北京:纺织工业出版社,1987,174~177
    [36] Chiou J J, Composite gas separation membrane having a gutter layer comprising a crosslinked polar phenyl-containing-organopolysiloxane, and method for making the same, U.S. Patent, 5286280, 1994-02-15
    [37] Huang R Y M, Pal R, Moon G Y, Characteristics of sodium alginate membranes for the pervaporation dehydration of ethanol-water and isopropanol-water mixtures, J. Membr. Sci., 1999, 160(1): 101~113
    [38] Yeom C K, Lee K H, Characterization of sodium alginate and poly(vinyl alcohol) blend membranes in pervaporation separation, J. Appl. Polym. Sci., 1998, 67(5): 949~959
    [39] Yeom C K, Lee K H, Characterization of sodium alginate membrane crosslinked with glutaraldehyde in pervaporation separation, J. Appl. Polym. Sci., 1998, 67(2): 209~219
    [40] Huang R Y M, Feng X, Resistance model approach to asymmetric polyetherimide membranes for pervaporation of isopropanol/water mixtures, J. Membr. Sci., 1993, 84(1-2): 15~27
    [41] Shao P, Huang R Y M, Feng X, Anderson W, Pal R, Burns C M, Composite membranes with an integrated skin layer: preparation, structural characteristics and pervaporation performance, J. Membr. Sci., 2005, 254(1-2): 1~11
    [42]贺宏彬,王晓光,宋阳等,天然海洋生物胶粘剂的研究进展,中国胶粘剂,2006,15(5):42~45
    [43] Lin Q, Gourdon D, Sun C J, Holten-Andersen N, Anderson T H, Waite J H, Israelachvili J N, Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3, PNAS, 2007, 104(10): 3782~3786
    [44] Dalsin J L, Messersmith P B, Bioinspired antifouling polymers, Materialstoday, 2005, 8(9): 38~46
    [45] Deacon M P, Davis S S, Waite J H, Harding S E, Structure and mucoadhesion of mussel glue protein in dilute solution, Biochemistry, 1998, 37(40): 14108~14112
    [46] Stevens M, Steren R E, Hlady V, Stewart R J, Multiscale structure of the underwater adhesive of phragmatopoma californica: a nanostructured latex with a steep microporosity gradient, Langmuir, 2007, 23(9): 5045~5049
    [47] Endrizzi B J, Stewart R J, Glueomics: an expression survey of the adhesive gland of the sandcastle worm, J. Adhes., 2009, 85(8): 546~559
    [48]马西威兹E,奇切林三世D E,生物黏附药物传输系统-基本原理、新方法及其进展,北京:化学工业出版社,2005,4~6
    [49] Tabor D, Surface forces and surface interactions, J. Colloid. Interface Sci., 1977, 58(1): 2~13
    [50] Dalsin J L, Hu B H, Lee B P, Messersmith P B, Mussel adhesive protein mimetic polymers for the preparation of nonfouling surface, JACS, 2003, 125(14): 4253~4258
    [51] Lee H, Dellatore S M, Miller W M, Messersmith P B, Mussel-inspired surface chemistry for multifunctional coatings, Science, 2007, 318: 426~430
    [52] Lee H, Lee B P, Messersmith P B, A reversible wet/dry adhesive inspired by mussels and geckos, Nature, 2007, 448: 338~341
    [53] Statz A, Finlay J, Dalsin J, Callow M, Callow J A, Messersmith P B, Algal antifouling and fouling-release properties of metal surface coated with a polymer inspired by marine mussels, Biofouling, 2006, 22(6): 391~399
    [54] Catron N, Lee H, Messersmith P B, Enhancement of poly(ethylene glycol) mucoadsorption by biomimetic end group functionalization, Biointerphases, 2006, 1(4): 134~141
    [55] Lee B Y, Lee H, Kim Y B, Kim J, Hyeon T, Park H W, Messersmith P B, Park T G, Bioinspired surface immobilization of hyaluronic acid on monodisperse magnetite nanocrystals for targeted cance imaging, Adv. Mater., 2008, 20(21): 4154~4157
    [56] Taylor S W, Chase D B, Emptage M H, Nelson M J, Waite J H, Ferric ion complexes of a DOPA-containing adhesive protein from Mytilus edulis, Inorg. Chem., 1996, 35(26): 7572~7577
    [57] Shao H, Bachus K N, Stewart R J, A water-borne adhesive modeled after the sandcastle glue of P. californica, Macromol. Biosci., 2008, 9(5): 464~471
    [58]杨小震,分子模拟与高分子材料,北京:科学出版社,2002
    [59] Frenkel & Smit [荷]著,汪文川等译,分子模拟-从算法到应用,北京:化学工业出版社,2002
    [60]王胜强,沸石膜吸附和扩散分离过程的分子动力学模拟,[硕士学位论文],大连,大连理工大学,2008
    [61]潘福生,无机杂化膜扩散特性的分子动力学模拟,[硕士学位论文],天津,天津大学,2006
    [62] Sun H, Ab initio calculations and force field development for computer simulation of polysilanes, Macromolecules, 1995, 28(3): 701~712
    [63] Sun H, Compass: an ab inito force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds, J. Phys. Chem. B, 1998, 102(38): 7338~7364
    [64] Verlet L, Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones Molecules, Phys. Rev., 1967, 159(1): 98~103
    [65] Hou T J, Zhu L L, Xu X J, Adsorption and diffusion of benzene in ITQ-1 type zeolite: Grand canonical and molecular dynamics simulation study, J. Phys. Chem. B, 2000, 104(39): 9356~9364
    [66] Ronova I A, Rozhkov E M, Alentiev A Y, Yampolskii Y P, Occupied and Accessible Volumes in Glassy Polymers and Their Relationship with Gas Permeation Parameters, Macromol. Theory. Simul., 2003, 12(6): 425~439
    [67] Hofmann D, Fritz L, Ulbrich J, Detailed-atomistic molecular modeling of small molecule diffusion and solution processes in polymeric membrane materials, Macromol. Theory. Simul., 2000, 9(6): 293~327
    [68] Han J, Gree R H , Boyd R H, Glgss transition temperature of polymers from molecular dynamics simulation, Macromolecules, 1994, 27(26): 7781~7784
    [69] Lu K J, Tung K L, Molecular dynamics simulation study of the effect of PMMA tacticity on free volume morphology in membrane, Korean J. Chem. Eng., 2005, 22(4): 494~502
    [70] Sandoval C, Castro C, Gargallo L, Radic D, Freire J, Specific interactions in blends containing chitosan and functionalized polymers. Molecular dynamics simulation, Polymer, 2005, 46(23): 10437~10442
    [71] Prathab B, Subramanian V, Aminabhavi T M, Molecular dynamics simulation to investigate polymer-polymer and polymer-metal oxid interactions, Polymer, 2007, 48(1): 409~416
    [72] Zhang Q G, Liu Q L, Chen Y, Wu J Y, Zhu A M, Microstructure dependent diffusion of water-ethanol in swollen poly(vinyl alcohol): A molecular dynamics simulation study, Chem. Eng. J., 2009, 64(2): 334~340
    [73] Fritz L, Hofmann D, Molecular dynamics simulations of the transport of water-ethanol mixtures through polydimethylsiloxane membranes, Polymer, 1997, 38(5): 1035~1045
    [74] Hofmann D, Fritz L, Ulbrich J, Paul D, Molecular simulation of small molecule diffusion and solution in dense amorphous polysiloxanes and polyimides, Comput. Theor. Polym. Sci., 2000, 10(5): 419~436
    [75]徐克勋,精细有机化工原料及中间体手册,北京:化学工业出版社,1998,364~366
    [76]中国化工产品大全(第三版),下卷,北京:化学工业出版社,2005
    [77]陈开勋,新领域精细化工,北京:中国石化出版社,1999,387~388
    [78]周学良,新编化工生产技术与产品手册,杭州:浙江科学技术出版社,1999,453~453
    [79]鲁富贵,张深松,关于乳酸乙酯的合成的研究,河北师范大学学报,1997,11(1):106~108
    [80] Delgado P, Sanz M T, Beltran S, Kinetic study for esterification of lactic acid with ethanol and hydrolysis of ethyl lactate using an ion-exchange resin catalyst, Chem. Eng. J., 2007, 126(2): 111~118
    [81]李德吕,黄春林,改性氧化锆催化合成乳酸乙酯,广西化工,1997,26(4):16~18
    [82]高静,赵学明,黄志红,SO42-/ZrO2-TiO2催化合成乳酸乙酯的研究,四川大学学报(工程科学版),2002,34(5):36-38
    [83]李汝珍,乳酸酯化催化剂比较,广西化工,1999,18(3):35~37
    [84] Benedict D J, Parulekar S J, Tsai S P, Pervaporation-assisted esterification of lactic and succinic acids with downstream ester recovery, J. Membr. Sci., 2006, 281(1-2): 435~445
    [85] Lauterbach S, Kreis P, Experimental and theoretical investigation of a pervaporation membrane reactor for a heterogeneously catalysed esterification, Desalination, 2006, 199(1-3): 418~420
    [86] Liu Q, Chen H, Modeling of esterification of acetic acid with n-butanol in the presence of Zr(SO4)2·4H2O coupled pervaporation, J. Membr. Sci., 2002, 196(2): 171~178
    [87] Liu Q, Zhang Z, Chen H, Study on the coupling of esterification with pervaporation, J. Membr. Sci., 2001, 182(1-2): 173~181
    [88] Adoor S G, Manjeshwar L S, Bhat S D, Aminabhavi T M, Aluminum-rich zeolite beta incorporated sodium alginate mixed matrix membranes for pervaporation dehydration and esterification of ethanol and acetic acid, J. Membr. Sci., 2008, 318(1-2): 233~246
    [89] Budd P M, Ricardo N M P S, Jafar J J, Stephenson B, Hughes R, Zeolite/polyelectrolyte multilayer pervaporation membranes for enhanced reaction yield, Ind. Eng. Chem. Res., 2004, 43(8): 1863~1867
    [90] Ma J, Zhang M H, Lu L Y, Yin X, Chen J, Jiang Z Y, Intensifying esterification reaction between lactic acid and ethanol by pervaporation dehydration using chitosan-TEOS hybrid membranes, Chem. Eng. J., 2009, 155(3): 800~809
    [91] Liu Q, Jia P, Chen H, Study on catalytic membranes of H3PW12O40 entrapped in PVA, J. Membr. Sci., 1999, 159(1-2): 233~241
    [92] Peter T A, Benes N E, Keurentjes J T F, Preparation of Amberlyst-coated pervaporation membranes and their application in the esterification of acetic acid and butanol, Appl. Catal. A, 2007, 317(1): 113~119
    [93] Figueiredo K C S, Salim V M M, Borges C P, Synthesis and characterization of a catalytic membrane for pervaporation-assisted esterification reactors, Catal. Today, 2008, 133-135: 809~814
    [94] Nakanishi H, Wang S J, Jean Y C, In international symposium on positron annihilation studies of fluids, Sharma, S C(Ed), World Scientific: Singapore, 1987
    [95] Tao S J, Positronium annihilation in molecular substances (liquids and solids), J. Chem. Phys., 1972, 56(11): 5499~5510
    [96] Sharma S C, Positronium annihilation studies of fluids, World Scientific: Singapore, 1988
    [97] Anilkumar S, Kumaran M G, Thomas S, Characterization of EVA/Clay nanocomposite membranes andits pervaporation performance, J. PhyS. Chem. B, 2008, 112(13): 4009~4015
    [98] Kruse J, Kanzow J, R?tzke K, Faupel F, Heuchel M, Frahn J, Hofmann D, Free volume in polyimides: positron annihilation experiments and molecular modeling, Macromolecules, 2005, 38(23): 9638~9643
    [99] Peng F B, Lu L Y, Sun H L, Wang Y Q, Liu J Q, Jiang Z Y, Hybrid organic anorganic membrane: Solving the tradeoff between permeability and selectivity, Chem. Mater., 2005, 17(26): 6790~6796
    [100]Peng F B, Lu L Y, Sun H L, Wang Y Q, Wu H, Jiang Z Y, Correlations between free volume characteristics and pervaporation permeability of novel PVA–GPTMS hybrid membranes, J. Membr. Sci., 2006, 275(1-2): 97~104
    [101]Wang X P, Shen Z Q, Zhang F Y, Zhang Y F, A novel composite chitosan membrane for the separation of alcohol-water mixtures, J. Membr. Sci, 1996, 119(2): 191~198
    [102]Li B B, Xu Z L, Qusay F A, Li R, Chitosan-poly(vinyl alcohol)/poly(acrylonitrile)(CS-PVA/PAN) composite pervaporation membranes for the separation of ethanol-water solutions, Desalination, 2006, 193(1-3): 171~181
    [103]陈联楷,郭群晖,黄继才等,壳聚糖渗透汽化膜分离醇/水的性能:Ⅱ.壳聚糖复合膜,水处理技术,1996,22(4):189~194
    [104]Ravindra R, Krovvidi K R, Khan A A, Solubility parameter of chitin and chitosan, Carbohydr. Polym., 1998, 36(2-3): 121~127
    [105]Jiang B N, Wang D Y, Wilkie C A, Relationship between the solubility parameter of polymers and the clay dispersion in polymer/clay nanocomposites and the role of the surfactant, Macromolecules, 2005, 38(15): 6533~6543
    [106]Takeuchi H, Matsui Y, Yamamoto H, Kawashima Y, Mucoadhesive properties of carbopol or chitosan-coated liposomes and their effectiveness in the oral administration of calcitonin to rats, J. Controlled Release., 2003, 86(2-3): 235~242
    [107]Blanco-Fuente H, Anguiano-Igea S, Otero-Espinar F J, Blanco-Méndez J, In-vitro bioadhesion of carbopol hydrogels, Int. J. Pharm., 1996, 142(2): 169~174
    [108]Park S H, Chun M K, Choi H K, Preparation of an extended-release matrix tablet using chitosan/carbopol interpolymer complex, Int. J. Pharm., 2008, 347(1-2): 39~44
    [109]Sun H W, Chen G H, Huang R H, Gao C J, A novel composite nanofiltration (NF) membrane prepared from glycolchitin/poly(acrylonitrile) (PAN) by epichlorohydrin cross-linking, J. Membr. Sci., 2007, 297(1-2): 51~58
    [110]Oyrton A C, Monteriro Jr, Claudio A, Some studies of crosslinking chitosan-glutaraldehyde interaction in a homogeneous system, Int. J. Biol. Macromol., 1999, 26(2-3): 119~128
    [111]Rodrigo S V, Marisa M B, Interaction of natural and crosslinked chitosan membranes with Hg ions, Colloids Surf. A: Physicochem. Eng. Aspects., 2006, 279(1-3): 196~207
    [112]Gupta K C, Jabrail F H, Glutaraldehyde and glyoxal cross-linked chitosan microspheres for controlled delivery of centchroman, Carbohydr. Res., 2006, 341(6): 744~756
    [113]Beppu M M, Vieira R S, Aimoli C G, Santana C C, Crosslinking of chitosan membranes using glutaraldehyde: Effect on ion permeability and water absorption, J. Membr. Sci., 2007, 301(1-2): 126~130
    [114]Nguyen D, Chan K, Matsuura T, Sourirajan S, Viscometric and statistical thermodynamic approach to the study of the structure of polymer film casting solutions for making RO/UF membranes, Ind. Eng. Chem. Prod. Res. Dev., 1985, 24(4): 655~665
    [115]Nguyen T D, Chan K, Matsuura T, Sourirajan S, Effect of nonsolvent on the pore size and the pore size distribution of the polyamide RO membranes, Chem. Eng. Commun., 1987, 54(1-6): 17~36
    [116]Kim S H, Kwak S Y, Suzuki T, Positron annihilation spectroscopic evidence to demonstrate the flux-enhancement mechanism in morphology-controlled thin-film-composite (TFC) membrane, Environ. Sci. Technol., 2005, 39(6): 1764~1770
    [117]Wu H, Zhang X F, Xu D, Li B, Jiang Z Y, Enhancing the interfacial stability and solvent-resistant property of PDMS/PES composite membrane by introducing a bifunctional aminosilane, J. Membr. Sci., 2009, 337(1-2): 61~69
    [118]Aryanti N, Hou R Z, Williams R A, Performance of a rotating membrane emulsifier for production of coarse droplets, J. Membr. Sci., 2009, 326(1): 9~18
    [119]Devi D A, Smitha B, Sridhar S, Aminabhavi T M, Pervaporation separation of isopropanol/water mixtures through crosslinked chitosan membranes, J. Membr. Sci., 2005, 262(1-2): 91~99
    [120]Tamai Y, Molecular simulation of permeation of small penetrants through membranes. 1. diffusion coefficients, Macromolecules, 1994, 27(16): 4498~4508
    [121]Yeom C K, Lee K H, Pervaporation separation of water-acetic acid mixtures through poly(vinyl alcohol) membranes cross-linked with glutaraldehyde, J. Membr. Sci., 1996, 109(2): 257~265
    [122]Yeom C K, Lee K H, Vapor permeation of ethanol-water mixtures using sodium alginate membranes with cross-linking gradient structure, J. Membr. Sci., 1997, 135(2): 225~235
    [123]Zhang Q G, Liu Q L, Jiang Z Y, Chen Y, Anti-trade-off in dehydration of ethanol by novel PVA/APTEOS hybrid membranes, J. Membr. Sci., 2007, 287(2): 237~245
    [124]Zhang X K, Pooljari Y, Drechsler L E, Kuo C M, Fried J R, Clarson S J, Pervaporation of organic liquids from binary aqueous mixtures using poly(trifluoropropylmethylsiloxane) and poly(dimethylsiloxane) dense membranes, J. Inorg. Organomet. Polym., 2008, 18(2): 246~252
    [125]Raisi A, Aroujalian A, Kaghazchi T, A predictive mass transfer model for aroma compounds recovery by pervaporation, J. Food Eng., 2009, 95(2): 305~312
    [126]Wu P, Field R W, England R, Brisdon B J, A fundamental study of organofunctionalized PDMS membranes for the pervaporative recovery of phenolic compounds from aqueous streams, J. Membr. Sci., 2001, 190(2): 147~157
    [127]严金龙,孙汝东,柏云杉等,明胶的粘度行为和谱学特征,皮革化工,1999,16(6):1~4
    [128]王映红,程树军,慕朝伟等,功能高分子学报,2003,16(1):36~40
    [129]Lee W F, Lee S C, Effect of gelatin on the swelling behavior of organic hybrid gels based on N-isopropylacrylamide and gelatin, J. Appl. Polym. Sci., 2005, 98(3): 1092~1099
    [130]郑俊萍,奚利飞,杨学稳等,不同交联方式的明胶及明胶/蒙脱土纳米复合材料的力学性能,材料工程,2003,9:26~29
    [131]Matsuda S, Iwata H, Se N, Ikada Y, Bioadhesion of gelatin films crosslinked with glutaradehyde, J. Biomed. Mat. Res., 1999, 45(1): 20~27
    [132]Peppas N A, Buri P A, Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissue. J. Controlled Release, 1985, 2: 257~275
    [133]凌沛学,贺艳丽,透明质酸,北京:中国工业出版社,2000,1~10
    [134]Tadmor R, Chen N, Israelachvili J, Normal and shear force between mica and model membrane surfaces with adsorbed hyaluronan, Macromolecules, 2003, 36(25): 9519~9526
    [135]Liu H Y, Hu N F, Interaction between myoglobin and hyaluronic acid in their layer-by-layer assembly: quartz crystal microbalance and cyclic voltammetry studies, J. Phys. Chem. B, 2006, 110(29): 14494~14502
    [136]Kim S J, Yoon S G., Lee Y M, Kim H C, Kim S I, Electrical behavior of polymer hydrogel composed of poly(vinyl alcohol)-hyaluronic acid in solution, Biosens. Bioelectrom., 2004, 19(6): 531~536
    [137]Tomihata K, Ikada Y, Crosslinking of hyaluronic acid with glutaraldehyde, J. Polym. Sci., Part A: Polym. Chem., 1997, 35(16): 3553~3559
    [138]Crescenzi V, Francescangeli A, Taglienti A, Capitani D, Mannina L, Synthesis and partial characterization of hydrogels obtained via glutaraldehyde crosslinking of acetylated chitosan and of hyaluronan derivatives, Biomacromolecules, 2003, 4(4): 1045~1054
    [139]Collins M N, Birkinshaw C, Physical properties of crosslinked hyaluronic acid hydrogels, J. Mater. Sci.: Mater. Med., 2008, 19(11): 3335~3343
    [140]Zhang L, Yu P, Luo Y B, Dehydration of caprolactam-water mixtures through cross-linked PVA composite pervaporation membranes, J. Membr. Sci., 2007, 306(1-2): 93~102
    [141]Zhu Y X, Xia S S, Liu G P, Jin W Q, Preparation of ceramic-supported poly(vinyl alcohol)-chitosan composite membranes and their applications in pervaporation dehydration of organic/water mixtures, J. Membr. Sci., 2010, 349(1-2): 341~348
    [142]Collins M N, Birkinshaw C, Investigation of the swelling behavior of crosslinked hyaluronic acid films and hydrogels produced using homogeneous reactions, J. Appl. Polym. Sci., 2008, 109(2): 923~931
    [143]Tsai H A, Chen W H, Kuo C Y, Lee K R, Lai J Y, Study on the pervaporation performance and long-term stability of aqueous iso-propanol solution through chitosan/polyacrylonitrile hollow fiber membrane, J. Membr. Sci., 2008, 309(1-2): 146~155
    [144]Kim S J, Shin S R, Lee S M, Kim I Y, Kim S I, Thermal characteristics of polyelectrolyte complexes composed of chitosan and hyaluronic acid, J. Macromol. Sci., Pure Appl. Chem., 2003, 40(8): 807~815
    [145]Sun F, Zhitomirsky I, Electrodeposition of hyaluronic acid and composite films, Surf. Eng., 2009, 25(8): 621~627
    [146]Sommer S, Melin T, Influence of operation parameters on the separation of mixtures by pervaporation and vapor permeation with inorganic membranes. Part 1: dehydration of solvents, Chem. Eng. Sci., 2005, 60(16): 4509~4523
    [147]Yeom C K, Lee S H, Lee J M, Pervaporative permeations of homologous series of alcohol aqueous mixtures through a hydrophilic membrane, J. Appl. Polym. Sci., 2001, 79(4): 703~713
    [148]Peters T A, Poeth C H S, Benes N E, Buijs H C W M, Vercauteren F F, Keurentjes J T F, Ceramic-supported thin PVA pervaporation membranes combining high flux and high selectivity; contradicting the flux-selectivity paradigm, J. Membr. Sci., 2006, 276(1-2): 42~50
    [149]Wang X P, Li N, Wang W Z, Pervaporation properties of novel alginate composite membranes for dehydration of organic solvents, J. Membr. Sci., 2001, 193(1): 85~95
    [150]Wang X P., Modified alginate composite membranes for the dehydration of acetic acid, J. Membr. Sci., 2000, 170(1): 71~79
    [151]Zhao Q, Qian J W, An Q F, Zhu Z H., Zhang P, Bai Y X, Studies on pervaporation characteristics of polyacrylonitrile-b-poly(ethylene glycol)-b-polyacrylonitrile block copolymer membrane for dehydration of aqueous acetone solutions, J. Membr. Sci., 2008, 311(1-2): 284~293
    [152]Jawalkar S S, Raju K V S N, Halligudi S B, Sairam M, Aminabhavi T M, Molecular modeling simulations to predict compatibility of poly(vinyl alcohol) and chitosan blends: a comparison with experiments, J. Phys. Chem. B, 2007, 111(10): 2431~2439
    [153]刑福保,辣素/明胶-阿拉伯胶-单宁微囊和纳囊的研究,[博士学位论文],天津,天津大学,2003
    [154]Gómez-Alejandre S, Blanca E S, Usera C A, Rey-Stolle M F, Hernández-Fuentes I, Partial specific volume of hyaluronic acid in different media and conditions, Int. J. Biol. Macromol., 2000, 27(4): 287~290
    [155]Rizzo P, Auriemma F, Guerra G, Petraccone V, Corradini P, Conformational disorder in the pseudohexagonal form of atactic polyacrylonitrile, Macromolecules, 1996, 29(27): 8852~8861
    [156]Theodorou D N, Suter U W, Detailed molecular structure of a vinyl polymer glass, Macromolecules, 1985, 18(7): 1467~1478
    [157]Meirovitch H, Computer simulation of self-avoiding walks: Testing the scanning method, J. Chem. Phys., 1983, 79(1): 502~508
    [158]Berendsen H J C, Postma J P M, Funsteren W F, Molecular dynamics with coupling to an external bath, J. Chem. Phys., 1984, 81(8): 3684~3690
    [159]Nos′e S, A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys., 1984, 52(2): 255~268
    [160]Hoover W G., Canonical dynamics: equilibrium phase-space distributions, Phys. Rev. A, 1985, 31(3): 1695~1697
    [161]Pendyala V N S, Xavier S F, Prediction of a synergistic blend composition range based on polymer-solvent interactions, Polymer, 1997, 38(14): 3565~3572
    [162]David D J, Sincock T F, Estimation of miscibility blends using the solubility parameter concept, Polymer, 1992, 33(21): 4505~4514
    [163]Bhowmik R, Katti K S, Katti D, Molecular dynamics simulation of hydroxyapatite-polyacrylic acid interfaces, Polymer, 2007, 48(2): 664~674
    [164]Adoor S G, Prathab B, Manjeshwar L S, Aminabhavi T M, Mixed matrix membranes of sodium alginate and poly(vinyl alcohol) for pervaporation dehydration of isopropanol at different temperatures, Polymer, 2007, 48(18): 5417~5430
    [165]Hofman D, Fritz L, Ulbrich J, Molecular simulation of small molecule diffusion and solution in dense amorphous polysiloxanes and polyimides, Comput. Theor. Polym. Sci., 2000, 10(5): 419~436
    [166]Ravindra R, Krovvidi K R, Khan A A, Solubility parameter of chitin and chitosan, Carbohydr. Polym., 1998, 36(2-3): 121~127
    [167]Paul D R, Newman S (Eds), Polymer Blends, New York: Acadrmic Press, 1987: 48
    [168]Romero R B, Leite C A P, Goncalves M C, The effect of the solvent on the morphology of cellulose acetate/montmorillonite nanocomposites, Polymer, 2009, 50(1): 161~170
    [169]Jiang B N, Wang D Y, Wilkie C A, Relationship between the solubility parameter of polymers and the clay dispersion in polymer/clay nanocomposites and the role of the surfactant, Macromolecules, 2005, 38(15): 6533~6545
    [170]Guan Y, Jiang W W, Zhang W C, Wan G X, Peng Y X, Polytetrahydrofuran amphilic networks.Ⅳ.swelling behavior of poly(acrylic acid)-l-polytetrahydrofuran and poly(methacrylic acid)-l-polytetrahydrofuran networks, J. Polym. Sci., Part B: Polym. Phys., 2001, 39(15): 1784~1790
    [171]王乐夫,李雪辉,酯化反应耦联渗透汽化膜过程对平衡移动的影响,化学反应过程与工艺,1999,15(4):443~448
    [172]刘庆林,渗透蒸发和化学反应的耦合,化学工业与工程,1997,14(2):49~59
    [173]David M Q, Gref R, Nguyen Q T, Neel J, PV-esterification coupling.1.Basic kinetic model, Trans. Inst. Chem. Eng., 1991, 69(4): 335~340
    [174]Peters T A, Tuin J, Houssin C, Vorstman M A G, Benes N E, Vroon Z A E P, Holmen A, Keurentjes J T F, Preparation of zeolite-coated pervaporation membranes for the integration of reaction and separation, Catal. Today, 2005, 104(2-4): 288~295
    [175]Peters T A, Benes N E, Holmen A, Keurentjes J T F, Comparison of commercial solid acid catalysts for the esterification of acetic acid with butanol, Appl. Catal., A: General, 2006, 297(2): 182~188
    [176]丁斌,鲍毅,郝凤岭等,阳离子交换树脂催化合成乳酸正丁酯,吉林化工学院学报,2008,25(2):4~7
    [177]李雪辉,王乐夫,渗透汽化-酯化复合膜反应器中催化特性研究,天然气化工,1999,24(2):5~8
    [178]Sanz M T, Gmehling J, Esterification of acetic acid with isopropanol coupled with pervaporation. PartⅠ: kinetic and pervaporation studies, Chem. Eng. J., 2006, 123(1-2): 1~8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700