乳酸乙酯合成的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对以乳酸菌为菌体,以氨水为中和剂,对L-乳酸的发酵工艺进行了探讨,确定出适宜的发酵pH是6.5;在发酵液pH为6.5,以25 ml/h的速度流加浓度为600 g/L葡萄糖,发酵80 h后,乳酸铵的产量为136.8 g/L,葡萄糖流加发酵与非流加发酵相比,达到相同的乳酸铵浓度缩短了约30小时。并建立了细胞生长、产物生成和底物消耗的动力学模型,实验结果和模拟结果吻合良好。
    将磁性材料Fe_3O_4和SO_4~(2-)/ZrO_2固体超强酸进行组装。得到了磁基体的适宜制备条件是:n(Fe~(2+)) /n(Fe~(3+)) =1:6,以0.1mol/L NaOH溶液为沉淀剂,基液的pH为12,Fe~(2+)与Fe~(3+)混合液滴加速度为2ml/s,滴加方式为将混合液缓慢加入到NaOH基液中,晶化时间为30min;磁性超细固体超强酸的适宜制备条件是:nFe_3O_4:nZrO_2=1:10,焙烧温度为5000C。在反应时间为5h,催化剂用量为乳酸质量的6%,酸醇摩尔比为1:5时最高产率为84%,催化剂回收率为90%以上。
    采用激光粒度仪、磁强计、XRD、比表面积测定仪等分析测试手段对催化剂的结构和性能进行了表征和评价。结果表明:磁基体的平均粒径小于100nm,且分布范围较窄,磁基体的饱和磁强度(σS)基本上在80 emu·g~(-1)以上,磁基体XRD谱图与Fe_3O_4标准谱图基本相同。在5000C焙烧时所得催化剂的比表面积为78.9m~2/g。表征结果表明制得的催化剂属于超强酸。
    对以SO_4~(2-)-Fe_3O_4/ZrO_2为催化剂,乳酸和乙醇的酯化反应动力学进行了研究,研究表明只要搅拌转速≥85 r/min,反应就不受外扩散的影响,并且在所制备的催化剂粒度范围内,反应和内扩散无关。并且得到了反应的动力学模型。同时发现在温度较低时,在反应开始阶段存在诱导期现象,并对诱导期现象产生的原因进行了讨论。
    在自行设计的催化精馏塔内对乳酸和乙醇酯化反应的催化精馏过程进行了研究,建立了催化精馏实验装置,确定了实验流程,得到了适宜工艺条件为:醇酸比为4:1,回流比为1:1,乳酸进料量为0.6482mol/h,乳酸乙酯一次循环收率达到51.64%。并利用“化学理论”并且结合海登-奥康纳尔公式计算逸度系数,用NRTL方程计算活度系数,借助ASPEN PLUS软件,用平衡级模型进行了催化精馏塔的模拟,模拟结果与实验结果吻合较好。
A process for efficient production of ammonium lactate by lactic acid bacteriumin pH-controlled batch fermentation was developed. Effects of pH on the biomass andammonium lactate in batch culture were studied. The final concentration of 136.8gammonium lactate per liter was obtained at the preferable condition of pH 6.5 and 25ml/h glucose fed-batch speed after 80h. The time reached the same concentration ofammonium lactate was approximately decreased 30h. Kinetic models of cell growth,ammonium lactate formation and glucose consumption in batch fermentation wereproposed and kinetic model parameters were determined. The calculated valuesagreed approximately with the experimental data.
    The magnetic particles of Fe_3O_4 and the solid super-acid catalyst SO_4~(2-)-ZrO_2were assemble to become a novel ultra-fine catalyst SO_4~(2-)-Fe_3O_4/ZrO_2 withmagnetism and strong super-acidity. The magnetic particles of Fe3O4 weresynthesized under the optimum conditions of n(Fe~(2+)) /n(Fe~(3+)) was 1:6, the mixturesolution of Fe~(2+) and Fe~(3+) dropped to 0.1mol/L NaOH solution and dropped speed was2ml/s. The results showed that the appropriate conditions made SO_4~(2-)-Fe_3O_4/ZrO_2 were as follows: nFe3O4:nZrO2 was 1:10, baking temperature was 5000C. Theyield achieved 84 % with reaction time was 5 hours, weight of catalyst was 6.0% oflactic acid mass, the molar ratio of lactic acid to ethanol was 1:5. The catalyst couldbe isolated from other materials by magnetic separation and the reuse rate exceeded90%.
     The catalyst was characterized by techniques such as XRD, BET et al .The resultsshowed that average particle size of magnetic particles was smaller than 100nm,andmagnetism(σ_s) overtaken 80emu.g~(-1) that was higher than the value had reported. XRDcurves of Fe_3O_4 prepared and standard Fe_3O_4 were essential the same. The specificsurface area of catalyst decreased with the increase of baking temperature, and thatwas 78.9m~2/g when baking temperature was 5000C.
     The kinetics of the reaction of ethanol and lactic acid in the presence of SO42--Fe_3O_4/ZrO_2 were experimentally determined and the model for reactive kinetics wasobtained: At the same time, the problem of inducement period was also found whenthe temperature was lower.
    An extensive investigation of ethyl lactate synthesis by reactive distillation waspresented for the first time. The one-time yield of ethyl lactate achieved 51.64% infollow appropriate condition: the reflux ratio was 1:1, the molar ratio of ethanol tolactic acid was 4:1, lactic acid feeding flux was 0.6482 mol/h respectively. Based onthe experiment and the model for reactive kinetics, ASPEN PLUS software waschosen to simulate the temperature and concentration using equilibrium-staged model,good agreement between experimental data and the simulation results been achieved.
    The results indicated that the process was little pollution on the environment and littleerosion on the equipment, and ethyl lactate was a “green” solvent, so that technologywas a “green” technique and will have good prospective in the future.
引文
[1] 王博彦,金其荣,发酵有机酸生产与应用手册,北京: 中国轻工业出版社,2002, 337-389
    [2] 齐宏秀,乳酸的应用及生产情况,辽宁化工,1996,1:20~21
    [3] 戎志梅,生物化工新产品与新技术开发指南,北京:化学工业出版社,2002.85-87
    [4] Severson D.K., Barrette C.L. Lactobacillus delbrueckii spp. Bulgaricus strain and fermentation process for producing L-lactic acid, US Patent , 516020, 1995
    [5] 储炬,李友荣, 现代工业发酵调控学,北京:化学工业出版社,2002,230~250.
    [6] Bailey J. E., Ollis D. F. Biochemical engineering Fundamentals, 2nd Edition. New York: McGrawl-Hill Book Company,1986,35-57
    [7] 戚以政,汪叔雄, 生化反应动力学与反应器, 第二版, 北京: 化学工业出版社, 1999, 81-83
    [8] Goncalves L.D., Xaviers A.B., Almeida J.S. Concomitant substrate and product inhibition kinetics in lactic acid production, enzymy microbol technology, 1991, 13:314-318.
    [9] Wenge Fu, Mathews A.P. Lactic acid production from lactose by Lactobacillus plantarum:kinetic model and effects of pH, substrate, and oxygen, Biochemical engineering, 1999, 3: 163-170
    [10] Soccol C.R. Marin B. Raimbault M. Potential of solid state fermentation for production of L(+)-lactic acid by Rhizopus oryzae, Appl Microbiol Biotechnol, 1994, 41: 286-290
    [11] Clary J.J., Feron V.J., Van J.A.. Safety Assessment of Lactate Esters, Regulatory toxicology and pharmacology,1998,27:88-97
    [12] Agonne National Lab. Frequently Asked Question about ethyl lactate .(www.itd.anl.gov), 2005, 4
    [13] 鲁富贵,张深松,关于乳酸乙酯合成的研究,河北师范大学学报,1997,11(1):106-108
    [14] 王刚,沙钝, 乳酸乙酯合成新方法的研究,哈尔滨师范大学,1997,13(6):15-17
    [15] 李德昌,黄春林, 改性氧化锆催化合成乳酸乙酯,现代化工,2004,26(4):16-18
    [16] 郝素娥,金婵, 乳酸乙酯合成的研究,哈尔滨工业大学学报,1999,31(1):47-50
    [17] 欧阳玉祝, 固体杂多酸催化合成乳酸乙酯的研究,吉首大学学报(自然科学版),1998,19(2):58-60
    [18] 刘榕芳,肖秀峰,王清萍,脱水法合成乳酸乙酯,精细化工,2003,17 (12):714~716.
    [19] 粱福沛,吴彦瑜,稀土化合物催化合成乳酸乙酯的研究,广西化工.1995,24(4):21-23
    [20] 李华,固体酸催化合成乳酸乙酯,湖北化工,1997,3:31-32
    [21] 吴梦海,何伟民,乳酸乙酯合成新工艺,中国专利,1032855,1996-09-25
    [22] 罗永才,罗通,以天然原料合成乳酸乙酯的方法,中国专利,1229790,1999-09-29
    [23] 封孝华,余敦寿,刘序章,乳酸乙酯合成方法, 中国专利,1054118,2004-07-05
    [24] KazuhiroTanaka, Ryuuhei Yoshikawa, et al. Application of zeolite T membrane to-aided vapor-permeatio-n esterification of lactic acid with ethanol. Chem. Eng. Sci., 2002 ,57:1577-1584
    [25] Jalal J., Peter M., Ron H. Enhancement of esterification reaction yield using zeolite A vapour permeation membrane. Journal of membrane science, 2002, 197: 117-123
    [26] Martino-Gauchi, Georges, Teissier. continuous method for preparring ethyl lactate, WO, 052826 A2, 2004-06-24
    [27] Tretjak, Serge, Teissier. Continuous ethyl lactate preparation method, WO, 052825 A2,2004-06-24
    [28] Walkup C., Rohrmann. Production of esters of lactic acid, ester of acrylic acid, lactic acid and acrylic acid,US Patent ,5071754,1991-12-10
    [29] Walkup C., Rohrmann. Production of esters of lactic acid, ester of acrylic acid, lactic acid and acrylic acid. US Patent ,5252473,1993-08-12
    [30] Argonne National Laboratory. Esterification of fermentation-derived acids via pervaporation US Patent ,5,723,639, 1998-03-03
    [31] Halpern,Yuval. Direct esterification of ammonium salts of carboxylic acid. US Patent,6583310 , 2003-06-24
    [32] 小原仁实 ,伊藤正博 ,泽诚治,以乳酸铵为原料的交酯的制造方法及聚乳酸的制造方法,中国专利,1369490,2002-9-18
    [33] Ohara, Ito. Process for producing lactide and process for producing polylactic acid from fermented lactic employed as staring material, US Patent ,6569989,2003-5-27
    [34] Kenji S., Masayuki T., Shigenobu M. Making plastics from garbage---A novel process for poly-L-lactate production from municipal food waste , Journal of industrial ecology, 2004,7(3-4):63-74
    [35] 张术华 ,毛友安,SO_4~(2-)/MXOY型固体超强酸及其催化酯化,化学研究与应用,1997,9(4):327-331
    [36] Weitkamp J., Traa Y. Isobutane/butene alkylation on solid catalysts,Where do we stand? , Catalysis Today, 2004,49:193-199
    [37] 刘长喜,谢在库,陈庆龄,固体超强酸催化剂研究的新进展,石油炼制与化工,1998,29(2):29-32
    [38] John F. Knifton R. Phenol/acetone cogeneration via solid acid catalysis, Applied catalysis A: 1997,161:199-211
    [39] Lei T., Xu J.S., Yang Y.. New solid superacid catalysts for n-butane isomerization. Applied Catalysis A, 2000,192:118-188
    [40] 刘小军,于光锁,王亦飞,SO_4~(2-)/MxOy型无机固体超强酸研究进展,工业催化,2004,11(6):35-40
    [41] 李红,杨辉荣,黄乘亚,固体超强酸TiO_2/SO_4~(2-)-沸石分子筛催化合成邻苯二甲酸二辛酯,石油化工,1998,27(6):399-402
    [42] 于世涛,高根之,杨锦宗,用SO_4~(2-)/TiO_2-SnO_2-Al_2O_3超强酸合成DOP,精细石油化工,1997,3:29-32
    [43] 于世涛,宋湛谦,SO_4~(2-)/MxOy固体超强酸的研究进展,化工科技,2000,8(4):60-64
    [44] 日野诚,荒田一志,固体超强酸の调制とその触媒作用。表面(日),1990,28(7): 481-491
    [45] Hino M., Kobayashi S., Arata K. Reaction of butane and isobutene catalyzed by zirconium oxide treated with sultate ion.solid superacid catalyst, J.Am.Chem.Soc, 1979, 101: 6439-6440
    [46] 吴少林,李来生,SO_4~(2-)/Fe2O3-Dy2O3固体超强酸催化合成α-萘乙酸甲酯,化学世界,1997,(4):184-185
    [47] 李远志,周俊婷,刘明国,添加稀土元素Th对固体超强酸SO_4~(2-)Fe_2O_3的改性研究,河南师范大学学报,1999,27(2):52-54
    [48] 陈里,丁来欣,崔立燕,固体酸SO4 2-/Ti-La-O的制备及催化酯化活性的研究,化学物理学报,2003,10(1):84-88
    [49] 徐景士,陈慧宗,崔国娣, 稀土改性SO_4~(2-)/TiO_2固体超强酸催化合成水杨酸异戊酯,江西师范大学学报(自然科学版),1999,23(1):34-37
    [50] 林进,固体超强酸SO_4~(2-)/TiO_2/La~(3+)催化合成己酸乙酯 ,化学世界,2003,9:465~467
    [51] 张立德,牟季美,纳米材料和纳米结构,北京:科学出版社,2001,45-49
    [52] 高善民,孙树声,刘兆明,纳米材料的应用前景展望,化学世界,2000,40(11):613-616
    [53] Grzeta B, Ristic M, Nowik I. Formation of nanocrystalline magnetite by thermal decomposition of iron choline citrate, Journal of Alloys and Compounds, 2002,334:304-312
    [54] 张梅,杨绪杰,陆路德,溶胶-凝胶法制备纳米TiO_2 ,化工新型材料 2002,30(1):35-37
    [55] Backhaus, A.A. Continuous process for the manufacture of esters. US Patent,1,400,849, 1921-11-12
    [56] 刘根生,浅述催化精馏技术,化学工程,1994,12(4):281-284
    [57] Saha B., Chopade S.P. Mahajani.Recovery of dilute acetic acid through esterification in a reactive distillation column,Catalysis Today,2000,60:147–157
    [58] Michael F.M., Michael F. Reactive distillation. Ind.Eng.Chem.Res, 2000, 39:3953-3957
    [59] 许锡恩 ,朱宝福,陈洪钫等,酯化反应的反应精馏过程,石油化工,1985,14:481-486
    [60] 杨梅,韩运华,张启中等,催化精馏合成丙烯酸正丁酯,吉林化工学院学报,2000,17(1):22-24
    [61] 杨志才,崔现宝,高静,乙酸与丁醇酯化反应精馏过程,化工学报,1998,49(1):39-47
    [62] 廖安平,蓝平,流化催化制备乙酸乙酯研究,化学工程,2000,28(6):19-33
    [63] Maria P. B., Joaquin C. Coupling of reaction and separation at the microscopic level: esterificatiom processes in a H-ZSM-5 membrane reactor. Chem. Eng. Sci., 2002,57: 1557-1562
    [64] Kening E. Y., Bader H. Investigation of ethyl acetate reactive distillation process. Chem. Eng. Sci., 2001,56:6185-6193
    [65] 丁斌,张启忠,富马酸二甲酯合成新工艺研究,化工学报,1998,15(4):1-5
    [66] 廖安平,蓝平,流化催化制备醋酸异戊酯研究,化学工程,2000,51:117-121
    [67] Davis, B.;Jeffereys, G., J. Conceptual design aspects of reactive distillation processes for ideal binary mixtures Chem.Eng.Sci., 1973,51(4):267-287
    [68] 姜忠义,王永,酯交换法合成碳酸二甲酯的催化精馏过程,石油化工,2001,30(3):173-177
    [69] 张毅民,草酸二乙酯制草酸动力学研究及其工艺条件的选择,博士后出站报告,天津大学,1998
    [70] Krishna R. Reactive separations: more ways to skin a cat, Chem. Eng. Sci., 2002, 57:1491 -504
    [71] 吴燕翔,王良恩,二对角矩阵及其在催化精馏塔模拟计算中的应用,化工学报,2000,28(1):82-86
    [72] Shoemaker J.D., Jones E.M. Reactive distillation industrial applications,process design & scale-up. Hydrocarbon Processing, 1987,66(6):57-58
    [73] Saha B., Chopade S.P., Mahajani S.M. Recovery of dilute acetic acid through esterification in a reactive distillation column.Catalysis today,2000,60:145-157
    [74] Quido S., Jiri H., Jiri K. 2-Methylpropylacetate synthesis in a system of equilibrium reactor and reactive distillation column. Chem.Eng.Sci., 2001,56(1), 365-370
    [75] Stitt E. H. Reactive distillation for toluene disproportionation: a technical andeconomic evaluation. Ind.Eng.Chem.Res., 2002,57:1537-1543
    [76] 漆志文,孙海军,反应分离过程模拟,华东理工大学学报,1999,25(1):19-23
    [77] Smith, L.A.;Jones, E.M. Catalytic Distillation –A new Chapter in unit Operations. Paper presented at Spring Meeting of AICHE, Houston , 1991. 69-75
    [78] Smith, L.A. Catalytic distillation process. US Patent , 4, 307,254. 1981-11-22
    [79] 李甫,张瑞生,张家庭,催化精馏合成 2-羟丙基甲醚,化学反应工程与工艺,2001,17(4):338-343
    [80] Hu-Ping Luo, Wen-De Xiao. A reactive distillation process for a cascade and azeotropic reactionsystem: Carbonylation of ethanol with dimethyl carbonate. Chem.Eng.Sci., 2001,56: 403-410
    [81] Solokhin A.V., Blagov S.A. Reactive-Distillation is an Advanced Technique of Reaction Process Operation.Chem. Eng. Sci., 1996,51(11): 4443-4454
    [82] Sundmacher K., Hoffmann U. Development of a New Catalytic Distillation Process for Fuel Ethers via a Detailed Nonequlibrium Model. Chem. Eng. Sci., 1996,51(10): 2359-2364
    [83] Babcock P.D., Clup C.W. Recent Development in Separation Science IV. Ed. By Norman, 1978 ,4:149-154
    [84] 廖安平,蓝平,李娟等,流化催化精馏制备乙酸乙酯的研究,化学工程,2000,28(6):19-21
    [85] 刘劲松 ,催化蒸馏中的热力学行为和回收稀醋酸过程非平衡及模拟的研究,[学位论文],天津大学,1997
    [86] 何寿林 ,李定或,反应精馏法合成乙二酸二乙酯的探索,武汉化工学院学报,1997,19(2):30-33
    [87] Quido S., Jiri H.2-Methylpropylacetate synthesis in a system of equilibrium reactor and reactive distillation column. Chem. Eng. Sci., 2001,56, 365-370.
    [88] 许锡恩 ,孟祥坤,催化蒸馏过程研究进展,化工进展,1998,1:7-13
    [89] 郑宇翔,催化蒸馏过程的研究,[学位论文],天津大学,1992
    [90] Barbosad, D. Design and minimum-reflux calculations for single-feed multi-component
    reactive distillation columns. . Chem. Eng. Sci., 1988, 43(7): 1523-1537
    [91] Barbosad, D. Design and minimum-reflux calculations for double-feed multicompon -ent reactive distillation columns .Chem. Eng. Sci., 1988, 43(7): 2377-2389
    [92] Buzad G, Doherty M. F. Design of three-component kinetically controlled reactive distillation columns using fixed-point methods . Chem. Eng. Sci., 1994, 49(12): 1947-1963
    [93] Espmosa J, Aguirre P, Perez G. Some aspects in the design of multicomponent reactive distillation columns including nonreactive species . Chem. Eng. Sci, 1995, 50(3): 496-484
    [94] Ung S, Doherty M. F. Synthesis of reactive distillation systems with multiple-equilibrium chemical reaction . Ing. Eng. Chem. Res., 1995, 34(8): 2555-2565
    [95] 聂红 ,催化精馏在精制和化学工业中的应用,石油化工译从,1986,7 (6):33
    [96] Zheng Yuxiang, Xu Xien. Study on Catalytic Distillation Process. Presented at the AIChE'92 Annual meeting. Miami beach, Florida, USA.1992, 11-18
    [97] Minghan H., Hongfei L. Characteristics of the Reactive Distillation Column with a Novel Internal. Chem. Eng. Sci., 2002,57:1551-1555
    [98] 崔现宝 , 醋酸与丁醇酯化反应精馏过程与工艺的研究,[学位论文],天津大学,1996
    [99] Edwin S.O., Ted R.A., Ramesh K.S. Ester fuels and chemicals from biomass. Applied biochemistry and biotechnology,2003,105-108:843-851
    [100] 白冬梅,班睿,赵学明等, 应用 HPLC—反相色谱法测定米根霉乳酸发酵液中的乳酸,色谱,2000,18(6):527-528
    [101] 白冬梅 ,赵学明,反相 HPLC 双检测器法同时测定米根霉乳酸发酵液中的有机酸与葡萄糖,食品科学,2000,21(11):41~44
    [102] 邹涛 ,郭灿雄,段雪,强磁性纳米粒子的制备及其性能表征,精细化工,2002,19(12):707-710
    [103] 常铮,李峰,段雪,磁性纳米固体酸的制备和催化性能的研究,无机化学学报,2001,17(3):366-371
    [104] 刘志强,李小斌,彭志宏等,湿化方法制备超细粉体过程中的团聚机理及消除方法,化学通报,1999 , 7:54-57
    [105] 张芳,胡志强,蔡英骥,聚乙二醇加入量对锆钛酸铅粉体细度的影响,大连轻工业学院学报,2002 , 21(3):164-167
    [106] 范闽光,李景林,乳酸和乙醇酯化反应动力学,广西大学学报,1991,16(1):11-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700