杂质存在条件下的乳酸锌结晶行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溶液结晶作为一种高效、低能耗、少污染的分离和提纯技术,在医药、食品、生物等工业生产中得到了广泛的应用。尤其是其温和的操作条件特别适合于作为提纯手段来生产医药活性组分(APIs)。目前85%以上的医药产品的生产过程中含有结晶单元。
     溶液结晶过程极其复杂,结晶工艺过程的选择(包括产生过饱和度的方式如溶析、蒸发、冷冻,溶剂的选择)和结晶过程变量的控制(包括混合与搅拌,溶析、蒸发、冷冻速率,晶种的添加等)都将对晶体成核和生长,破碎和聚并产生重要影响,并由此影响结晶过程效率(能耗和收率等)和产品的质量(晶体的纯度、内在结构和外部形态、粒径及分布等)。
     工业结晶过程中杂质的存在不可避免。在药物生产过程中,产品的纯度往往是衡量产品质量的重要标准。这是由于通常状况下,微量的杂质存在即能大大的降低药物的药效,有时甚至会产生有害的副作用。此外,作为进行结晶器设计和工艺过程优化的关键,晶体成核和生长动力学会显著的受到杂质的影响,并由此改变结晶过程效率和最终产品质量。因此,通过研究杂质影响结晶过程的机理,并在此基础上采用结晶过程控制的方式,从而达到提高产品质量的目的业已成为结晶工艺与过程设计的关键。
     本文以乳酸锌间歇冷却结晶为研究对象,考察了杂质对其结晶行为的影响。具体的研究内容和结果如下:
     (1)选取HCl、NaCl以及四种由上游生产过程中引入的有代表性的有机酸或盐为杂质,考察了pH值和杂质对乳酸锌溶解度的影响。并研究了苹果酸杂质对乳酸锌超溶解度的影响。结果显示,乳酸锌的溶解度受溶液pH值、杂质与溶质分子间相互作用力的双重影响,但相比而言,pH值效应对溶解度的影响较小。在此基础上本文提出了不同浓度杂质存在时的乳酸锌溶解度预测模型;苹果酸杂质的引入使得乳酸锌晶体在水中的溶解度和超溶解度均增加,最终使得结晶介稳区的位置上移,且在低温区域结晶介稳区的宽度减小,在高温区域结晶介稳区的宽度变化不大;
     (2)考察了苹果酸、丁二酸和草酸钠杂质对乳酸锌初次成核动力学以及晶核形态的影响。结果表明:苹果酸和丁二酸杂质的引入增加了乳酸锌溶解度和成核能垒,使得介稳区位置上移宽度增加,而草酸钠杂质的作用相反;晶体成核速率受溶液浓度和分子间结合能双重作用,在实验溶液过饱和度范围内,含苹果酸和丁二酸杂质的乳酸锌晶体成核速率受结合能控制,成核速率低于纯乳酸锌的成核速率。含草酸钠杂质的乳酸锌晶体成核速率在低过饱和度时受结合能控制,成核速率高于纯乳酸锌体系,高过饱和度时受溶液浓度控制,成核速率低于纯乳酸锌体系;
     (3)提出了一种利用电导率仪在线测量冷却结晶过程中溶液浓度的方法,并根据该方法在实验中对乳酸锌冷却结晶过程进行了溶液浓度的在线测量,通过与离线法测量结果进行对比,证明了模型可靠;在此基础上,提出了一种利用结合改进的Kubota模型和PBE模型实现溶液冷却结晶过程中动力学研究的方法。主要特点是利用Kubota模型考察不同温度和杂质浓度存在条件下的临界过饱和度,由此确定结晶过程中的实际过饱和度,并估算成核和生长动力学。结果显示,该模型能较好的对实验数据进行拟合;苹果酸杂质的引入抑制了乳酸锌晶体的成核和生长过程,且这种抑制作用随苹果酸杂质含量的增加而增强,对此可以解释为苹果酸分子通过与乳酸锌分子形成金属一苹果酸络合物抑制了乳酸锌分子自身在晶体表面的吸附,使得晶体成核和生长速率变慢。
     (4)以乳酸锌结晶过程为研究对象,通过添加晶种降温结晶的方式考查了苹果酸杂质存在条件下各种结晶过程参数对乳酸锌结晶过程、最终产品纯度和形态的改变。结果表明,在添加晶种的结晶过程中,不同的结晶操作参数如晶种种类、数量、降温速率、添加晶种的温度和最终结晶温度等均会对产品纯度产生一定影响:降温速率和添加晶种温度通过改变结晶过程过饱和度影响晶体成核和生长速率的变化,从而改变最终产品的杂质含量和粒度;晶种种类和数量通过其所提供的总晶种表面积来改变晶体表面可供杂质吸附活性位的多少来影响最终产品的纯度;苹果酸杂质存在条件下各种操作结晶操作参数对乳酸锌晶体结构和形态并没有明显的影响。
     (5)采用分子模拟技术研究了苹果酸和丁二酸杂质对乳酸锌晶体各晶面的作用。结果显示,苹果酸杂质分子和丁二酸杂质分子在乳酸锌晶体表面的结合能均高于乳酸锌分子在其晶体表面的结合能;苹果酸杂质在乳酸锌晶体(002)和(100)面的结合能相比(110)面稍高,乳酸锌晶体在(110)面方向上生长速率较快,因此变得更为细长;丁二酸杂质在乳酸锌晶体(002)和(110)面的结合能显著强于(100)面,并由此强烈抑制了(002)和(110)面的生长,由此使乳酸锌晶体呈片状。以上结论与实验结果一致。
Crystallization is an important separation and purification process used widely in food, fine chemical and pharmaceutical industries. Especially in the pharmaceutical industry, crystallization processes are often carried out as the final purification step in the manufacturing of active pharmaceutical ingredients (APIs), enabling one to obtain solid products with high purity at low costs.
     Crystallization is a very complicated process as it involves many concomitant phenomena such as nucleation, growth, breakage and agglomeration of crystals, and the purity and physical properties (morphology, crystal size distribution, bulk density, product filterability, and dry solid flow properties) of the crystals are significantly influenced by the selection of the crystallization process (e.g. cooling, evaporation, or antisolvent addition). The control of the manipulated "input" variables during the crystallization process (e.g. stirring, cooling or evaporation rates, seed amount, rate of antisolvent addition, etc.) also plays a key-role in the determination of the final dispersed solid properties. Despite the long history and widespread application of crystallization, a large number of unsolved problems remain concerning modeling, design and control of the industrial processes, which requires an in-depth and improved understanding of the mechanisms of nucleation, growth, breakage and agglomeration, and of the influence of the process variables on these mechanisms.
     Industrial solutions are almost invariably impure, by any definition of the term, and in many cases, small amounts of impurities present in the solution can have a dramatic effect on solubility, nucleation, crystal growth, and morphology. Furthermore, product purity is probably the most important index of product quality, and is obviously of paramount concern for pharmaceuticals because small amounts of impurities are likely to result in reduced drug efficacy and harmful side effects. Understanding the effect of impurity on the crystallization and controlling the process to reduce as much as possible the impurity content of the main crystallizing product is therefore of significant engineering importance.
     In this dissertation, crystallization behaviour of zinc lactate in presence of impurities was investigated. The main work and results are listed as follows:
     (1) NaCl, HC1 and four other generic organic acid/salt including succinic acid, citric acid, malic acid and sodium oxalate are selected as impurities to investigate the effects of pH and impurities on the solubility of zinc lactate. Moreover, effect of malic acid on the position and width of zinc lactate metastable zone was also studied. The results show that the solubility of zinc lactate is a combined effect of pH and intermolecular interaction between impurity and host species which is mainly due to the formation of metal-organic complexes. In our system, the solubility of zinc lactate slightly increases with decreasing pH. And the solubility of zinc lactate increases in presence of organic acid, while decreases in presence of sodium oxalate. On this basis, a model is proposed for the prediction of effects of impurities on solubility at different initial concentration, which is able to fit the experimental data satisfactorily. Besides, the presence of malic acid increases both the solution solubility and supersaturation limit, and consequently, changes the position and width of metastable zone.
     (2) Primary nucleation kinetics of zinc lactate in presence of impurities including malic acid, succinic acid and sodium oxalate were investigated. The results show that the solubility, energy barrier for the formation of nuclei and intermolecular binding energy are influenced in presence of impurities. The position and width of metastable zone are consequently changed. The primary nucleation rate depends on the combination effects of molecular binding energy and solute concentration, which will transform with increasing the supersaturation in aqueous solution.
     (3) A method concerning on-line monitoring of solution concentration during cooling crystallization process by using conductivity meter was proposed. Furthermore, four cooling crystallization processes of zinc lactate were performed, and the variations of concentration were measured on-line based on this method. And the accuracy was verified by comparing with the experimental results measured off-line by HPLC. On this basis, a simple numerical simulation model, which can be used to predict the nucleation and crystal growth kinetics during crystallization process, was proposed by combining the revised Kubota and PBE model. The results show that this model was successfully adopted to obtain kinetic expressions for both nucleation and crystal growth as a function of supersaturation. Moreover, the presence of malic acid led to a reduction in the overall nucleation and growth kinetics of zinc lactate. And the reductions to the nucleation and growth kinetics were more pronounced when the malic acid concentration increased.
     (4) Batch cooling crystallization of zinc lactate in the presence of malic acid was carried out at different operating conditions to show the influence of secondary nucleation and the rate of crystal growth on the purity, crystal size, yield and crystal structure of the final products. The results show that appropriate amount and size of seed crystals should be chosen to get the final product with high average volume crystal size and purity. Moreover, other operating parameters such as seeding temperature, cooling rate and terminated temperature were also shown to exert some influence on the crystallization process. Concerning the crystal shape, crystals grown in impure media appeared to be substantially different.
     (5) Adsorption of impurities including malic acid and succinic acid on the crystal surface of zinc lactate was investigated using molecular modeling. The results show that the binding energies of malic acid and succinic acid molecules on the surface of zinc lactate are higher than that of zinc lactate molecules. With respect to malic acid, the binding energies of which on surface (002) and (100) of zinc lactate are slightly higher than that on surface (110), the crystal then mainly growth in the direction of surface (110), and the crystal habit exhibits rather thin anisotropic shape. While the binding energies of succinic acid on surface (002) and (110) of zinc lactate are significantly higher than that on the surface (100) of zinc lactate. The crystal habit therefore exhibits a laminar shape. All these predictions are conincident with the results obtained from experiments.
引文
[1]黄玉玲.乳酸在化学工业中的应用[J].广西化工,1994,23(3):15-20
    [2]钱志良,胡军,雷肇祖.乳酸的工业化生产.应用和市场[J].工业微生物,2001,(6):49-54
    [3]D. Rathin. The technology and economy potential of (poly) lactic acid and its ramification [J]. FEMS Microbiology Review,1995,16:221-231
    [4]H.R. Kricheldorf. Syntheses and application of polyactides [J]. Chemosphere,2001, 43(1):49-54
    [5]程蓉,钱欣.聚乳酸的改性及应用进展[J].化工进展,2002,21(11):824-826
    [6]陈丹云,王敬平,柏艳.乳酸酯及其衍生物的合成研究进展[J].化工进展,2002,21(4):243-246
    [7]王博彦,金其荣.发酵有机酸生产与应用手册[M].北京:中国轻工业出版社,2000,379-380
    [1]M. Fujiwara, Z.K. Nagy, J.W. Chew, R. D. Braatz. Optimization of batch cooling crystallization [J]. Chem, Eng. Sci.,2004,59:313-327
    [2]N. Blagden, M. de Matas, P.T. Gavan, P. York. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates [J] Advanced Drug Delivery Reviews,2007,59:617-630
    [3]时钧.化学工程手册:结晶(第2版)[M].北京:化学工业出版社,1996
    [4]刘家祺.分离过程与技术[M].天津:天津大学出版社,2001
    [5]A.S. Myerson. Handbook of Industrial Crystallization,2nd [M]. Amsterdam:Elsevier Science & Technology Books,2001,67
    [6]M. Bravi, B. Mazzarotta. Primary nucleation of citric acid monohydrate:influence of selected impurities [J]. Chemical Engineering Journal,70(1998)197-202
    [7]L.N. Rashkovich, N.V. Kronsky. Influence of Fe3+ and Al3+ ions on the kinetics of step on the{100} faces of KDP [J]. Crystal Growth Journal,182(1997)434-441
    [8]J. Dugua, B. Simon. Crystallization of sodium perborate from aqueous solutions:Ⅱ. Growth kinetics of different faces in pure solution and in the presence of a surfactant [J]. Crystal Growth Journal,44(1978)280-286
    [9]N. Doki, N. Kubota, A. Sato, et al. Effect of cooling mode on product crystal size in seeded batch crystallization of potassium alum [J]. Chemical Engineering Journal,2001, 81(1-3):313-316
    [10]H.E. Buckley. Structure of nickel crystals from nickel bromide by reduction [J]. Journal of Crystal Growth,1951,33:359
    [11]F.C. Frank. Growth and perfection of crystals [M]. Wiley, New York,1958,411
    [12]N. Cabrera, D.A. Vermilyea. Growth and perfection of crystals [M]. Wiley, New York, 1958,393
    [13]R.J. Davey. Industrial Crystallization [M]. North-Holland, Amsterdam,1979,169
    [14]J.W. Mullin. Crystallization [M]. Butterworths, London,1972
    [15]L.Z. Addadi, I. Berkovitch-Yellin, et.al,. L. Addadi, Z. Berkovitch-Yellin, L. Weissbuch, Growth and dissolution of organic crystals with " tailor-made" inhibitors-implications in stereochemistry and materials science. [J]. Angew. Chem. Int. Ed. Engl,1985,24:466
    [16]B.Simon, R. Boistelle. Crystal growth from low temperature solutions [J]. Journal of Crystal Growth,1981,52(2):779-788
    [17]L.J.W. Shimon, F.C. Wireko, J. Wolf, I. Weissbuch, L. Addadi, Z. Berkovitch-Yellin, M. Lahav and L. Leiserowitz. Assignment of absolute structure of polar crystals using tailor-made additives [J]. Mol. Cry,st. Liq. Cryst,1986,137:67
    [18]Juergen T, Markus S, Josef B. Crystal structure prediction could have helped the experimentalists with polymorphism in benzamide [J]. Molecular Simulation,2008,34 (10):1359-1370
    [19]Frank L. Ab initio prediction of polymorphs [J]. Journal of Crystal Growth,1996, (166):900-903
    [20]Panagiotis G, Karanertzabus, Sarah P. Energy minimization of crystal structures containing flexible molecules [J]. Journal of Chemical Theory and Computation,2006, (2):1184-1199
    [21]G. G. Z. Zhang, D. J. W. Grant. Incorporation mechanism of guest molecules in crystals: solid solution or inclusion [J]. International Journal of Pharmaceutics,1999,181:61-70
    [22]R. Meadhra, R. Lin. Modelling of Alditol Impurity Incorporation into Galactitol Crystals [J]. Chemical Engineering Research and Design,2006,84(2006)711-720
    [23]M. Bravi, B. Mazzarotta. Primary nucleation of citric acid monohydrate:influence of selected impurities [J]. Chemical Engineering Journal,1998,70:197-202
    [24]L. N. Rashkovich, N. V. Kronsky. Influence of Fe3+ and Al3+ ions on the kinetics of steps on the{100} faces of KDP [J]. Journal of Crystal Growth,1997,182(3-4):434-441
    [25]J. Dugua, B. Simon. Crystallization of sodium perborate from aqueous solutions:Ⅱ. Growth kinetics of different faces in pure solution and in the presence of a surfactant [J]. Journal of Crystal Growth,1978,44(3):280-286
    [26]B.R. Thomas, A.A. Chernov, P.G. Vekilov, et al. Distribution coefficients of protein impurities in ferritin and lysozyme crystals self-purification in microgravity [J]. Journal of Crystal Growth,2000,211(1-4):149-156
    [27]Valery I. Chani, Keiji Inoue, Kiyoshi Shimamura, et al. Segregation coefficients in β-Ga2O2:Cr crystals grown from a B2O3 based flux [J]. Journal of Crystal Growth,1993, 132(1-2):335-336
    [28]N. Kubota. Effect of impurities on the growth kinetics of crystals [J]. Crystal Research Technology,2001,36:749
    [29]K. Sangwal, E. Mielniczek-Brzoska. Study of copper complexes in saturated and unsaturated aqueous ammonium oxalate solutions containing Cu(Ⅱ) impurity [J]. Fluid Phase
    Equilibria,2007,258:199-205
    [30]J.W. Mullin. Crystallization 4ed [M]. Oxford, Butterworth-Heinemann,2001
    [31]W.R. Linke, A. Seidell. Solubilities-Inorganic and Metal-Organic compounds [M]. American Chemical Society, Washington, DC,1958
    [32]E.L. Shock and C.M. Koretsky. Estimation of standard-state entropies of association for aqueous metal-organic complexes and chelates at 25℃ and 1 bar [J]. Geochim. Cosmochim. Acta 2001,65(21):3931-3953
    [33]T.H. Giordano. The Role of Organic Acids in Geological Processes [M]. Springer-Verlag, 1994
    [34]D.J. Bell, M. Hoare, P. Dunnill. The formation of protein precipitates and their centrifugal recovery [J]. Advances in Biochemical Engineering/Biotechnology,1983,22:1-67
    [35]F.A. Long, W.F. McDevit. Activity coefficients of non-electrolyte solutes in aqueous salt solution [J]. Chemical Reviews,1952,51:110-169
    [36]A.L. Horvath, Handbook of Aqueous Electrolyte Solutions, Physical Properties, Estimation and Correlation Methods. New York:Ellis Horwood Limited,1985
    [37]林晶,党亚固,费德君等.磷酸二氢胺结晶介稳区的研究[J].无机盐工业,2007, 10(39):21-23
    [38]许莉,丁成荣.铁离子杂质对过硫酸钠结晶过程的影响[J].精细化工,2001,9(18):547-549
    [39]王子忱,赵秋刚,张丽华等.硫酸钾水溶液亚稳区性质的研究[J].高等学校化学学报,1990,11:1232-1235
    [40]N. Kubantseva, R. W. Hartel, P. A. Swearingen. Factors Affecting Solubility of Calcium Lactate in Aqueous Solutions [J]. Journal of Dairy Science,2004,87(4):863-867
    [41]M. Bravi, B. Mazzarotta. Primary nucleation of citric acid monohydrate:influence of selected impurities [J]. Journal of Chemical Engineering,1998,70(3):197-202
    [42]Hloznv L, Sato A. Kubota No. On-line Measurement of Supersaturation During Batch Cooling Crystallization of Ammonium Alum. Journal of Chemical Engineering of Japan, 1992,25 (5):604-606
    [43]Singh B. Using a Crystal Size Distribution Sensor to Improve the Operation and Control of Batch Crystallizers. Analytical Proceedings,1993,30 (12):495-496
    [44]Fevotte G, Klein J P. Application of On-line Calorimetry to the Advanced Control of Batch Crystallizers. Chemical Engineering Science,1994,49 (9):1323-1336
    [45]S.W. Young. Mechanical stimulus to crystallization in supercooled liquids [J]. Journal of the American Chemical Society,1911,33:148-162
    [46]Berkeley. Solubility and supersolubility from the osmotic standpoint [J]. Philosophical Magazine,1912,24:154-168
    [47]E.V. Khamskii. Crystallization from solution [M]. Consultants Bureau, New York,1969
    [48]M. Volmer. Kinetic der Phasenbildung [M]. Steinkopff, Leipzig,1939
    [49]A.E. Nielsen. Kinetics of Precipitation [M]. Pergamon, Oxford,1964
    [50]J.W. Gibbs. Collected Works, vol. Ⅰ, Thermodynamics [M] Yale University Press, New Haven,1948
    [51]Peng Y, Dou R, Song G. Dramatically Accelerated Synthesis of β-Aminoketones via Aqueous Mannich Reaction under Combined Microwave and Ultrasound Irradiation[J]. Synlett.2005,14:2245-2247
    [52]Nulty J, Steere J A, Wolf S. the Ultrasound Promoted Knoevenagel Condensation of Aromatic Aldehydes[J]. Tetrahedron Letters.1998,39:8013-8016
    [53]J.W. Mullin, M. Chakraborty, K. Mehta. Nucleation and growth of ammonium sulphate crystals [J]. Journal of Applied Chemistry,1970,20:367-371
    [54]G.D. Botsaris, E.G. Denk, J. Chua. Nucleation in an impurity concentration gradient-a new mechanism of sencondary nucleation [J]. AIChE Symposium Series No.121,1972, 68:21-30
    [55]S. Sarig, J.W. Mullin. The size reduction of crystals in slurries by the use of habit modifiers [J]. Industrial and Engineering Chemistry Process Design and Development,1980, 19:490-494
    [56]N. Kubota, K. Ito, K. Shimizu. Chromium ion effect on contact nucleation of ammonium sulphate [J]. Journal of Crystal Growth,1986,76:272-278
    [57]F.C. Frank. The influence of dislocations on crystal growth [J]. Discussions of the Faraday Society,1949,5:48-54
    [58]W.K. Burton, N. Cabrera, F.C. Frank. The growth of crystals and the equilibrium structure of their surfaces [J]. Philosophical Transactions,1951,243:299-358
    [59]丁绪淮.工业结晶[M].北京:化学工业出版社1985.
    [60]B. Simon, A. Grassi, R. Boistelle. Cinetique de croissance de la face (110) de la paraffine C36H74 en solution:Ⅱ. Croissance en presence d'un inhibiteur, la dioctadecylamine (C18H37)2NH [J]. Journal of Crystal Growth,1974,26(1):90-96
    [61]N. Kubota, M. Yokota, J. W. Mullin. Supersaturation Dependence of Crystal Growth in Solutions in the Presence of Impurity [J]. Journal of Crystal Growth,1997,182(1-2):86-94
    [62]J. Dugua, B. Simon. Crystallization of sodium perborate from aqueous solutions:Ⅱ. Growth kinetics of different faces in pure solution and in the presence of a surfactant [J]. Journal of Crystal Growth,1978,44(3):280-286
    [63]L. N. Rashkovich, N. V. Kronsky. Influence of Fe3+ and Al3+ions on the kinetics of steps on the{100} faces of KDP [J]. Journal of Crystal Growth,1997,182(3-4):434-441
    [64]杨林军,张允湘,卢红.氟硅酸钾(钠)在湿法磷酸中的结晶动力学研究[J].高校化学工程学报,2001,15(3):286-290
    [65]M. Ohara, R.C. Reid. Modeling Crystal Growth Rates from Solutions [M]. Prentice-Hall, New Jersey,1973.
    [66]R. Kern. Adsorption et Croissance Crisstalline [M]. Colloquium No.152 (Symposium proceedings), C.N.R.S., Paris,1965
    [67]R.J. Davey. The control of crystal habit [J]. Industrial Crystallization,1979,78:169-183
    [68]A.A. Chernov. The spiral growth of crystals [J]. Soviet Physics Uspekhi,1961,4:116-148
    [69]A.A. Chernov. Formation of crystals in solution [J]. Contemporary Physics,1989, 30:251-276
    [70]E. Mielniczek-Brzoska, K. Gielzak-Kocwin, K. Sangwal. Effect of Cu(Ⅱ) ions on the growth of ammonium oxalate monohydrate crystals from aqueous solutions:growth kinetics, segregation coefficient and characterisation of incorporation sites [J]. Journal of Crystal Growth,2000,212:532-542
    [71]K. Sangwal, E. Mielniczek-Brzoska. Effect of Cr ions on the growth kinetics of ammonium oxalate monohydrate crystals from aqueous solution [J]. Journal of Crystal Growth,2000,242:421-434
    [72]R.J. Davey. The role of the solvent in crystal growth from solution [J] Journal of Crystal Growth,1986,76:637-644
    [73]G. Bliznakov, E. Kirkova. Der einflub der adsorption auf das kristallwachstum [J]. Z. Phys. Chem,1957,206:271-280
    [74]A. D. Randolph, M.A. Larson. Transient and steady state size distributions in continuous mixed suspension crystallizers [J]. A.I.Ch.E. Journal,1962,8:639-645
    [75]H. M. Hulburt. In Industrial Crystallization (J. W. Mullin, ed.), Plenum Press, New York, pp.343
    [76]N. S. Tavare. Chem. Eng. Commun,1987,61:259
    [77]A. M. Omran, C.J. King. Kintetics of ice crystallization in sugar solutions and fruit juices [J]. A.I.Ch.E. Journal,1974,20:795-803
    [78]J. Garside, L.G. Gibilaro, N.S. Tavare. Evaluation of crystal growth kinetics from a desupersaturation curve using initial derivatives [J]. Chemical Engineering Science,1982, 37:1625-1628
    [79]A. Halfon, S. Kaliaguine. Alumina trihydrate crystallization [J]. Canadian Journal of Chemical Engineering,1976,54:160-172
    [80]W. R. Witkowski, S. M. Miller,& J. B. Rawlings. Lightscattering measurements to estimate kinetic parameters of crystallization [J]. ACS Symposium Series,1990,438:102-114
    [81]M. Yokota. A Simple Method for Evaluating Kinetic Parameters in Non-isothermal Batch Crystallization [J]. Chemical Engineering Science,2000,55:717-722
    [82]A.D. Randolph, M.A. Larson, Theory of Particulate Processes [M] Academic Press, New York,1971
    [83]S.M. Miller, Modelling and Quality Control Strategies for Batch Cooling Crystallizer, Ph.D. Dissertation, University of Texas at Austin,1993
    [84]K.J. Weiser, Theoretical calculations of distribution coefficients of impurities in germanium and solicon, heats of solid solution [J]. Phys. Chem. Solids,1958,7:118-126
    [85]J.A. Burton, R.C. Prim, and W.P. Slichter. The distribution of solute in crystals grown from the melt. Part 1. Theoretical [J]. Journal of Chemical Physics,1953,21:1987-1996
    [86]F. Rosenberger, H.G. Riveros, Segregation in alkali halide crystallization from aqueous solution [J]. Journal of Chemical Physics,1974,60:668-670
    [87]E. Mielniczek-Brzoska, K. Gielzak-Kocwin, K. Sangwal. Effect of Cu(II) ions on the growth of ammonium oxalate monohydrate crystals from aqueous solutions:growth kinetics, segregation coefficient and characterisation of incorporation sites [J]. Journal of Crystal Growth,2000,212:532-542
    [88]K. Sangwal, E. Mielniczek-Brzoska. Effect of Cr ions on the growth kinetics of ammonium oxalate monohydrate crystals from aqueous solution [J]. Journal of Crystal Growth,2000,242:421-434
    [89]L.O. Wilson. A new look at the Burton, Prim, and Slichter model of segregation during crystal growth from the melt [J]. Journal of Crystal Growth,1978,44:371-376
    [90]R. Docherty, G. Clydesdale, K.J. Roberts, Application of BFDH, attachment energy and Ising models to predicting and understanding the morphology of molecular crystals [J]. Journal of Physics,1991,24:89-99
    [91]R. Docherty, Modelling the morphology of molecular crystals, application to anthracene, biphenyl and succinic [J]. Journal of crystal growth,1988,88:159-168
    [92]黎军.m-NBA-DEA和3,5-DNBA.DEA分子晶体形貌的分析.人工晶体学报,1998,27:311-314
    [93]M. Larson, J.W. Mullin. Crystallization kinetics of ammonium sulphate [J]. Journal of Crystal Growth,1973,20(3):183-191
    [94]R. Docherty, G. Clydesdale, K.J. Roberts, Application of BFDH, attachment energy and Ising models to predicting and understanding the morphology of molecular crystals [J]. Journal of Physics,1991,24:89-99
    [95]R. Docherty, Modelling the morphology of molecular crystals, application to anthracene, biphenyl and succinic [J]. Journal of crystal growth,1988,88:159-168
    [96]黎军.m-NBA-DEA和3,5-DNBA.DEA分子晶体形貌的分析[J].人工晶体学报,1998,27:311-314
    [1]A.S. Myerson. Handbook of Industrial Crystallization,2nd [M]. Amsterdam:Elsevier Science & Technology Books,2001,67
    [2]王博彦,金其荣.发酵有机酸生产与应用手册[M].北京:中国轻工业出版社,2000
    [3]T.T. Zhu, S.A. Wu, H.T. Shao, K.L. Zhang, J.H. Du. Study on organic acids in different original gravity beers [J]. Food and Fermentation Industries,2005,31:108-112
    [4]K.D. Singh, S.C. Jain, T.D. Sakore, et al. The crystal and molecular structure of zinc lactate trihydrate [J] Acta Crystallogr. B,1975,31:990-993
    [5]M. Bravi, B. Mazzarotta. Primary nucleation of citric acid monohydrate:influence of selected impurities [J]. Chemical Engineering Journal,1998,70:197-202
    [6]L. N. Rashkovich, N. V. Kronsky. Influence of Fe3+ and Al3+ ions on the kinetics of steps on the {100} faces of KDP [J]. Journal of Crystal Growth,1997,182(3-4):434-441
    [7]J. Dugua, B. Simon. Crystallization of sodium perforate from aqueous solutions:Ⅱ. Growth kinetics of different faces in pure solution and in the presence of a surfactant [J]. Journal of Crystal Growth,1978,44(3):280-286
    [1]A.S. Myerson. Handbook of Industrial Crystallization,2nd [M]. Amsterdam:Elsevier Science & Technology Books,2001,67
    [2]A.D. Randolph, M.A. Larson, Theory of Particulate Processes [M]. Academic Press, New York,1971.
    [3]D.H.M. Beiny, J.W. Mullin. Solubilities of higher normal alkanes in m-xylene. Journal of Chemical Engineering Data,32(1987)9-10
    [4]A.L. Horvath, Handbook of Aqueous Electrolyte Solutions, Physical Properties, Estimation and Correlation Methods [M]. New York:Ellis Horwood Limited,1985
    [5]A.I. Vogel, Textbook of Quantitative Inorganic Analysis, third ed., Longman, London, 1961
    [6]T.T. Zhu, S.A. Wu, H.T. Shao, K.L. Zhang, J.H. Du. Study on organic acids in different original gravity beers [J]. Food and Fermentation Industries,2005,31:108-112
    [7]A.T. Williamson. The exact calculation of heats of solution from solubility data [J]. Trans. Faraday Soc,1944,40:421
    [8]E.L. Shock and C.M. Koretsky. Metal-Organic complexes in geochemical processes: Calculation of standard partial molal thermodynamic properties of aqueous acetate complexes at high pressures and temperatures [J]. Geochim. Cosmochim. Acta 1993,57:4899-4922
    [9]T.H. Giordano. The Role of Organic Acids in Geological Processes [J]. Springer-Verlag, 1994,8:319-354
    [10]B.R. Thomas, A.A. Chernov, P.G. Vekilov, et al. Distribution coefficients of protein impurities in ferritin and lysozyme crystals self-purification in microgravity [J]. Journal of Crystal Growth,2000,211:149-156
    [11]I. Valery I. Chani, Keiji Inoue, Kiyoshi Shimamura, et al. Segregation coefficients in β-Ga2O2:Cr crystals grown from a B2O3 based flux [J]. Journal of Crystal Growth,1993, 132:335-336
    [1]Wang Jingkang(王静康).Present and future of industrial crystallization [J]. Chemical Englneering[化学工程),1992,20:57-63
    [2]A.S. Myerson. Handbook of Industrial Crystallization 2nd [M]. Amsterdam:Elsevier Science & Technology Books,2001,67
    [3]J.W. Gibbs. Thermodynamic. Vol. I [M]. Yale University Press, New Haven:Collected Works,1948
    [4]M. Volmer, Kinetik der Phasenbildung, Steinkopff, Dresden,1939
    [5]S. Sarig, J.W. Mullin. The size reduction of crystals in slurries by the use of habit modifiers [J]. Industrial and Engineering Chemistry Process Design and Development,1980, 19:490-494
    [6]N. Kubota, K. Ito, K. Shimizu. Chromium ion effect on contact nucleation of ammonium sulphate [J]. Journal of Crystal Growth,1986,76:272-278
    [7]L. N. Rashkovich, N. V. Kronsky. Influence of Fe3+ and Al3+ ions on the kinetics of steps on the{100} faces of KDP [J]. Journal of Crystal Growth,1997,182:434-441
    [8]J. Dugua, B. Simon. Crystallization of sodium perborate from aqueous solutions:Ⅱ. Growth kinetics of different faces in pure solution and in the presence of a surfactant [J]. Journal of Crystal Growth,1978,44:280-286
    [9]B.R. Thomas, A.A. Chernov, P.G. Vekilov, et al. Distribution coefficients of protein impurities in ferritin and lysozyme crystals self-purification in microgravity [J]. Journal of Crystal Growth,2000,211(1-4):149-156
    [10]Valery I. Chani, Keiji Inoue, Kiyoshi Shimamura, et al. Segregation coefficients in β-Ga2O2:Cr crystals grown from a B2O3 based flux [J]. Journal of Crystal Growth,1993, 132(1-2):335-336
    [11]W. R.. Witkowski, S. M. Miller,& J. B. Rawlings. Lightscattering measurements to estimate kinetic parameters of crystallization [J]. ACS Symposium Series,1990,438:102-114.
    [12]M. Yokota. A Simple Method for Evaluating Kinetic Parameters in Non-isothermal Batch Crystallization [J]. Chemical Engineering Science,2000,55:717-722
    [13]A.D. Randolph, M.A. Larson, Theory of Particulate Processes [M]. Academic Press, New York,1971
    [14]S.M. Miller, Modelling and Quality Control Strategies for Batch Cooling Crystallizer, Ph.D. Dissertation, University of Texas at Austin,1993
    [15]V.A. Garten, R.B. Head. Crystalloluminescence and the nature of the critical nucleus [J]. Philosophical Magazine,1963,8:1793-1803
    [16]V.A. Garten, R.B. Head. Homogeneous nucleation and the phenonmenon of crystalloluminescence [J]. Philosophical Magazine,1966,14:1243-1253
    [17]J. Nyvlt. Kinetics of nucleation in solutions. [J]. Journal of Cryst.Growth,1968,4:377
    [18]J.W. Mullin, Crystallization,2nd ed [M], Butterworth, London,1972
    [19]A.T. Williamson. The exact calculation of heats of solution from solubility data [J]. Trans. Faraday Soc,1944,40:421
    [1]Wang Jingkang(王静康).Present and future of industrial crystallization [J]. Chemical Englneering(化学工程),1992,20:57-63
    [2]A. McPherson, Crystallization of Biological Macromolecules [M]. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York,1999
    [3]K. Sangwal. Effects of impurities on crystal growth processes [J]. Prog. Crystal Growth and Charact,1996,32:3-43
    [4]N. Kubota, J.W. Mullin. A kinetic model for crystal growth from aqueous solution in the presence of impurity [J]. Journal of Crystal Growth,1995,152:203-208
    [5]A.S. Myerson. Handbook of Industrial Crystallization,2nd [M]. Amsterdam:Elsevier Science & Technology Books,2001,67
    [6]M. Bravi, B. Mazzarotta. Primary nucleation of citric acid monohydrate:influence of selected impurities [J]. Chemical Engineering Journal,1998,70:197-202
    [7]L. N. Rashkovich, N. V. Kronsky. Influence of Fe+ and Al3+ ions on the kinetics of steps on the {100} faces of KDP [J]. Journal of Crystal Growth,1997,182(3-4):434-441
    [8]J. Dugua, B. Simon. Crystallization of sodium perborate from aqueous solutions:Ⅱ. Growth kinetics of different faces in pure solution and in the presence of a surfactant [J]. Journal of Crystal Growth,1978,44(3):280-286
    [9]B.R. Thomas, A.A. Chernov, P.G. Vekilov, et al. Distribution coefficients of protein impurities in ferritin and lysozyme crystals self-purification in microgravity [J]. Journal of Crystal Growth,2000,211(1-4):149-156
    [8]Valery I. Chani, Keiji Inoue, Kiyoshi Shimamura, et al. Segregation coefficients in β-Ga2O2:Cr crystals grown from a B2O3 based flux [J]. Journal of Crystal Growth,1993, 132(1-2):335-336
    [10]G. G. Z. Zhang, D. J. W. Grant. Incorporation mechanism of guest molecules in crystals: solid solution or inclusion? International Journal of Pharmaceutics,1999,181:61-70
    [11]N. Kubota. Effect of impurities on the growth kinetics of crystals [J]. Journal of Crystal Growth,2001,36:749-769
    [12]N. Kubota, M. Yokota, J.W. Mullin. The combined influence of supersaturation and impurity concentration on crystal growth [J]. Journal of Crystal Growth,2000,212:480-488
    [13]W. R.. Witkowski, S. M. Miller,& J. B. Rawlings. Lightscattering measurements to estimate kinetic parameters of crystallization [J]. ACS Symposium Series,1990,438:102-114
    [14]M. Yokota. A simple method for evaluating kinetic parameters in non-isothermal batch crystallization [J]. Chemical Engineering Science,2000,55:717-722
    [15]A.D. Randolph, M.A. Larson, Theory of Particulate Processes [M]. Academic Press, New York,1971
    [16]S.M. Miller, Modelling and quality control strategies for batch cooling crystallizer, Ph.D. Dissertation, University of Texas at Austin,1993
    [17]F. Lewiner, J.P. Klein, F. Puel, G Fevotte. On-line ATR FTIR Measurement of Supersaturation during Solution Crystallization Processes. Calibration and Applications on Three Solute/Solvent Systems [J]. Chemical Engineering Science,2001,56:2069-2084
    [18]G. Fevotte. New Perspectives for the On-line Monitoring of Pharmaceutical Crystallization Processes Using in Situ Infrared Spectroscopy [J]. International Journal of Pharmaceutics,2002,241:263-278
    [19]C.L.Liu, L.J. Xu, X.H. Xian, X.F. Xian. Relation Between Concentration of Salt in Aqueous Solution and Its Conductivity [J]. Journal of Chongqing Univerisity,1999, 22:126-130
    [20]E. Garcia, S. Veesler, R. Boistelle, C. Hoff. Crystallization and dissolution of pharmaceutical compounds-An experimental approach [J]. Journal of Crystal Growth,1999, 199:1360-1364
    [21]F. Kohlrausch. Observations on Siemens'unit [J]. Journal of the Franklin Institute,1871, 91:349-355
    [22]A.L. Horvath, Handbook of Aqueous Electrolyte Solutions, Physical Properties, Estimation and Correlation Methods [M]. New York:Ellis Horwood Limited,1985
    [23]W.K. Burton, N. Cabrera, F.C. Frank. The growth of crystals and the equilibrium structure of their surfaces [J]. Philosophical Transactions,1951,243:299-358
    [24]A. Mersmann, Crystallization technology handbook,2nd ed [M]. Marcel Dekker, New York,2001
    [25]B. O. Von, W. Kordel, W. Klein. [J]. Chemosphere,1991,22:285-304
    [26]N.S. Tavare, Batch crystallizer:A review [J]. Chemical Engineering Communications, 1987,61(1-6):259-318
    [1]N. Blagden, M. de Matas, P.T. Gavan, P. York. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates [J]. Advanced Drug Delivery Reviews,2007,59(7)617-630
    [2]N. Doki, N. Kubota, A. Sato. Effect of cooling mode on product crystal size in seeded batch crystallization of potassium alum [J]. Chemical Engineering Journal,2001, 81(1):313-316
    [3]P. A. Meenan, S. R. Andrson, D. L. Klug. The influence of impurities and solvents on crystallization, in:A.S. Myerson (Ed.), Handbook of Industrial Crystallization,2nd ed [M]. Elsevier Science & Technology Books, Amsterdam,2002, pp.67-100
    [4]G.G.Z. Zhang, D.J.W. Grant. Incorporation mechanism of guest molecules in crystals: solid solution or inclusion? [J]. International Journal of Pharmaceutics,1999,181(1)61-70
    [5]E. Mielniczek-Brzoska, K. Gielzak-Kocwin, K. Sangwal. Effect of Cu(Ⅱ) ions on the growth of ammonium oxalate monohydrate crystals from aqueous solutions:growth kinetics, segregation coefficient and characterisation of incorporation sites [J]. Journal of Crystal Growth,2000,212:532-542
    [6]K. Sangwal, E. Mielniczek-Brzoska. Effect of Cr ions on the growth kinetics of ammonium oxalate monohydrate crystals from aqueous solution [J]. Journal of Crystal Growth,2000,242:421-434
    [7]R.N. Hall. Segregation of impurities during the growth of germanium and silicon [J]. Journal of Physical Chemistry,1953,57(8):836-839
    [8]F. Rosenberger, H.G. Riveros, Segregation in alkali halide crystallization from aqueous solution [J]. Journal of Chemical Physics,1974,60:668-670
    [9]R. Meadhra, R. Lin. Modelling of Alditol Impurity Incorporation into Galactitol Crystals. Chemical Engineering Research and Design,2006,84:711-720
    [10]F. Rosenberger, M.C. DeLong, J. M. Olson. Heat transfer and temperature oscillations in chemical vapor transport crystal growth Ⅰ [J]. Journal of crystal growth,1973,19:317-328
    [11]G.D. Botsaris, E.G. Denk, J. Chua. Nucleation in an impurity concentration gradient-a new mechanism of sencondary nucleation [J]. AIChE Symposium Series No.121,1972, 68:21-30
    [12]N. Kubota. Effect of impurities on the growth kinetics of crystals [J]. Crystal Research Technology,2001,36:749
    [13]R. Meadhra, R. Lin. Modelling of Alditol Impurity Incorporation into Galactitol Crystals [J]. Chemical Engineering Research and Design,2006,84(2006)711-720
    [14]F.C. Frank. Growth and perfection of crystals [M]. Wiley, New York,1958,411
    [15]T.T. Zhu, S.A. Wu, H.T. Shao, K.L. Zhang, J.H. Du. Study on organic acids in different original gravity beers [J]. Food and Fermentation Industries,2005,31:108-112
    [16]K.J. Weiser, Theoretical calculations of distribution coefficients of impurities in germanium and solicon, heats of solid solution [J]. Phys. Chem. Solids,1958,7:118-126
    [17]J.A. Burton, R.C. Prim, and W.P. Slichter. The distribution of solute in crystals grown from the melt. Part 1. Theoretical [J]. Journal of Chemical Physics,1953,21:1987-1996
    [18]W.M.L. Wood. A bad (crystal) habit and how it was overcome [J]. Powder Technology, 2001,121(1)53-59
    [19]E. Mielniczek-Brzoska, K. Gielzak-Kocwin, K. Sangwal. Effect of Cu(Ⅱ) ions on the growth of ammonium oxalate monohydrate crystals from aqueous solutions:growth kinetics, segregation coefficient and characterisation of incorporation sites [J]. Journal of Crystal Growth,2000,212:532-542
    [1]沈荣欣,方亚寅,李正名.用分子动力学模拟方法研究磺酰脲化合物在溶液中构象的变化[J].高等学校化学学报,2000:957-959
    [2]朱阁,卢贵武,李英峰,等.晶体生长机制和生长动力学的蒙特卡罗模拟研究[J].人工晶体学报,2006,35(1):24-31
    [3]T. Juergen, S. Markus, B. Josef. Crystal structure prediction could have helped the experimentalists with polymorphism in benzamide [J]. Molecular Simulation,2008,34 (10):1359-1370
    [4]L. Frank. Ab initio prediction of polymorphs [J]. Journal of Crystal Growth,1996, 166:900-903
    [5]G. Panagiotis, S.P. Karanertzabus. Energy minimization of crystal structures containing flexible molecules [J]. Journal of Chemical Theory and Computation,2006, (2):1184-1199
    [6]陈正隆.分子模拟的理论与实践[M].北京:化学工业出版社,2007
    [7]Frenkel, Smit.分子模拟——从算法到应用[M].北京:化学工业出版社,2004
    [8]L. Stephen, O. Barry, G. William G. DREIDING:a generic force field for molecular simulations [J]. Journal of Physical Chemistry,1990,94:8897-8909
    [9]王静康,黄向荣,刘秉文,等.有机分子晶体晶习预测的研究进展[J].2002,31(3):218-223.
    [10]Allan M. Handbook of Industrial Crystallization 2ed [M]. Elsevier Science & Technology book,2001
    [11]张缨,王静康,冯天扬,等.晶体形貌预测方法与应用[J].化学工业与工程,2002,19(1):119-123
    [12]张春桃,王静康,王永莉.头孢曲松钠晶体结构与晶习预测的研究[J].中国抗生素杂质,2007,32(11):132-139
    [13]J. Horst, H. Kramer, G. Rosmalem, et al. Molecular modeling of the crystallization of polymorphs. Part 1:the morphology of HMX polymorphs [J]. Journal of Crystal Growth, 2002,239:2215-2220
    [14]L. Jun, J. Ulrich. An improved prediction model of morphological modifications of organic crystals induced by additives [J]. Crystal Research Technology,2003,38(1):63-73.
    [15]K. Sangwal. Kinetic effects of impurities on the growth of single crystals from solutions [J]. Journal of Crystal Growth,1999,203:197-212
    [16]L. Jun, U. Joachim. The influence of supersaturation on crystal morphology-experimental and theoretical study [J].. Crystal Research Technology,2005, 40(9):839-846
    [17]B. Nicholas. Crystal engineering of polymorph appearance:the case of sulphathiazole [J]. Powder Technology,2001,121:46-52
    [18]张缨.有机物系溶液结晶过程中形态学控制研究[D].天津:天津大学,2005
    [19]G. Clydesdale, J. Roberts, K. Lewtas, et al. Modeling the morphology of molecular crystals in the presence of blocking tailor-made additives [J]. Journal of Crystal Growth,1994, 141(3-4):443-450
    [20]J. Horst, R. Geertman, G. Rosmalen. The effect of solvent on crystal morphology [J]. Journal of Crystal Growth,2001,230:277-284
    [21]Isabelle Seyssiecq, Stephane Veeder, Gerard Pepe, et al. The influence of additives on the crystal habit of gibbsite [J]. Journal of Crystal Growth,2004,196(1):174-180
    [22]施尔畏,仲维卓,华素坤等.负离子配位多面体生长基元素模型及基元稳定能计算[J].人工晶体学报,1997,26(3):190
    [23]仲维卓,华素坤,罗豪甦.负离子配位多面体生长基元在晶体生长中的应用[J].人工晶体学报,2000,29(5):23
    [24]仲维卓,于锡铃,罗豪甦等.KDP晶体生长基元与形成机理[J].中国科学E辑1998,28(4):320-324
    [25]S. Myerson. A comparison of binding energy and metastable zone width for adipic acid with various additives [J]. Journal of Crystal Growth,1995,156:459-466
    [26]S.K. Poornachary, P. S. Chow, et al. Effect of solution speciation of impurities on a-glycine crystal habit:a molecular modeling study [J]. Journal of Crystal Growth,2008, 310(12):3034-3031
    [27]S.K. Poornachary, P. S. Chow, et al. Impurity effects on the growth of molecular crystals-experiments and modeling [J]. Advanced Powder Technology,2008,19(5):459-473
    [28]S.K. Poornachary, P. S. Chow, et al. Molecular speciation controlling stereoselectivity of additives:impact on the habit modefication in a-Glycine crystals [J]. Crystal Growth & Design,2007,7(2):254-261
    [29]L. Jun, U. Joachim. The influence of supersaturation on crystal morphology-experimental and theoretical study [J]. Crystal Research Technology,2005,40(9):839-846
    [30]L. Jun, U. Joachim. Improved understanding of molecular modeling-the importance of additive incorporation [J]. Journal of Crystal Growth,2004,270:203-210
    [31]K.D. Singh, S.C. Jain, T.D. Sakore, et al. The crystal and molecular structure of zinc lactate trihydrate [J] Acta Crystallogr. B,1975,31:990-993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700