事件相关脑电信号单导少次提取与分类算法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不同的刺激事件既可能在脑电信号中产生事件相关电位(Event-Related Potential, ERP),也可能以事件相关去同步/同步(Event-Related Desynchronization/Synchronization, ERD/ERS)的形式使脑电信号发生变化,所以ERP和ERD/ERS从两个不同方面反映了大脑内部的神经活动。ERP是锁时锁相的,表现为时域中特定的波形;而ERD/ERS是锁时非锁相的,体现在脑电信号频带能量的变化之中。本文主要研究ERP的单导联少次提取和基于ERD/ERS的运动想象脑电信号特征分类问题,不仅有助于丰富大脑科学研究的内容,也有助于人工智能技术的发展。主要创新工作包括:
     (1)从空域角度提出了虚拟信号通道独立分量分析方法实现ERP的单导联少次提取。针对独立分量分析算法在ERP提取中的适用性问题,使用少次记录信号构建虚拟信号通道模型的观测信号矩阵,使独立分量分析算法能够应用于单导联观测信号处理中,实现了独立性准则下加权叠加平均效果。
     (2)从时域角度提出了广义子空间矩阵滤波法实现ERP的单导联少次提取。针对传统滤波器去噪能力的局限性,使用矩阵滤波器对观测信号进行处理。根据广义子空间法原理,推出了滤波矩阵的结构可以表示为投影矩阵、系数加权矩阵与重构矩阵的连乘。利用两次记录信号计算投影矩阵,并在最小均方误差准则下得到系数加权矩阵,清晰地推导出了最优滤波矩阵。在广义子空间矩阵滤波法的基础上进一步提出了平均子空间矩阵滤波法,实现了更好的ERP提取效果。
     (3)从变换域角度提出了加权阈值小波分析方法实现ERP的单导联单次提取。针对ERP的低信噪比特性,首先将观测信号经过白化滤波器进行滤波,使其中的自发脑电转化为白噪声,然后对滤波后信号的小波系数进行加权阈值处理,最后通过小波反变换与信号还原得到ERP的估计。加权阈值小波分析方法摆脱了对先验信息的依赖性,更加符合实际应用背景,取得了比传统阈值法更好的处理效果。
     (4)针对基于ERD/ERS的运动想象脑电信号特征分类问题,提出了自适应小波基和自适应投影基的特征提取方法,增大不同类别间特征向量的差异。然后结合序贯似然比检验分类算法,实现了准确率与实时性的折中,提高了算法的灵活性和鲁棒性。
An internally or externally paced event results not only in the generation of an event-related potential (ERP) but also in a change in the ongoing electroencephalogram (EEG) in form of an event-related desynchronization (ERD) or event-related synchronization (ERS). The ERP on the one side and the ERD/ERS on the other side are different responses of neuronal structures in the brain. While the former is phase-locked, the latter is not phase-locked to the event. The ERD/ERS is highly frequency band-specific. Therefore, it is import to study the single-channel few-trial ERP extraction and motor imagery EEG signals feature extraction and classification problems. It will not only help to enrich the contents of the human brain cognitive science and neuroscience, but contribute to the development of artificial intelligence technology. Aiming at these targets, the contribution of this thesis includes the following work.
     (1) A virtual signal channel independent component analysis (ICA) method was proposed to realize ERP few-trial extraction from space domain viewpoint. After analyzing the applicability of ICA for the single channel ERP few-trial extraction problem, a virtual channel ICA model was presented to make it comply with the premise of the ICA method. With this new model, the record signals from single channel can be realized with only four-trials.
     (2) A subspace matrix filtering approach was advanced to estimate single channel ERP with few trials from time domain viewpoint. Considering the limitation of the traditional convolution (vector) filter in noise reduction, a matrix filter for few-trial ERP extraction was given. Based on the principle of the generalized subspace approach (GSA), the filter matrix could be expressed as the multiplication of projection matrix, coefficient weighted matrix and reconstruction matrix. Then the projection matrix was obtained with the observed noisy signals and the coefficient weighted matrix was calculated under the minimum mean square error (MMSE) criterion. The ERP signal was then obtained by averaging the signals estimated with the reconstruction matrix. The algorithm can estimate the ERP signal with only two trials observable noisy signals which greatly reduced the number of trials required.
     (3) A weighted-thresholding wavelet analysis was described to estimate ERP signals with single trial from transform domain viewpoint. The underlying principle was to filter the noisy signal and turn the EEG into white noise. Then, through wavelet transform, the coefficients of the noise were distributed in all scales and shifts while those of the expected ERP signal concentrated only in several scales. The expected signal was estimated by weighting the coefficients and inverse transformation. This algorithm is free from the dependence on the prior information of the EP signals, eliminating the choice of wavelet coefficients by experience which is in line with the application background. Moreover, it can extract ERP signals with only one trial record.
     (4) For ERD/ERS in the motor imagery (MI) EEG. two adaptive feature extraction methods were given to extract the EEG features that reflect the different mind states. A sequential likelihood ratio test (SPRT) was combined to classify the features. The proposed technique not only improved the classification accuracy and transformation rate, but also and balanced the tradeoff between speed and accuracy. Experimental results suggested the possibility of improving the quality of BCI.
引文
[1]NIEDERMEYER E, SILVA F. Electroencephalography Basic Principles, Clinical Applications, and Related Fields [M]. Philadelphia:Lippincott Williams & Wilkins, 2005.
    [2]MALMIVUO J, PLONSEY R. Bioelectromagnetism:Principles and Applications of Bioelectric and Biomagnetic Fields [M]. New York:Oxford University Press,1995.
    [3]潘映辅.临床诱发电位学(第二版)[M].北京:人民卫生出版社,2000.
    [4]魏景汉,罗跃嘉.事件相关电位原理与技术[M].北京:科学出版社,2010.
    [5]FARWELL L A, DONCHIN E. Talking off the top of your head:toward a mental prosthesis utilizing event-related brain potentials [J]. Electroencephalogr Clin Neurophysiol.,1988,70(6):510-523.
    [6]ADEMOGLU A, AYDIN H U, KUCUKEMRE B, et al. Damped sinusoids in single oddball responses [C]. Atlanta:Proceedings of the First Joint BMES/EMBS Conference,1999.
    [7]WANG Y J, WANG R P, GAO X R, et al. A practical VEP-based brain-computer interface [J]. IEEE Transaction on Neural Systems and Rehabilitation Engineering,2006, 14(2):234-239.
    [8]KAVEH M. A new method for the estimation of average evoked responses [J]. IEEE Transaction on Systems, Man, and Cybernetics,1978,8(5):414-417.
    [9]AUNON J I, MCGILLEM C D, CHILDERS D G. Signal processing in evoked potential and research:averaging and modeling [J].Crit. Rev. Bio. eng.,1981,5(4):323-367.
    [10]DAVILA C E, MOBIN M S. Weighted averaging of evoked potentials [J]. IEEE Transaction on Biomedical Engineering,1992,39(4):338-345.
    [11]BEZERIANOS A, LASKARIS N, FOTOPOULOS S, et al. Data dependent weighted averages for recording of evoked potential signals [J]. Electroencephalography and Clinical Neurophysiology,1995,96(5):468-471.
    [12]GUPTA L, MOLFESE D L, TAMMANA R, et al. Nonlinear alignment and averaging for estimating the evoked potential [J]. IEEE Transaction on Biomedical Engineering, 1996,43(4):348-356.
    [13]VAUGHANTM, WOLPAW J R, DONCHIN E. EEG-based communication:prospects and problems [J]. IEEE Trans Rehabil Eng.,1996,4(4):425-430.
    [14]BLANKERTZ B, MULLER K R, KRUSIENSKI D J, et al. The BCI competition III:validating alternative approaches to actual BCI problems [J]. IEEE Transaction on Neural Systems and Rehabilitation Engineering,2006,14(2):153-159.
    [15]VAUGHAN T M, WOLPAW J R. The third international meeting on brain-computer interface technology:making a difference [J], IEEE Trans Neural Syst Rehabil Eng., 2006,14(2):126-127.
    [16]LI Y Q, LONG J Y. YU T U, et al. An EEG-based BCI system for 2-D cursor control by combining mu/beta rhythm and P300 potential [J]. IEEE Transaction on Bioraedical Engineering,2010,57(10):2495-2505.
    [17]PFURTSCHELLER G, ALLISON B Z, BRUNNER C. The hybrid BCI [J]. Front Neurosci,2010, 2(3):324-332.
    [18]PFURTSCHELLER G, SILVA F H L. Event-related EEG/MEG synchronization and desynchronization:basic principles [J]. Clinical Neurophysiology,1999,110(11): 1842-1857.
    [19]BLANKERTZB, DORNHEGE G, KRAULEDAT M, et al. The Berlin brain-computer interface EEG-based communication without subject training [J]. IEEE Transaction on Neural Systems and Rehabilitation Engineering,2006,14(2):147-152.
    [20]PFURTSCHELLER G, MULLER G R, SCHLOGL A, et al.15 years of BCI research at Graz University of technology:current projects [J]. IEEE Transaction on Neural Systems and Rehabilitation Engineering,2006,14(2):205-210.
    [21]VAUGHAN T M, MCFARLAND D J, SCHALK G, et al. The Wadsworth BCI research and development program-at home with BCI [J]. IEEE Transaction on Neural Systems and Rehabilitation Engineering,2006,14(2):229-233.
    [22]MCFARLAND D J, SARNACKI W A, WOLPAW J R. Electroencephalographic (EEG) control of three-dimensional movement [J]. J Neural Eng.,2010,7(3):1032-1043.
    [23]VIDAL J J. Toward direct brain-computer communication [J]. Annu Rev Biophys Bioeng. 1973,2(1):157-180.
    [24]SUTTER E E. The brain response interface:communication through visually-induced electrical brain responses [J]. Journal of Microcomputer Applications,1992,15(1): 31-45.
    [25]WICKELGREN I. Tapping the mind [J]. Science,2003,299(5606):496-499.
    [26]CURRAN E A, STOKES M J. Learning to control brain activity:a review of the production and control of EEG components for driving brain-computer interface (BCI) systems [J]. Brain Cogn,2003,51(3):326-336.
    [27]LEBEDEV M A, NICOLELIS M A L. Brain-machine interfaces:past, present and future [J]. Trends in Neurosciences,2006,29(9):536-546.
    [28]DORNHEGE G, MILLAN J, HINTERBERGER T, et al. Toward Brain-Computer Interfacing [M]. Boston:MITPress,2007.
    [29]MENON C, NEGUERUELA C, MILLAN J R, et al. Prospects of brain-machine interfaces for space system control [J]. Acta Astronautica,2009,64(4):448-456.
    [30]牟锴钰,韦明,杨辉.事件相关电位快速提取方法研究进展[J].航天医学与医学工程,2012,25(2):147-151.
    [31]WEERD J P C. KAP J I. A posteriori time-varying filtering of averaged evoked potentials [J]. Biol Cybern.,1981,41(3):211-234.
    [32]YU X H, HE Z Y, ZHANG Y S. Time-varying adaptive filters for evoked potential estimation [J]. IEEE Transaction on Biomedical Engineering,1994,41(11): 1062-1071.
    [33]THAKOR N V. Adaptive filtering of evoked potentials [J]. IEEE Transactions on Biomedical Engineering,1987,34(1):6-12.
    [34]THAKOR N V, VAZ C A, MCPHERSON R W, et al. Adaptive Fourier series modeling of time-varying evoked potentials:study of human somatosensory evoked response to etomidate anesthetic [J]. Electroencephalogr Clin Neurophysiol,1991,80(2): 108-118.
    [35]PAUL J S, LUFT A R, HANLEY D F, et al. Coherence-weighted Wiener filtering of somatosensory evoked potentials [J]. IEEE Transaction on Biomedical Engineering, 2001,48(12):1483-1488.
    [36]SPRECKELSEN M V, BROMM B. Estimation of single-evoked cerebral potentials by means of parametric modeling and Kalman filtering [J]. IEEE Transaction on Biomedical Engineering,1988,35(9):691-700.
    [37]GEORGIADIS S D, RANTAAHOPO, TARVAINEN M P, et al. Single-trial dynamical estimation of event-related potentials:a Kalman filter-based approach [J]. IEEE Transaction on Biomedical Engineering,2005,52(8):1397-1406.
    [38]牟锴钰,韦明,郭建平.基于小波和卡尔曼平滑的事件相关电位单次提取[J].中国生物医学工程学报,2012,31(2):167-174.
    [39]NISHIDA S, NAKAMURA M, SUWAZONO S, et al. Automatic detection method of P300 waveform in the single sweep records by using a neural network [J]. Med Eng Phys. 1994,16(5):425-429.
    [40]FUNG K S M, CHAN F H Y, LAM F K, et al. A tracing evoked potential estimator [J]. Med. Biol. Eng. Comput.,1999,37(4):218-227.
    [41]QIU W, FUNG K S M, CHAN F H Y, et al. Adaptive filtering of evoked potentials with radial-basis-function neural network prefilter [J]. IEEE Transaction on Biomedical Engineering,2002,49(3):225-232.
    [42]QIU W, CHANG C Q, LIU W Q, et al. Real-time data-reusing adaptive learning of a radial basis function network for tracking evoked potentials [J]. IEEE Transaction on Biomedical Engineering,2006,53(2):226-237.
    [43]朱常芳,胡广书.结合小波分解和径向基神经网络进行事件相关电位的单次提取[J].中国生物医学工程学报,2003,22(6):481-487.
    [44]LIN B S, CHONG F C, LAI F. Higher order statistics-based radial basis function network for evoked potentials [J]. IEEE Transaction on Biomedical Engineering, 2009,56(1):93-100.
    [45]李虹,谢正祥,王志芳基,等.基于自参考自相关自适应干扰对消技术听觉皮层诱发电位单次提取[J].中国医学物理学杂志,2008,25(5):828-831.
    [46]毕峰,邱天爽.基于时间自相关函数的诱发电位单通道单次提取方法[J].信号处理,2012,28(6):774-777.
    [47]KARJALAINEN P A, PAIPIO J P, KOISTINEN A S, et al. Subspace regularization method for the single-trial estimation of evoked potentials [J]. IEEE Transaction on Biomedical Engineering,1999,46(7):849-860.
    [48]GEORGIADIS S D, RANTAAHO P 0, TARVAINEN M P, et al. A subspace method for dynamical estimation of evoked potentials [J]. Computational Intelligence and Neuroscience, 2007,2007(12):1-11.
    [49]KAMEL N, YUSOFF M Z. A generalized subspace approach for estimating visual evoked potentials [C]. Vancouver, British Columbia, Canada:30th Annual International IEEE EMBS Conference,2008.
    [50]KAMEL N, YUSOFF M Z, HANI A F M. Single-trial subspace-based approach for VEP extraction [J]. IEEE Transaction on Biomedical Engineering,2011,58(5): 1383-1393.
    [51]洪波,唐庆玉,杨福生.ICA在视觉诱发电位的少次提取与波形分析中的应用[J].中国生物医学工程学报,2000,19(3):334-341.
    [52]JUNG TP, MAKEIGS, WESTERFIELD M, et al. Analysis and visualization of single-trial event-related potentials [J]. Human Brain Mapping,2001,14:166-185.
    [53]李晓欧,张笑微,冯焕清.基于在线Infomax算法的视觉诱发电位提取[J].中国生物医学工程学报,2004,23(2):97-102.
    [54]LEMM S, CURIO G, HLUSHCHUK Y, et al. Enhancing the signal-to-noise ratio of ICA-based extracted ERPs [J]. IEEE Transaction on Biomedical Engineering,2006, 53(4):601-607.
    [55]王荣昌,郁思丹.基于参数模型和独立分量分析的事件相关诱发电位单次提取[J].生物医学工程杂志,2006,23(6):1222-1227.
    [56]刘洋,邱天爽,毕晓辉.基于独立分量分析和遗传算法的诱发电位提取新方法[J].中国生物医学上程学报,2007,26(3):349-354.
    [57]查代奉,杨耀防,车向新,等.低阶非高斯噪声下基于BOREL谱测度的诱发电位少次提取方法[J].中国生物医学工程学报,2009,28(2):177-182.
    [58]VILLA N C, JAMES C J. Independent component analysis for auditory evoked potentials and cochlear implant artifact estimation [J]. IEEE Transaction on Biomedical Engineering,2011,58(2):348-354.
    [59]HU L, ZHANG Z G, HUNG Y S, et al. Single-trial detection of somatosensory evoked potentials by probabilistic independent component analysis and wavelet filtering [J]. Clinical Neurophysiology,2011,122(7):1429-1439.
    [60]WANG S G, JAMES C J. On the independent component analysis of evoked potentials through single or few recording channels [C]. Lyon, France:Proceedings of the 29th Annual International Conference of the IEEE EMBS,2007.
    [61]毕晓辉,邱天爽,朱勇,等.基于经验模式分解和独立分量分析的单导少次EP信号提取[J].中国生物医学工程学报,2008,27(6):817-821.
    [62]师黎,钟丽辉,王端.基于虚拟通道ICA-WT大鼠视觉诱发电位少次提取[J].中国生物医学工程学报,2010,29(3):379-383.
    [63]刘钦团,邱飞岳,李浩君.基于虚拟通道的ICA的P-VEP提取方法的研究[J].计算机工程与科学,2010,32(7):137-139.
    [64]BARTNIK E A, BLINOWSKA K J, DURKA P J. Single evoked potential reconstruction by means of wavelet transform [J]. Biological Cyberntics,1992,67(2); 175-181.
    [65]BERTRAND 0, BOHORQUEZ J, PERNIER J. Time-frequency digital filtering based on an invertible wavelet transform:An application to evoked potentials [J]. IEEE Transaction on Biomedical Engineering,1994,41(1):77-88.
    [66]DEMIRALP T, ISTEFANOPULOS Y, ADEMOGLU A, et al. Analysis of functional components of P300 by wavelet transform [C]. Hong Kong, China:Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1998.
    [67]张继武,郑崇勋,耿中行.用奇异性检测技术提取诱发电位[J].中国生物医学工程学报,1999,18(3):295-303.
    [68]孙迎,叶英.运用小波变换实现听觉诱发电位的单次提取[J].上海理工大学学报,1999,21(4):411-415.
    [69]HOPPE U, WEISS S, STEWART R W, et al. An automatic sequential recognition method for cortical auditory evoked potentials [J]. IEEE Transaction on Biomedical Engineering,2001,48(2):154-164.
    [70]QUIROGA R Q, GARCIA H. Single-trial event-related potentials with wavelet denoising [J]. Clinical Neurophysiology,2003,114(2):376-390.
    [71]何庆华,彭承琳,吴宝明,等.小波变换在视觉诱发电位信号提取中的应用[J].重庆大学学报,2003,26(6):78-8-.
    [72]熊新兵,焦晓军,陈亚光.用提升小波变换提取诱发脑电[J].中南民族大学学报,2004,23(3):34-37.
    [73]CAUSEVIC E, MORLEY R E, WICKERHAUSER M V, et al. Fast wavelet estimation of weak biosignals [J]. IEEE Transaction on Biomedical Engineering,2005,52(6): 1021-1032.
    [74]ZHANG R, MCALLISTER G, SCOTNEY B, et al. Combining wavelet analysis and Bayesian networks for the classification of auditory brainstem response [J]. IEEE Transactions on Information Technology in Biomedicine,2006,10(3):458-467.
    [75]MARKAZI S A, QAZI S, STERGIOULAS L S, et al. Wavelet filtering of the P300 component in event-related potentials [C]. New York City, USA:Proceedings of the 28th IEEE EMBS Annual International Conference,2006.
    [76]WANG Z S, MAIER A, LEOPOLD D A, et al. Single-trial evoked potential estimation using wavelets [J]. Computers in Biology and Medicine,2007,37(4):463-473.
    [77]李章勇,赵志强,刘圣蓉,等.基于多分辨分析与连续小波变换提取和分析兔体感诱发电位[J].生物医学工程学杂志,2007,24(3):504-508.
    [78]ZOU L, ZHANG Y C, YANG L T, et al. Single-trial evoked potentials study by combining wavelet denoising and principal component analysis methods [J]. J Clin Neurophysiol,2010,27(1):17-24.
    [79]邹凌,陶彩林,王正洪.基于小波变换的诱发电位信号去噪研究[J].计算机应用与软件,2010,27(1):85-87.
    [80]李越囡,孙迎.听觉诱发电位信号的小波消噪方法研究[J].仪器仪表学报,2010,31(3):541-545.
    [81]ANDERSON C W, STOLZ E A, SHAMSUNDER S. Multivariate autoregressive models for classification of spontaneous electroencepha-lographic signals during mental tasks [J]. IEEE Transaction on Biomedical Engineering,1998,45(3):277-286.
    [82]徐宝国,宋爱国.单次运动想象脑电的特征提取和分类[J].东南大学学报(自然科学版),2007,37(4):629:633.
    [83]PFURTSCHELLER G, NEUPER C, SCHLOGL A, et al. Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters [J]. IEEE Transaction on Rehabilitayion Engineering,1998,6(3):316-325.
    [84]GUGER C, SCHLOGL A, NEUPER C, et al. Rapid prototyping of an EEG-based brain-computer interface (BCI) [J]. IEEE Transaction on Neural Systems and Rehabilitation Engineering,2001,9(1):49-58.
    [85]高湘萍,吴小培,沈谦.基于脑电的意识活动特征提取与识别[J].安徽大学学报(自然科学版),2006,30(2):33-36.
    [86]唐艳,柳建新,邹清.基于AR模型的脑-机接口问题研究[J].计算机工程与应用,2009,45(1):149-152.
    [87]罗志增,曹铭.基于多尺度Lempel-Ziv复杂度的运动想象脑电信号特征分析[J].传感技术学报,2011,24(7):1033-1037.
    [88]HERMAN P, PRASAD G, MCGINNITY T M, et al. Comparative analysis of spectral approaches to feature extraction for EEG-based motor imagery classification [J]. IEEE Transaction on Neural Systems and Rehabilitation Engineering,2008,16(4): 317-326.
    [89]杨帮华,颜国正,鄢波.基于离散小波变换提取脑机接口中脑电特征[J].中国生物医学工程学报,2006,25(5):518-522.
    [90]LEMM S, SCHAFER C, CURIO G. BCI competition 2003-data set Ⅲ:probabilistic modeling of sensorimotor μ rhythms for classification of imaginary hand movements [J]. IEEE Transactions on Biomedical Engineering,2004,51(6): 1077-1080.
    [91]LEMM S, SCHAFER C, CURIO G. Aggregating classification accuracy across time: application to single trial EEG [J]. Advances in Neural Information Processing Systems,2007,19:825-832.
    [92]HSU W Y. EEG-based motor imagery classification using enhanced active segment selection and adaptive classifier [J]. Computers in Biology and Medicine,2011, 41(8):633-639.
    [93]GERKING J M, PFURTSCHELLER G, FLYVBJERG H. Designing optimal spatial filters for single-trial EEG classification in a movement task [J]. Clinical Neurophysiology, 1999,110(5):787-798.
    [94]RAMOSER H, GREKING J M, PFURTSCHELLER G. Optimal spatial filtering of single trial EEG during imagined hand movement [J]. IEEE Transaction on Rehabilitation Engineering,2000,8(4):441-446.
    [95]GUGER C, RAMOSER H, PFURTSCHELLER G. Real-time EEG analysis with subject-specific spatial patterns for a brain-computer interface (BCI) [J]. IEEE Transaction on Rehabilitation Engineering,2000,8(4):447-456.
    [96]DORNHEGE G, BLANKERTZ B, KRAULEDAT M, et al. Combined optimizing spatio-temporal filters for improving brain-computer interfacing [J]. IEEE Transactions on Biomedical Engineering,2006,53(11):2274-2281.
    [97]ANG K K, CHIN Z Y, ZHANG H H, et al. Filter bank common spatial pattern (FBCSP) in brain-computer interface [C]. Singapore:Neural Networks,2008.
    [98]NOVI Q, GUAN C, DAT T H, et al. Sub-band common spatial pattern (SBCSP) for brain-computer Interface [C]. Kohala Coast, Hawaii, USA:Proceedings of the 3rd International IEEE EMBS Conference on Neural Engineering,2007.
    [99]LOTTE F, GUAN C. Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms [J]. IEEE Transactions on Biomedical Engineering, 2011,58(2):355-362.
    [100]段放,高小榕.一种基于运动想象的脑-机接口时空滤波器迭代算法[J].中国生物医学工程学报,2011,30(1):11-16.
    [101]ZHOU S M, GAN J Q, SEPULVEDA F. Classifying mental tasks based on features of higher-order statistics from EEG signals in brain-computer interface [J]. Information Sciences,2008,178(6):1629-1640.
    [102]COYLE D, PRASAD G, MCGINNITY T M. A time-series prediction approach for feature extraction in a brain-computer interface [J]. IEEE Transaction on Neural Systems and Rehabilitation Engineering,2005,13(4):461-467.
    [103]尧德中,刘铁军,雷旭,等.基于脑电的脑-机接口:关键技术和应用前景[J].电子科技大学学报,2009,38(5):550-554.
    [104]裴晓梅,和卫星,郑崇勋.基于脑电复杂度的意识任务的特征提取与分类[J].中国生物医学工程学报,2005,24(4):223-227.
    [105]VIDAURRE C, SCHLOOGL A, CABEZA R, et al. A fully on-line adaptive BCI [J]. IEEE Transactions on Biomedical Engineering,2006,53(6):1214-1219.
    [106]KAYIKCIOGLU T, AYDEMIR 0. A polynomial fitting and k-NN based approach for improving classification of motor imagery BCI data [J]. Pattern Recognition Letters,2010,31(11):1207-1215.
    [107]LI Y Q, GUAN C. A semi-supervised SVM learning algorithm for joint feature extraction and classification in brain computer interfaces [C]. New York City, USA:Proceedings of the 28th IEEE EMBS Annual International Conference,2006.
    [108]NOIRHOMME Q, KITNEY R, MACQ B. Single-trial EEG source reconstruction for brain-computer interface [J]. IEEE Transactions on Biomedical Engineering,2008, 55(5):1592-1601.
    [109]LOTTE F, CONGEDO M, LECUYER A, et al. A review of classification algorithms for EEG-based brain-computer interfaces [J]. Journal of Neural Engineering,2007,4(2): 1-13.
    [110]朱晓源,吴健康,程义民.连续预测脑机接口的信息积累方法[J].中国生物医学程学报,2007,26(4):523-527.
    [111]LIU R, NEWMAN G, YING S H, et al. Improved BCI performance with sequential hypothesis testing [C]. Boston:Conf Proc IEEE Eng Med Biol Soc,2011.
    [112]HYVARINEN A, OJA E. Independent component analysis:algorithms and application [J]. Neural Networks,2000,13(4-5):411-430.
    [113]周宗潭,董国华,徐昕,等.独立分量分析[M].北京:电子工业出版社,2007.
    [114]HYVARINEN A. Gaussian moments for noisy independent component analysis [J]. IEEE Signal Processing Letter,1999,6(6):145-147.
    [115]HYVARINEN A, PAJUNEN P. Nonlinear independent component analysis:existence and uniqueness results [J]. Neural Networks,1999,12(3):429-439.
    [116]KUMARESAN R, TUFTS D W. Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise [J]. IEEE Transactions on coustics, Speech, and Signal Processing,1982,30(6):833-840.
    [117]OVERSCHEE P V, MOOR B. Subspace Identification for Linear Systems [M]. Boston: Kluwer Academic Publishers,1996.
    [118]REZAYEE A, GAZOR S. An adaptive KLT approach for speech enhancement [J]. IEEE Transactions on Speech and Audio Procession,2001,9(2):87-95.
    [119]SUN J F, ZHANG J, SMALL M. Extension of the local subspace method to enhancement of speech with colored noise [J]. Signal Processing,2008,88:1881-1888.
    [120]MALLAT S. A theory for multiresolution signal decomposition:the wavelet representation [J]. IEEE Trans. Patt. Anal.,1989,11(7):674-693.
    [121]MEYER. Y. Wavelets and Applications [M]. Berlin:Springer-Verlag,1992.
    [122]DAUBECHIES I. Ten Lectures on Wavelets [M]. SIAM:Philadelphia,1992.
    [123]张德丰Matlab小波分析与工程应用[M].北京:国防工业出版社,2008.
    [124]DONOHO D L. De-noising by soft-thresholding [J]. IEEE Transactions on Information Theory,1995,41(3):613-627.
    [125]SHAN R D, JINF, WEI J. The research of stock forecasting based on wavelet denoising and BP-RBF combination neural network [J]. ICIC Express Letter,2012,6(8): 1981-1986.
    [126]MIDDENDORF M, MCMILLAN G, CALHOUN G, et al. Brain-computer interfaces based on the steady-state visual-evoked response [J].IEEE Transactions on rehabilitation engineering,2000,8(2):211-214.
    [127]DORNHEGE G, BLANKERTZ B, CURIO G, et al. Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms [J].IEEE Transactions on Biomedical Engineering,2004,51(6):993-1002.
    [128]KAVITHA P T, CUNTAI G, CHIEW T L, et al. A new discriminative common spatial pattern method for motor imagery brain-computer interfaces [J].IEEE Transactions on Biomedical Engineering,2009,56(11):2730-2733.
    [129]黄淦,刘广权,朱向阳.共同空间模式在少通道分类问题中的应用[J].中国生物医学工程学报,2009,28(6):840-845.
    [130]李明爱,刘净瑜,郝冬梅.基于改进CSP算法的运动想象脑电信号识别方法[J].中国生物医学工程学报,2009,28(2):161-165.
    [131]刘广权,黄淦,朱向阳.共空域模式方法在多类别分类中的应用[J].中国生物医学工程学报,2009,28(6):935-938.
    [132]叶柠,孙宇舸,王旭.基于共空间模式和K近邻分类器的脑-机接口信号分类方法[J].东北大学学报(自然科学版),2009,30(8):1107-1110.
    [133]叶柠,孙宇舸,王旭.基于共空间模式和神经元网络的脑-机接口信号的识别[J].东北大学学报(自然科学版),2010,31(1):12-15.
    [134]李晓欧.基于独立分量分析和共同空间模式的脑电特征提取方法[J].生物医学工程学杂志,2010,27(6):1370-1374.
    [135]HAIPING L, HOW-LUNG E, CUNTAI G, et al. Regularized common spatial pattern with aggregation for EEG classification in small-sample setting [J]. IEEE Transactions on Biomedical Engineering,2010,57(12):2936-2946.
    [136]LOUIS LS, LOREN W N. Likelihood ratios for sequential hypothesis testing on Markov sequences [J]. IEEE Transactions on Information Theory,1977,23(1):101-109.
    [137]SCOTT S E, THOMAS R F. Parameter estimation following group sequential hypothesis testing [J]. Biometrika,1990,77(4):875-892.
    [138]ISMAIL J, FRED D G. M-ary sequential hypothesis tests for automatic target recognition [J]. IEEE Transactions on Aerospace and Electronic Systems,1992, 28(2):473-483.
    [139]THAKOR, NATARAJAN. Multiway sequential hypothesis testing for tachyarrhythmia discrimination [J]. IEEE Transactions on Biomedical Engineering,1994, 41(5):480-487.
    [140]CARL W B, VENUGOPAL V. A sequential procedure for multihypothesis testing [J]. IEEE Transactions on Information Theory,1994,40(6):1994-2007.
    [141]CHANDRAMOULI R, RANGANATHAN N. A generalized sequential sign detector for binary hypothesis testing [J]. IEEE Signal Processing Letters,1998,5(11):295-297.
    [142]MOJDEHS, VIJAYA R, KRISHNA R P, et al. Sequential testing algorithms for multiple fault diagnosis [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans,2000,30(1):1-14.
    [143]DOUGLAS P D, ANDREW W T, PHILLIP C, et al. The sequential megafaunal collapse hypothesis testing with existing data [J]. Progress in Oceanography,2006, 68:329-342.
    [144]NATHAN A G, PHANEENDRA R V, MARK A N. Adaptive waveform design and sequential hypothesis testing for target recognition with active sensors [J]. IEEE journal of selected topics in signal processing,2007,1 (1):105-113.
    [145]SZI-WEN CHEN. Complexity-measure-based sequential hypothesis testing for real-time detection of lethal cardiac arrhythmias [J]. EURASIP Journal on Advances in Signal Processing,2007,10:1-8.
    [146]ZHU X Y, WU J K, CHENG Y M, et al. A unified framework to exploit information in BCI data for continuous prediction [J]. Neurocomputing,2008,71(4-6): 1022-1031.
    [147]BRODUN, LOTTE F, LECUYER A. Comparative study of band-power extraction techniques for motor imagery classification [C]. Paris, France:IEEE SSCI 2011-Symposium Series on Computational Intelligence-CCMB 2011:2011 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain,2011.
    [148]CINAR E, SAHIN F. New classification techniques for electroencephalogram (EEG) signals and a real-time EEG control of a robot [J]. Neural Computing and Applications,2011, doi:10.1007/s00521-011-0744-x

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700