网络化运动控制系统资源调度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运动控制系统是现代装备制造业的基础,网络化是实现运动控制系统高速度、高精度目标的重要手段。作为一类特殊的网络化控制系统(NCS),网络化运动控制系统(NMCS)具有系统连线少、可靠性高、易于扩展以及便于实现信息资源共享等优点,但是网络的介入也带来了诸如网络诱导时延、数据包的多包传输及丢失、网络通信约束、网络调度等新的问题。这些问题的解决一方面需要有效的控制方法,更重要的是采取合适的资源调度策略,补偿或改善网络对系统性能带来的不利影响。
     本文从资源调度的角度,研究了网络化运动控制系统的结构、建模方法和时延分析方法、调度方法及典型系统设计等问题。将NMCS建模为两种典型节点触发模式组合的离散时间数学模型。在研究处理器任务调度的基础上,对两种经典实时调度算法RM和EDF用于网络化运动控制系统的可行性、性能及调度优化问题进行了仿真研究;从系统性能评价指标入手,研究了综合考虑网络性能和控制性能的基于带宽分配的网络化运动控制系统调度方法,提出了两种基于反馈控制原理的动态带宽分配算法;将处理器任务响应时间分析方法引入CAN网络可调度性分析中,基于Matalb/Simulink的Stateflow工具箱对CAN网络性能进行了仿真研究;提出了一种基于主/从模式的CAN网络化运动控制系统实现结构,并进一步构建了典型的CAN网络化运动控制系统实验平台,从器件选择、PCB板设计、软件移植等方面总结了主节点的软硬件设计过程,并针对实时调度算法RM和EDF、两种动态带宽分配算法,在该实验平台上进行了性能测试和分析。具体内容如下:
     1.在分析网络化运动控制系统特点和有待解决的关键问题的基础上,从目前一般网络化控制系统的研究方法入手,讨论了网络化运动控制系统的结构、建模方法、时延分析方法等问题。基于对网络化运动控制系统结构的研究,推导出传感器(时间驱动)+控制器(时间驱动)+触发器(事件驱动)(S(T)+C(T)+A(E))和传感器(时间驱动)+控制器(事件驱动)+触发器(事件驱动)(S(T)+C(E)+A(E))两种典型节点触发模式组合的NMCS离散时间模型。对NMCS中时延产生的原因、种类及对系统性能的影响等问题进行了深入研究。在总结目前时延问题研究方法的基础上,针对零时延、常数时延(τ=τca+τsc=常数,又分为τca>>τsc和τsc>>τca两种情况)和可变时延三种典型情况的网络时延对系统性能的影响及不同负载条件下随机时延的分布进行了仿真研究,并得出结论:减少前向通道时延τca在总时延中所占比重,可以改善系统性能;随机时延比固定时延对NMCS性能影响大。
     2.在对单处理器任务调度理论进行仿真研究的基础上,对于将单处理器任务调度算法扩展用于网络调度的可行性进行了研究,并通过搭建仿真模型,研究了RM和EDF两种经典的单处理器任务调度算法用于NMCS网络调度的性能,同时对调度优化问题进行了仿真研究。由仿真结果可以看出,RM和EDF算法由于缺乏对网络状态的有效监控,难以适应系统性能的动态变化,指出反馈调度方法用于NMCS网络调度的必要性。
     3.网络化运动控制系统是控制和通信的综合体,各控制环的性能受限于控制网络的带宽。从评价网络QoS和控制QoC的性能指标入手,研究了综合考虑QoS和QoC的基于带宽分配的网络化运动控制系统调度方法。设计了两种基于反馈控制原理的动态带宽分配算法,并进行了相应的仿真验证。带宽分配算法一根据网络状态和系统需求,按需分配网络带宽,具有实时调节的灵活性,但由于对采样周期的调节过于频繁,使系统存在不稳定因素,针对该问题,在带宽分配算法二中采用预设三种典型采样周期的方法,避免了采样周期频繁切换引起的系统不稳定和系统资源过度消耗的问题。
     4.对典型的控制网络CAN进行了实时性研究,在总结CAN总线特点的基础上,指出了CAN在实时性方面存在的问题和实时性改进方面的研究进展。利用单处理器任务响应时间分析方法对CAN网络可调度性进行了分析,对CAN网络数据传输的实时性以及与网络带宽利用率之间的关系进行了仿真研究,分别得出网络负载和传输速率变化条件下的网络时延和吞吐量的变化趋势曲线。
     5.提出一种基于主/从模式的CAN总线网络化运动控制系统实现结构,该结构可以有效减轻从节点计算的复杂性并减少通讯冲突,便于调度算法及复杂控制算法的实施。并针对该结构设计了基于ARM+U-boot+Linux的CAN总线网络化运动控制系统实验平台,对平台的硬件和软件设计过程进行了总结。并针对实时调度算法RM和EDF、动态带宽分配算法1和2,在该实验平台上进行了实际性能测试,进一步说明了调度算法的有效性。
     本文针对网络化运动控制系统中的系统建模、网络调度、总线实时性分析和系统软/硬件设计等方面问题,从资源调度的角度研究了网络化运动控制系统的关键实现技术,对于运动控制系统网络化实现及性能提高具有重要的现实意义和参考价值。
As the foundation of modern equipment manufacturing, networked is an important means to realize high-speed and high-precision motion control systems. Networked Motion Control Systems (NMCS), a special kind of Networked Control Systems (NCS), have such advantages as reduced line-connecting, high reliability, easy to expand and realize information sharing, but the network intervene gives rise to some new problems such as network-induced delay, multi-packet transmission and packet loss, network communication constraints, network scheduling and so on. To address these problems, needing effective control methods, more importantly, is to take the appropriate resource scheduling strategy to compensate or improve network adverse effects on system performance.
     In this paper, from the view of resource scheduling, some key technologies are studied, such as the structure of Networked Motion Control Systems, modeling and delay analysis methods, scheduling methods and typical system design and so on. Two kinds of NMCS discrete-time model based on typical node trigger mode combination are derived. Based on the study of CPU task scheduling, the feasibility, performance and scheduling optimization of classic real-time scheduling algorithm RM and EDF for NMCS, are studied by simulation. Starting from the system performance evaluation indexes, the scheduling methods based on bandwidth allocation, considering QoS (Quality of Service) and QoC (Quality of Control), are studied, and two kinds of dynamic bandwidth allocation algorithms are proposed. By introducing CPU task response time analysis method into CAN network schedulability analysis, based on Stateflow toolbox of Matalb/Simulink, the performance of CAN is studied. A kind of NMCS implementation structure of CAN-based master-slave mode is proposed, and a typical CAN-based NMCS experimental platform is built. Hardware and software design process, including electronic component selecting, PCB (Printed Circuit Board) design, software porting, etc, are summarized. For the real-time scheduling algorithms of RM and EDF, dynamic bandwidth allocation algorithm 1 and 2, the performance testing and analysis are carried out on the experimental platform. Details are as follows:
     1. On the analysis of NMCS structure characteristics and the key problems to be solved, from the general study approach of Networked Control Systems, the problems such as NMCS structure, modeling and delay analysis methods, etc, are discussed. Based on the NMCS structure research, two kinds of NMCS discrete-time model based on typical node trigger mode combination, S(T)+C(T)+A(E) and (S(T)+C(E)+A(E)), are derived. Such problems as the cause of delay and delay type, the impact of delay on system performance, are studied. Based on the summary of current research methods of delay problems, for network delay impact on system performance in the three typical cases (zero, constant and variable), and random delay distribution under different load conditions, the related simulations are completed. Simulation conclusions are as follows: reducing forward channel delayτca portion in the total delay can improve system performance, random delay on NMCS impact more seriously than the fixed delay.
     2. Based on the simulation research on single processor task scheduling theory, the feasibility of single processor task scheduling algorithm expanded to network scheduling is studied. Through constructing simulation model, the performance of using the single processor task scheduling methods of RM and EDF for network scheduling, are studied, and the simulation for scheduling optimization problem is given. Simulation results show that:for the lack of monitoring network state effectively, RM and EDF can not adapt to the dynamic changing of system performance, the feedback scheduling method is necessary to NMCS scheduling.
     3. Because NMCS is a synthesis of control and communication, the performance of each control loop is limited by network bandwidth. Starting from the evaluation indexes of QoC and QoS, the scheduling method based on bandwidth allocation, considering QoS and QoC, is studied. Two kinds of dynamic bandwidth allocation algorithm based on feedback control theory are designed, and are validated by simulation. Bandwidth allocation algorithm one allocate bandwidth on demand, according to the network and system requirements, with the flexibility of real-time adjusting, but easily resul in existing unstable factors for the sampling period frequently regulated. To address the problems, by using default three typical sampling period, bandwidth allocation algorithm two avoid instability caused by the sampling period switching frequently and the excessive consumption of resources.
     4. For the control network of CAN, its real-time is studied. Based on the summary of CAN characteristics, the problems of CAN real-time aspects and research progress on CAN real-time improvement are pointed out. By using the task response time analysis method for single processor, schedulability of CAN is analyzed. With the Matalb/Simulink and Stateflow toolbox, the relationships between CAN data transmission of real-time and network bandwidth utilization are studied. Under the conditions of network load and transmission rate changing, network delay and throughput changing trend curve are got.
     5. A kind of CAN-based NMCS realizing structure based on master-slave mode is proposed, which can effectively reduce the calculating complexity of the slave node and communication conflicts, facilitating the implementation of scheduling and complex control algorithms. Based on the master-slave structure, a typical CAN-based and ARM +U-boot+Linux-based NMCS experimental platform is built, and the hardware/software design procedure are summarized. For real-time scheduling algorithm RM and EDF, dynamic bandwidth allocation algorithm 1 and 2, the actual performance testing are carried out on the experimental platform, and the effectiveness of the scheduling algorithms are further illustrated.
     In this paper, focusing on some problems of NMCS such as system modeling, network scheduling, bus real-time analysis, system hardware/software design, etc, from the resource scheduling perspective, the key implementation technologies of NMCS are studied. It has important practical significance and reference value to realize motion control systems networked and improve performance.
引文
[1]王家军,齐冬莲.运动控制系统的发展与展望[J].电气时代,2004,No.10:54-56.
    [2]陈先锋,舒志兵.现代运动控制系统的数字及网络化[J].电气时代,2005,No.3:140-142.
    [3]Antsaklis P, Baillieul J, (Guest Editors). Special issue on technology of networked control systems [J]. Proceedings of the IEEE,2007,95(1):5-8.
    [4]Baillieul J, Antsaklis P. Control and communication challenges in networked real-time systems [J]. Proceedings of the IEEE,2007,95(1):9-28.
    [5]Antsaklis P, Baillieul J, (Guest Editors). Special issue on networked control systems [J]. IEEE Transaction Automatic Control,2004,49(9):1421-1423.
    [6]RAJA P, ULLOA G. Priority polling and dynamic time-window mechanisms in a multi-cycle field bus. In Proceedings of the Computers in Design, Manufacturing, and. Production. Paris, France,1993.452-460.
    [7]HONG S H. Bandwidth allocation scheme for cyclic-service fieldbus networks. IEEE/ ASME Transactions on Mechatronics,2001,6 (2):197-204.
    [8]HONG S H, KIM Y C. Implementation of a bandwidth allocation scheme in. a token-passing field bus network. IEEE Transactions on Industry and Measurement, 2002,51 (2):246-251.
    [9]PARK H S, KIM Y H, KIMD S, et al. A scheduling method for network-based control systems. IEEE Translations on Control Systems Technology,2002,10 (3):318-330.
    [10]ZUBERI KM, SHIN K G. Design and implementation of efficient message scheduling for controller area network. IEEE Transactions on Computers,2000,49 (2):182-188.
    [11]NATALE M D. Scheduling the CAN bus with earliest deadline techniques. In Proceedings of the 21st IEEE Real Time Systems Symposium. Orlando, USA,2000: 259-268.
    [12]Gregory C. Walsh, Hong Ye, and Linda G. Bushnell. Stability Analysis of Networked Control Systems [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY,2002,10(3).
    [13]WALSH G C, BELDIMAN O, BUSHNELL L G. Asymptotic behavior of nonlinear networked control systems. IEEE Transactions on Automatic Control.2001,46(7): 1093-1097.
    [14]WALSH G C, BELDIMAN O, BUSHNELL L G. Error encoding algorithms for networked control systems. In Proceedings of IEEE Conference on Decision and Control,1999,5:4493-4938.
    [15]EKER J, HAGANDER P, ARZEN K E. A feedback scheduler for realtime controller tasks. Control Engineering Practice,2000,8(12):1369-1378.
    [16]蔡骅,周涌,胡维礼.网络控制的研究现状和面临的问题.东南大学学报,2001,31(4):91-94.
    [17]Hong S H. Scheduling algorithm of data sampling times in the integrated communication and control systems [J]. IEEE Trans on Control System Tethnology, 1995,3 (2):225-231.
    [18]Hong S. H., Kim W.-H., Bandwidth allocation scheme in CAN protocol, IEE Proceedings on Control Theory and Applications,2000,147(1):37-44.
    [19]KIM Y H, PARK H S, KWON W H.A scheduling method for network-based control systems. In Proceedings of IEEE ACC.USA,1998:718-722.
    [20]刘鲁源,万仁君,李斌.基于TTCAN协议的网络控制系统静态调度算法的研究.控制与决策,2004,19(7):813-816.
    [21]白涛,吴智铭,杨根科.网络化控制系统中的抖动调度优化算法.控制与决策,2004,19(4):397-401.
    [22]G. C. Walsh, H. Ye, and L. Bushnell, Stability analysis of networked control systems, in Proc. Amer. Control Conf., San Diego, CA, June 1999, pp.2876-2880.
    [23]W. Zhang. Stability Analysis of Networked Control Systems [D] Ph.D. Thesis, Electrical Engineering and Computer Science, Case Western Reserve U., May 2001.
    [24]何坚强,张唤春.基于遗传算法的网络控制系统调度优化研究[J].工业仪表与自动化装置,2004,(4):37-42.
    [25]何坚强,张唤春.分布式实时控制系统的网络调度研究[J].西南交通大学学报(工学版),2005,8.
    [26]Dong Sung Kim, Young Sam Lee, Wook Hyun Kwon, Hong Seong Park. Maximum allowable delay bounds of networked control systems [J]. Control Engineering Practice, 2003,(11):1301-1313.
    [27]SETO D, LEHOCZKYJ P, SHA L, et al. On task schedulability in real-time control systems. In Proceedings of 17th IEEE Real Time Systems Symposium. Washington D C, 1996.
    [28]SETO D, LEHOCZKYJ P, SHAL. Task period selection and schedulability in realtime systems. In Proceedings of the 19th IEEE Real2time Systems Symposium. Madrid, 1998:188-198.
    [29]CERVIN A. Integrated control and realtime scheduling. Ph. D. Dissertation, Department of Automatic Control Lund Institute of Technology, Sweden,2003.
    [30]RYU M, HONGS. Toward automatic synthesis of schedulable real-time controllers. Integrated Computer-aided Engineering,1998,5(3):261-277.
    [31]RYU M, HONG S, SAKSENA M. Streamlining real-time controller design:From performance specifications to end to end timing constraints. In Proceedings of the Third IEEE Realtime Technology and Applications Symposium. Montreal,1997:91-99.
    [32]何坚强,张焕春,经亚枝.网络控制系统中采样周期的优化选取方法.吉林大学学报(工学版),2004,34(3):479-482.
    [33]HE J Q, ZHANG H C, JING YZ. An integrated control and scheduling optimization method of networked control systems. Journal of Electronic Science and Technology of China,2004,2(2):56-59.
    [34]ZHANG W, BRANICKY M S, PHILIPS S M. Stability of networked control systems. IEEE Control Magazine,2001,21 (1):84-99.
    [35]BRANICKY M S, PHILLIPS S M, ZHANG W. Scheduling and feedback co-design for networked control systems. In Proceedings of IEEE Conference on Decision and Control. Las Vegas,2002:1211-1217.
    [36]杨项方,王树青.NCS调度与控制的共同设计.自动化仪表,2004,25(12):9-14.
    [37]黎善斌,王智,张卫东,等.网络控制系统的研究现状与展望.信息与控制,2003,32(3):239-244.
    [38]ARZEN K E, CERVIN A, EKER J. An introduction to control and scheduling co-design. In Proceedings of the 39th IEEE Conference on Decision and Control. Sydney,2000,5: 4865-4870.
    [39]STANKOVIC J A, LU C Y, SON S H, et al. The case for feedback control real-time scheduling. In Proceedings of the 11th Euromicro Conference on Real Time Systems. New York,1999,1:11-20.
    [40]LU C Y, STANKOVIC J A, SON S H, et al. Feedback control real-time scheduling: framework, modeling, and algorithms. Real-time Systems Journal, Special Issue on Control theoretical Approaches to Real-Time Computing,2002,23 (1/2):85-126.
    [41]LU C Y. Feedback control real-time scheduling. Ph.D. Dissertation, Faculty of the School of Engineering and Applied Science University of Virginia,2001.
    [42]王艳,陈庆伟等,网络控制系统控制与调度协同设计的研究进展.兵工学报,第28卷第1期,2007年1月.
    [43]白涛.网络控制系统的性能分析与调度优化[D].上海:上海交通大学,2005.
    [44]Lu C. Y., Stankbvic J. A., Tao G., et al. Feedback Control Real-Time Scheduling: Framework, Modeling, and Algorithm. Journal of the Real-Time Systems,2002, Vol.22, No.1/2,85-126.
    [45]P. Marti, G. Fohler, K. Ramamritham, and J.M. Fuertes, Improving Quality-of-Control using Flexible Timing Constraints:Metric and Scheduling Issues. Real-Time Systems Symposium, Dec.2002.
    [46]A. Cervin, J. Eker, B. Bernhardsson, K.-E. Arzen, Feedback-Feedforward Scheduling of Control Tasks, Real-Time Systems, Vol.23, No.1, pp.25-53,2002.
    [47]Feng Xia, Xingfa Shen, Liping Liu, Zhi Wang, and Youxian Sun, Fuzzy Logic Based Feedback Scheduler for Embedded Control Systems, Lecture Notes in Computer Science, Vol.3645,2005, pp.453-462.
    [48]Feng Xia and Youxian Sun, Neural Network Based Feedback Scheduling of Multitasking Control Systems, Lecture Notes in Artificial Intelligence, Vol.3682, Sept. 2005, pp.193-199.
    [49]D. Simon, D. Robert, O. Sename, Robust Control/Scheduling Co-Design:Application to Robot Control, Proc. IEEE RTAS, California, USA, Mar.2005.
    [50]Tipsuwan Y, Chow M Y. Network based controller adaptation for network QoS negotiation and deterioration [C]//IEEE Industrial Electronics Society. Proceedings of the 27th annual conference. Denver:IEEE Press,2001:1794-1799.
    [51]Otanez P, Moyne J, Tilbury D. Using deadbands to reduce communication in networked control systems [C]//The American Automatic Control Council. Proceedings of the American control conference. Anchorage:IEEE Press,2002:615-619.
    [52]Jose Yepez, Pau Marti and Josep M. Fuertes, Control Loop Scheduling Paradigm in Distributed Control Systems, Proc.29th IEEE IECON, Roanoke, USA, Nov.2003.
    [53]Feng Xia, Liping Liu, Shanbin Li, and Youxian Sun. Integrated Feedback Scheduling of Networked Control Systems. Dynamics of Continuous, Discrete and Impulsive Systems-Series B:Applications and Algorithms, an added volume, pp.3274-3280, Watam Press, Oct 2006.
    [54]Cervin A., Eker J.. Feedback Scheduling of Control Tasks[C], Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, December,2000, pp: 4871-4876.
    [55]尔桂花,窦日轩.运动控制系统.北京:清华大学出版社,2002年.
    [56]云利军,孙鹤旭,雷兆明等.运动控制网络的研究现状及发展趋势.控制工程,2006,13(4):289-293.
    [57]云利军.网络化运动控制系统行为特性的研究[D].河北:河北工业大学博士学位论文,2006年.
    [58]叶萃.多轴运动控制系统和实时通信网络.自动化博览,2007(4):48-52.
    [59]P. Raja, G. Noubir. Static and dynamic polling mechanism for Fieldbus networks [J]. Operating System Overview.1993.27 (3):34-43.
    [60]窦连旺.网络控制系统的建模、稳定性分析及其调度的研究[D].天津:天津大学.2003.
    [61]Ray A., Halevi Y, Integrated communication and control systems:part I-analysis and part Ⅱ-design consideration [J]. ASME Journal of Dynamic System Measurement& Control,1988,110:367-381.
    [62]Lian F L, Moyne J, Tilbury D. Modeling and optimal controller design of networked control systems with multiple delays [J]. International Journal of Control, Taylor & Francis,2003, Vol.76, No.6:591-606.
    [63]Feng-Li Lian, James Moyne. Time Delay Modeling and Sample Time Selection for Networked Control Systems [C]. Proceedings of ASME-DSC,2001 International Mechanical Engineering Congress and Exposition, New York,2001:1-8.
    [64]Luck R., Ray A., An observer-based compensator for distributed delays. Automatica (Journal of IFAC),1990,26(5):903-908.
    [65]Nillsson J, Real-time control systems with delays. PhD thesis, Lund Institute of Technology, Sweden,1998.
    [66]Nilsson J B. Bernhardsson B.Wittenmark. Stochastic Analysis and Control of Real-time Systems with Random Time Delays. Automatica,1998,34 (1):57-64.
    [67]Liu C. L., Layland J. W.. Scheduling Algorithms for Multi-programming in a Hard-real-time Environment [J], Journal ACM,1973,20(1):46-61.
    [68]王永吉,陈秋萍.单调速率及其扩展算法的可调度性判定[J].软件学报.2004,Vol.15(6):799-814.
    [69]Liu S., Rajkumar R.. Priority Inheritance Protocols:An Approach to Real-time Synchronization. IEEE Transactions on Computers.1990.9, Vol.39 (9):1175-1185.
    [70]Lu C. Y., Stankovic J. A., Tao G., et al. Design and Evaluation of a Feedback Control EDF Scheduling Algorithm. In:Proceedings of the 20th IEEE Real-Time systems Symposium, Dec 1999,56-67.
    [71]Lu C. Y., Stankovic J. A., Abdelzaher T. F., et al. Performance Specifications and Metrics for Adaptive Real-Time systems. In:Proceedings of the 21st IEEE Real-Time Systems Symposium, Nov 2000,13-25.
    [72]Henriksson D., Cervin A., Akesson J., etc. Feedback Scheduling of Model Predictive Controllers[C], Proceedings of the Eighth IEEE Real-Time and Embedded Technology and Applications Symposium,2002.
    [73]Henriksson D., Cervin A, Akesson J., etc. On dynamic Real-time Scheduling of Model Predictive Controllers [C], Proceedings of the 41th IEEE Conference on Decision and Control, Las Vegas, Nevada USA, December,2002.
    [74]Henriksson D., Cervin A.. Optimal On-line Sampling Period Assignment for Real-Time Control Tasks Based on Plant State Information[C], Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005 Seville, Spain, December 12-15,2005, pp:4469-4474.
    [75]Li B. C., Nahrstedt K.. A Control Theoretical Model for Quality of Service Adaptations. In:Proceedings of the 6th IEEE International Workshop on Quality of service, May 1998, 145-153.
    [76]Abeni L., Buttazzo G. C.. Adaptive Bandwidth Reservation for Multimedia Computing. In:Proceedings of the 6th International Workshop on Real-Time Computing and Applications Symposium, Dec 1999,70-77.
    [77]夏锋.资源受限实时控制系统反馈调度[D].杭州:浙江大学自动化学院,2006.
    [78]Abeni L., Palopoli L., Lipari G, et al. Analysis of a Reservation-Based Feedback scheduler. In:Proceedings of the 23rd IEEE Real-Time Systems Symposium, Dec 2002, 71-80.
    [79]淮晓永,邹勇,李明树.一种开放混合实时系统的开放自适应调度算法[J].软件学报,2004,Vol.15(4):487-496.
    [80]张尧学,方存好,王勇.非精确计算中基于反馈的CPU在线调度算法[J].软件学报,2004,Vol.15(4):616-623.
    [81]Harada F., Ushio T., Nakamoto Y. Adaptive Resource Allocation Control with On-Line Search for Fair QoS Level. In:Proceedings of the 10th Real-Time Technology and Applications Symposium, May 2004, pp:352-359.
    [82]窦强.分布式强实时系统中可调度性分析算法的研究[D].长沙国防科学技术大学博士论文,2001.
    [83]Joseph M, Pandya P. Finding response times in a real-time system [J]. The Computer Journal 1986,29(5):390-395.
    [84]Audsley N, Burns A, Richardson M, Wellings A. Hard real-time scheduling:the deadline monotonic approach [A]. Proceedings of IEEE Workshop on Real-time Operating Systems and Software [C]. Atalanta, USA:IEEE,1991.133-137.
    [85]Katcher D, Arakawa H, Stronsnider J. Engineering and analysis of fixed priority schedulers [J]. IEEE Transaction on Software Engineering,1993,19(9):920-934.
    [86]Zuberi, K.M.; Shin, K.G. Scheduling messages on controller area network for real-time CIM applications, Robotics and Automation, Vol.13 (2),1997, Page(s):310-316.
    [87]G C. Buttazzo. Rate Monotonic vs. EDF:Judgment day. Journal of Real-Time Systems, 2005,29(1):5-26.
    [88]纪志成,赵维一,谢林柏.时延网络控制系统的协同设计方法研究[J].系统科学与 数学,2007,27(3):440-450.
    [89]蔡骅,胡维礼,樊卫华,等.时延网络控制系统调度与稳定性[J].南京理工大学学报(自然科学版),2005,29(3):349-351.
    [90]T. Coleman, M.A. Branch, and A, Grace, Optimization Toolbox:For Use with Maltlab, Natick, MA:Mathworks, January 1999. Version 2.
    [91]李祖欣,网络化运动控制系统的智能调度及其优化[D].浙江工业大学博士学位论文.2008.
    [92]Marti P, Yepez J, VelascoM, et al. Managing quality-of-control in network-based control systems by controller and message scheduling co-design [J]. IEEE Transactions on Industrial Electronics,2004,51 (6):1159-1167.
    [93]Lian F.-L., Moyne J.R., Tilbury D.M.. Network design consideration for distributed control systems, IEEE Transactions on Control System Technology,2002,10(2): 297-307.
    [94]F.-L. Lian, J. R. Moyne, and D. M. Tilbury, Performance evaluation of control networks: Ethernet, ControlNet and DeviceNet, IEEE Control Systems Magazine, vol.21, no.1, pp. 66-83, February 2001.
    [95]朱琴跃,列车通信网络实时性理论与方法研究[D].同济大学博士学位论文.2008.
    [96]Velasco M, Fuertes J M, Lin C, et al. A control approach to bandwidth management in networked control systems [C]//The 30th Annual Conference of the IEEE Industrial Electronics Society, Busan, Korea.[S.l.]:IEEE Press,2004:2343-2348.
    [97]Yepez J, Marti P, Fuertes J M, Control loop scheduling paradigm in distributed control systems [A]. Proceedings of the 29th Annual Conference of the IEEE Industrial Electronics Society [C]. Roanoke, USA:IEEE Press,2003.1441-1446.
    [98]Xia Feng, Dai Xiaohua, Wang Zhi, Sun Youxian. Feedback based network scheduling of networked control systems [A]. International Conference on Control and Automation [C]. Budapest, Hungary:IEEE Press,2005.1231-1236.
    [99]Wang Zhiming and Zhu Xuemei. EI based scheduling for thermal process control [A]. International Conference on Control and Automation [C]. Budapest, Hungary:IEEE Press 2005.656-660.
    [100]彭晨,岳冬.网络控制系统中基于时延辨识的模糊控制器研究[J].信息与控制, 2004,33(5):584-589.
    [101]G. C.Walsh, H.Ye. Scheduling of Networked Control Systems [J]. IEEE Control Magazine. February 2001:57-65.
    [102]蔡骅,王艳,陈庆伟,胡维礼.网络控制系统的一种变采样周期动态调度策略.信息与控制,2007(06):346-351.
    [103]Velasco M, Marti P, Frigola M. Bandwidth management for distributed control of highly articulated robots [A]. Proc. of the 2005 IEEE International Conference on Robotics and Automation [C]. Barcelona, Spain:IEEE,2005.265-270.
    [104]朱齐丹,张丽珂 等译.动态系统的反馈控制(第四版).电子工业出版社,2004年5月,第四版.
    [105]周时莹.CAN网络控制系统的智能调度研究[D].中国博士学位论文全文数据库,2009,(08).
    [106]王艳,蔡骅 等.网络控制系统反馈调度器的设计[J].电子学报,2007(02):379-384.
    [107]邓自立.自校正滤波理论及其应用--现代事件序列分析方法[M].哈尔滨:哈尔滨工业大学出版社,2003.22-44.
    [108]Hirche S, Buss M. Towards deadband control in networked tele-operation systems [EB/OL]. Http://www.Ikn.ei.tum.de/-steinb/PUB-LICTIONS/IFACTowards.pdf,2005.
    [109]Bjorn Andersson, Eduardo Tovar. The Utilization Bound of Non-Preemptive Rate-Monotonic Scheduling in Controller Area Networks is 25%. IEEE Symposium on Industrial Embedded Systems (SIES 2009), Lausanne, Switzerland.
    [110]Tindell K, W Burns A, Wellings A J. Calculating controller area network (CAN) message response times [J]. Control Eng. Pract.1995,3(8):1163-1169.
    [111]Nolte T, Hansson H, Norstom C. Using bit-stuffing distributions in CAN analysis [J]. IEEE Real-Time Embedded Systems Workshop,2001,12:102-108.
    [112]Thomas Nolte, Hans Hansson, Norstom C. Minimizing CAN response-time jitter by message manipulation [C]. Proceedings of the Eighth IEEE Real-time and Embedded Technology and Applications Symposium,2002.
    [113]Tindell K W, Hansson Handwellings A J.. Analyzing Real-Time Communications: Controller Area Network (CAN) [A]. Proc of the RTSS'94 Real-Time systems symposium [C]. Puerto Rico:IEEE,1994:259-263.
    [114]Tindell K, Burns A and Wellings A J. Analysis of Hard Real-Time Communications [J]. Journal of Real-Time systems,1995(9):147-171.
    [115]Tindell K, Burns A. Guaranteed Message Latencies for Distributed Safety-Critical Hard Real-Time Control Networks [R]. Technical report YCS229, Department of Computer Science, University of York, Jan.1994:1-17.
    [116]Marco Di Natale. Scheduling the CAN Bus with Earliest Deadline Techniques. Real-Time Systems Symposium,2000. Proceedings, the 21st IEEE,2000,27-30 Nov.
    [117]Thomas Nolte, Hans Hansson, and Christer Norstrom, Probabilistic Worst-Case Response-Time Analysis for the Controller Area Network, http://www.mric.mdh.se.
    [118]Thomas Nolte, Hans Hansson and Christer Norstrom, Minimizing CAN response-time jitter by message manipulation, Real-Time and Embedded Technology and Applications Symposium,2003. Proceedings. The 9th IEEE, May 6,27-30,2003.
    [119]Thomas Nolte, Mikael Sjodin, and Hans Hansson, Server-based Scheduling of the CAN Bus, http://www.mrtc.mdh.se.
    [120]G Cena, A. Valenzano, Fast CAN:A High-Performance Enhanced CAN-Like Network, IEEE Transactions on Industrial Electronics, VOL.47, NO.4, August 2000, pp.951-963, The Institute of Electrical and Electronics Engineers.
    [121]G. Cena, A. Valenzano, An Improved CAN Fieldbus for Industrial Applications, IEEE Transactions on Industrial Electronics, Vol.44, No.4, August 1997, pp.553-564.
    [122]Pinho L M, Vasques F and Tovar E. Integrating Inaccessibility in Response Time Analysis of CAN Networks [A]. Proceedings of the IEEE International Workshop on Factory Communication Systems [C]. Porto, Portugal. Sept.2000:77-84.
    [123]Broster I, Burns A and Rodriguez-Navas G. Probabilistic Analysis of CAN with Faults [A]. Proc of the 23th IEEE Real-Time systems Symposium [C]. Austin, Texas,2002: 269-278.
    [124]Pinho L M and Vasques F. Timing Analysis of Reliable Real-Time Communication in CAN Networks [A]. Proc of the 13th Euromicro Conference on Real-Time systems [C]. Delft, Holand,2001:103-114.
    [125]K. M. Zuberi and K. G. Shin. Non-Preemptive scheduling of Messages on Controller Area Network for Real-Time Control Applications [A]. Proc. of the Real-Time Technology and Applications symposium [C]. Chicago, IL, USA, May,1995:240-249.
    [126]K. M. Zuberi and K. G. Shin. Scheduling Messages on Controller Area Network for Real-Time CIM Applications [J]. IEEE Trans. On Robotics and Automation,1997, 13(2):310-314.
    [127]K. M. Zuberi and K. G. Shin. Real-Time Decentralized Control with CAN [A]. Proceedings of the IEEE Conference on Emerging Technologies and Factory Automation [C]. Kauai, Hawaii,1996(1):93-99.
    [128]Zuberi K M and Shin K G. Design and Implementation of Efficient Message Scheduling for Controller Area Network [J]. IEEE Transactions on computers,2000,49(2): 182-188.
    [129]J. A. Fonseca and L. M. Almeida. Using a Planning scheduler in the CAN Network [A]. Proc. of the IEEE Emerging Technologies and Factory Automation [C].1999(2): 815-821.
    [130]Luis Almeida. The FTT-CAN Protocol:Why and How, IEEE Transactions on Industrial Electronics,2002,49(6),1189-1201.
    [131]L. Almeida and P. Pedreiras, Combining event-triggered and time-triggered traffic in FTT-CAN:analysis of the asynchronous messaging system, Factory Communication Systems,2000. Proceedings.2000 IEEE International Workshop on,2000.
    [132]Davis Robert I, Alan Burns, Bril Reinder J. Controller area network (CAN) schedulability analysis:refuted, revisited and revised [EB/OL]. www.cs.york.ac.uk/ftpdir/reports/YCS-2006 408.pdf,2007209203.
    [133]杨福宇.CAN调度理论与实践意义.单片机与嵌入式系统[J],2008(02):5-8.
    [134]刘宇,张义民等.车身CAN总线网络数据传输效率优化算法的研究[J],汽车工程,2009,(07):620-623.
    [135]范永健,张伯英,汽车CAN/LIN网络系统测试,http://www.eetchina.com/ART_8800351013_0_no.HTM,2005.
    [136]广州周立功单片机发展有限公司,CANalyst CAN分析仪用户手册,http://www.zlgmcu.com/tools/canbus/CANalyst/CANalyst-Manual.pdf,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700