BCICFES重建运动神经系统的信号处理与控制关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功能性电刺激(Functional Electrical Stimulation, FES)技术可帮助脊髓损伤或肢体运动功能缺失患者重建相应的外周神经系统、恢复或改善肌肉动作功能,是目前神经工程研究与康复医学应用的前沿领域与重要发展方向之一。但至今FES仍停留在患肢末端神经刺激局部作用模式,不能听从患者主观运动意愿控制,使其自适应性差、易受干扰、难以学习掌握,严重制约了FES的治疗效果,成为亟待解决的技术瓶颈问题。
     近年来兴起的脑-机接口(Brain-Computer Interface,BCI)技术使FES按照患者主观运动意识控制的构想成为可能。通过BCI监测、识别患者主观肢体运动意识,以此产生相应的FES控制信号模式,实现患者自觉运动康复训练。这种BCI控制FES(BCI Controls FES, BCICFES)的全新运动神经重建技术引导了当前神经康复工程研究的新潮流。本论文针对BCICFES重建运动神经系统中BCI数据去噪、特征提取、主观运动模式识别和FES脉冲强度、触发时序、反馈模型等信号处理与控制关键技术进行了较详细的研究。在运用极能差(Extreme Energy Difference, EED)、共空间模式(Common Spatial Pattern, CSP)滤波手段进行脑电思维信息空间解码;利用高频段肌电能量估算BCI脑电数据中低频段的肌电干扰并实时去噪;采用误差反向传递(Back Propagation, BP)和径向基函数(Radial Basis Function, RBF)人工神经网络构成自适应比例微积分(PID)控制器用于动态控制FES刺激模式及强度等方面提出了具有一定创新特色的方法,可为BCICFES运动神经重建系统的实现提供较关键的技术支撑。
     本课题设计并完成了不同侧向性的上肢想象动作诱发脑电实验,经六名受试者的BCICFES实验证明:利用CSP模式滤波与递归信号筛选组合方法可以加强信号的空间区域特征、优化筛选时-频特征维数,取得了平均识别率86.2%(最好达92.8%)的分类结果;高频校正算法可以实时去除BCI数据中低频段的肌电噪声,并保留其有用的脑电信息;两种人工神经网络算法自适应整定PID控制器可根据实际输出与预设轨迹偏差在线优化PID控制器的比例、积分和微分系数,实现对FES装置的自适应动态控制,明显降低超调量、提高动作精度。
     研究结果表明,上述关键技术能够有效地提高BCICFES运动神经重建系统对患者主观运动意愿的预测识别能力,增强系统的自适应与抗干扰性能,为实现患者自主运动康复、提高训练自理能力、达到理想治疗效果提供了较好的研究开发基础。
Functional Electrical Stimulation (FES), one of the most frontier areas and direction in neuron engineering research and rehabilitation Medicine, reconstructs the peripheral nervous system externally and restores the muscular motor function for patients with paralyzed limb result from spinal cord injury. However, lack of convenient approach to transmit subjective intention of patients to control the FES device directly restricts the application of FES seriously that make it a technical bottleneck for further popularization as its complex, bad self adaptability and interfered easily.
     Brain-Computer Interface (BCI) as a rising technique developed in recent years makes it possible for patients with paralyzed limbs to control the FES device by the their intention personally. It can be a new trend in neural rehabilitation engineering research to reconstruct the peripheral nervous system by BCICFES which control FES for rehabilitation training by monitoring the movement intention using BCI technique. This paper focuses on the key techniques of signal processing and control in motor neural system reconstruction by BCICFES, including BCI denoising method, feature extraction algorithm, pattern recognition as well as the stimulation pattern and feedback control stratagem of FES system. Decoding the motor intention spatially by Extreme Energy Difference (EED) and Common Spatial Pattern (CSP), eliminating scalp EMG contamination from EEG signals by using power changes in the higher frequency bands to estimate and remove EMG contamination in the lower frequency bands, and building FES feedback control system by adaptive PID controller that modulated by Back Propagation (BP) and Radial Basis Function (RBF) Neural Network, can provide worthy technical support for the construction of BCICFES external neural system.
     In this study an evoked EEG experiment on different imaginary tasks of upper extremity was designed and operated, the experimental results indicated that the best rate of accuracy which gotten from CSP and RFE could be 92.86% for all the six subjects and the averaged accuracy rate was 86.22%. The proposed EMG correction method was proved a successful method for EMG noise removal while did not washed away any true EEG information. The adaptive PID controllers modulated by BP and RBF Neural Network enhanced control precision of knee joint angle significantly in tracing tasks for FES system, and achieve satisfy effect on overshoot and oscillation suppression.
     The results showed that the key techniques described above improved the recoginition ability for the BCICFES external neural system to predict the motor intention of the subjects and increased its capability of self adaptive and interference suppression, which were proved worthy technique supports for further development. This research laid a solid foundation for accomplishing voluntary movement rehabilitation, enhancing independent ability and achieving a satisfying treatment for the patients.
引文
[1] National Spinal Cord Injury Statistical Center, Spinal cord injury: Facts and figures at a glance. J spinal Cord med, 2005, 28 (4): 379~380.
    [2] Richard Caton. The electric currents of the brain. British Medical Journal, 1875, 2, 278.
    [3] Berger H. Uber das Electrenkephalogramm des Menchen. Arch Psychiat Nervenkr, 1929, 87: 527~570.
    [4] Wolpaw JR, Birbaumer N, McFarland DJ, et al. Brain-computer interfaces for communication and control. Clinical Neurophysiology, 2002, 113(6): 767~791.
    [5] Wolpaw JR, Birbaumer N, Heetderks WJ, et al. Brain-computer interface technology: a review of the first international meeting. IEEE Trans. Rehabil. Eng., 2000, 8(2): 222~225.
    [6] Theresa M. Vaughan, et al. Guest Editorial Brain-Computer Interface Technology: A Review of the Second International Meeting. IEEE Trans. On Neural. Syst. Eng., 2003, 11: 94~107.
    [7] Pfurtscheller G, Flotzinger D, Kalcher J. Brain-Computer Interface-a new communication device for handicapped persons. Journal of Microcoput Appl, 1993, 16 (3): 293~299.
    [8] Kalcher J, Flotzinger D, Neuper CH, et a1. Graz brain-computer interfaceⅡ:towards communication between humans and computers based online classification of three different EEG patterns. Med Biol Eng Comput, 1996, 34(5): 382~388.
    [9] birbaumer N, Ghanayim N, Hinterberger T, et al. A spelling device for the paralysed. Nature, 1999, 398(6725): 297~298.
    [10] Johan W, Christopher R, Stambaugh, et al. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature, 2000, 408 (6810): 361~365.
    [11] Taylor DM, Tillery SI, Schwartz AB. Direct cortical control of 3D neuroprosthetic devices, Science, 2002, 296(5574): 1829~1832.
    [12] Stein RB. Functional electrical stimulation after spinal cord injury. Neurotrauma, 1999, 16(8): 713~717.
    [13] Liberson WT, Holmquest HJ, Scott D, et al. Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch Phys Med Rehabil, 1961, 42: 101~105.
    [14] Parkins CW, Anderson SW, Cochlear Prosthesis: an international symposium. Ann NY Acad Sci, 1983, 110(8): 558~559.
    [15] Fall M. Advantages and pitfalls of functional electrical stimulation. Acta obstetricia et gynecologica Scandinavica, 1998, 1(68): 16~21.
    [16]Daly JJ, Marsolais EB, Mendell LM, et al. Therapeutic neural effects of electrical stimulation. IEEE Trans Rehabil Eng., 1996,4(4): 218~230.
    [17] Phillips WT, Kiratli BJ, Sarkarati M, et al. Effect of spinal cord injury on the heart and cardiovascular fitness. Curt Probl Cardiol, 1998, 23(11): 641~716.
    [18] Blankertz B, Milllet KR, Curio G, et al. The BCI Competition 2003: Progress and perspectives in detection and discrimination of EEG single trials, IEEE Trans. Biomed. Eng., 2004, 51(6): 1044~1051.
    [19]Miiller GR, Neuper C, Rupp R, et al. Event-related beta EEG changes during wrist movements induced by functional electrical stimulation of forearm muscles in man. Neuroscience Letters, 2003, 340(2): 143~147.
    [20]Pfurtscheller G, Miiller GR, Pfurtscheller JH, et a1. Thought-control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neuroscience Letters, 2003, 351(1): 33~36.
    [21]Kostov A, Polak M. Parallel man-machine training in development of EEG based cursor control, IEEE Trans Rehabil Eng., 2000, 8(2): 203~204.
    [22]Kotchoubey B, Schleichea H, Lutzenberger W, et al. A new method for self-regulation of slow cortical potentials in a timed paradigm, Applied Psychophysiology and Biofeedback,1997, 22(2): 77~93.
    [23] Jacques JV. Toward Direct Brain-Computer Communication, In L.J. Mullins, Annual Review of Biophysics and Bioengineering, Annual Reviews Inc, 1973, 6: 157~180.
    [24] Farwell A, Donchine E. Talkong off the top of your head: A mental prosthesis utilizing event-related brain potentials. Electroenceph Clin Neurophysiol, 1988, 70(6): 510~523.
    [25] Karmali F, Polak M, Kostov A. Environmental conlrol by a brain-computerinterface. Proc of the 22nd annual EMBS international cone 2000. Chicago EMBS, 2000, 4: 2990~2992.
    [26] Jessica DB. A Flexible Brain-Computer Interface:[Doctor degree thesis].University of Rochester Rochester, New York, 2001.
    [27]赵丽.基于脑电信号的脑-机接口技术研究:[博士学位论文].天津:天津大学, 2003.
    [28] Touradj E, Mare VJ, Gary G. Brain-computer interface in multimedia communication. IEEE Signal Processing Magazine, 2003. 1(20): 14~24.
    [29]何庆华,彭承琳,吴宝明.脑-机接口技术研究方法.重庆大学学报, 2002, 25(12): 106~109.
    [30]李凌,尧德中,刘铁军等.刺激前后脑电α波相位重排现象研究.电子科技大学学报, 2006,35(1): 118~121.
    [31] Craig A, McIssac P, Tran Y, et al. Alpha wave reactivity following eye closure: a method of remote hands free control for the disabled. Tech. Dis., 1999, 10(3): 187~194.
    [32]蔡建新,张唯真.生物医学电子学.北京:北京大学出版社, 1997.
    [33]尧德中.脑功能探测的电学理论和方法.北京:科学出版社, 2003.
    [34]Donchin E, Spencer KM, Wijensinghe R. The mental prosthesis: Assessing the speed of a P300-based brain-computer interface, IEEE Trans. Rehab. Eng., 2000, 8 (2): 174~179.
    [35]Matthias K, Peter M, Grossekathoefer U, et a1. BCI Competition 2003-Dma Set IIb: Support Vector Machines for the P300 Speller Paradigm. IEEE Transactions on biomedical engineering, 2004, 51(6): 1073~1076.
    [36] Vladimir B. BCI Competition 2003-Dma Sets Ib and IIb: Feature Extraction From Event. Related Brain Potentials With the Confinuous Wavelet Transform and the t-Value Scalogram. IEEE Transaction on biomedical engineering, 2004, 51(6): 1057~1061.
    [37] Gernot RM, Reinhold S, Christian B, et al. Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components, J. Neural Eng., 2005, 2(4): 123~130.
    [38] Brett DM, Justin WH, Sebastian Seung, BCI Competition 2003-Data Set Ia: Combining Gamma-Band Power With Slow Cortical Potentials to Improve Single-Trial Classification of Electroencephalographic Signals.IEEE Transactions on Biomedical Engineering, 2004, 51(6): 1052~1056.
    [39] Jasper HH, Penfield W, Electrocorticograms in man: Effect of the voluntarymovement upon the electrical activity of the precentral gyrtls. Arch. Psychiat, Z. Neurol, 1949, 183(1): 163~174.
    [40] Pfurtscheller G, Aranibar A. Event-related cortical desynchronization detected by power measurements of scalp EEG Electroencephalography and Clinical Neurophysiology, 1977, 42(6): 817~826.
    [41] Steven J. Luck: An Introduction to the Event-Related Potential Technique. Cambridge, Mass.: The MIT Press, 2005.
    [42]黄远桂,吴声伶.临床脑电图学,北京:人民卫生出版社, 1998, 1~9.
    [43] Pfurtscheller G, Lopes da Silva FH, Event-related EEG/MEG synchronization and desychronization: basic principles. Clin Neurophysiol 1999, 110: 1842~1857.
    [44] Vapnik V. The Nature of Statistical Learning Theory. Springer, N.Y, 1995.
    [45] Epstein, Charles M. Introduction to EEG and evoked potentials. J. B. Lippincot Co, 1983.
    [46]翟义然,尧德中.基于真实头模型的EEG参考电极标准化技术,中国生物医学工程学报,2004, 23 (6): 523~528.
    [47]Yao D. A method to standardize a reference of scalp EEG recordings to a point at infinite. Physiol Meas, 2001, 22 (4): 693~711.
    [48] Maesschalck RD, Jouan-Rimbaud D, Massart DL. The Mahalanobis distance, Chemometrics and Intelligent Laboratory Systems, 2000, 50(1): 1~18.
    [49] Gath EG, Kevin Hayes, Bounds for the largest Mahalanobis distance, Linear Algebra and its Applications, 2006, 419(1): 93~106.
    [50] Mahalanobis PC, On the generalised distance in statistics. Proceedings of the National Institute of Science of India, 1936, 49~55.
    [51] Bertrand O, Perrin F, Pernier J. A theoretical justification of the average reference in topographic evoked potential studies. Electroenceph. clin. Neurophysiol., 1985, 62(6): 462~464.
    [52]Nunez PL, Silberstein RB, Cadusch PJ, et al. A theoretical and experimental study of high resolution EEG based on surface Laplacians and cortical imaging. Electroenceph. clin. Neurophysiol., 1994, 90(1): 40~57.
    [53]Desmedt JE, Chalklin V, Tomberg C. Emulation of somatosensory evoked potential (SEP) components with the 3-shell head model and the problem of ghost potential fields when using an average referencein brain mapping. Electroenceph. clin. Neurophysiol., 1990, 77(4): 243~258.
    [54] Durka PJ, Zygierewicz J, Klekowicz H. On the statistical significance of event-related EEG desynchronization and synchronization in the time-frequency plane. IEEE Transactions on Biomedical Engineering, 2004, 51(7): 1167~1175.
    [55]伍亚舟.基于想象左右手运动思维脑电BCI实验及识别分类研究[博士学位论文].重庆:第三军医大学, 2007.
    [56] Morlet J, Arens G, Fourgeau E, et al. Wave propagation and sampling theory. Geophysics, 1982,47 (2): 222~236.
    [57] Dornhege G, Blankertz, B, Curio G, et al. Boosting bit rates in non-invasive EEG single-trial classifications by feature combination and multi-class paradigms. IEEE Trans. Biomed. Eng., 2004, 51 (6): 993~1002.
    [58] Behrooz N, Reza B, Mansoor ZJ. An efficient hybrid linear and kernel CSP approach for EEG feature extraction. Neurocomputing, 2009,73 (1): 432~437.
    [59] Cheng M, Jia W, Gao X, et al. Mu rhythm-based cursor control: an offline analysis. Clinical Neurophysiology, 2004, 115(4): 745~751.
    [60]高上凯.浅谈脑-接口的发展现状与挑战.中国生物医学工程学报, 2007, 26(6): 801~803.
    [61] Bagley JD. The behavior of adaptive systems which employ genetic and correlation algorithms, Ph.D. thesis, University of Michigan, Ann Arbor, 1967.
    [62] Booker LB, Goldberg DE, Holland JH. Classifier systems and genetic algorithms. Artificial Intelligence, 1989, 40(1): 235~282.
    [63] Sumida BH, Houston AI, McNamara JM, et al. Genetic algorithms and evolution. Journal of Theoretical Biology, 1990 , 147(1): 59~84.
    [64] Ahmed AA, Akram AS. Effect of Feature and Channel Selection on EEG Classification. Proceedings of the 28th IEEE EMBS Annual International Conference New York City, USA, Aug 30-Sept 3, 2006, 2171~2174.
    [65] Schroder M, Thomas NL. Thilo Hinterberger Robust EEG Channel Selection across. Subjects for Brain-Computer Interfaces EURASIP Journal on Applied Signal Processing, 2005, 19, 3103~3112.
    [66] Guyon I, Elisseeff A. An introduction to variable and feature selection. J. Machine Learning Res, 2003, 3:1157~1182.
    [67]Guyon I, Weston J, Barnhill S, et al. Gene selection for cancer classification using support vector machines. J. Machine Learning Res., 2003, 3:1439~1461.
    [68] Goncharova II, McFarland DJ, Vaughan TM, et al. EMG contamination of EEG: spectral and topographical characteristics. Clin Neurophysiol, 2003, 114, 1580~1593.
    [69] Mehrdad F, Ali B, Rabab K, et al. Birch EMG and EOG artifacts in brain computer interface systems. A survey Clinical Neurophysiology, 2007, 118(3): 480~494.
    [70] Gassera T, Jan CS, Ursula S. Gasser Correction of muscle artefacts in the EEG power spectrum. Clinical Neurophysiology, 2005, 116 (9): 2044~2050.
    [71]Goncharova II, McFarland DJ, Vaughan TM, et al. EMG contamination of EEG: spectral and topographical characteristics. Clin Neurophysiol, 2003, 114(9): 580~1593.
    [72]Gotman J, Gloor P, Ray WF. Quantitative comparison of traditional reading of EEG and interpretation of computer-extracted features in patients with supratentorial brain lesions. Electroencephalogr Clin Neurophysiol, 1975, 38(6): 623~639.
    [73] Liberson WT, Holmquest HJ, Scot D. Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch Phys Med Rehabil, 1961, 42: 101~105.
    [74] Liberson WT. Functional electrotherapy. Trans Am Soc Artif. Int. Organs., 1962, 8: 373~377.
    [75] Gfohler M, Angeli T, Lugner P. Optimal Control of Cycling by mean of Functional Electrical Stimulation-a Dynamic Simulation Study. International Symposium on Computer Simulation in Biomechanics, 2001: 34~39.
    [76] Peckham PH, Mortimer JT. Restoration of Hand Function in the Quadriplegic through Electrical Stimulation. Functional Electrical Stimulation: Application in Neural Prostheses, New York, 1977.
    [77] Mccallum WC, Cooper R, Pocock PV. Brain slow potential and ERP changes associated with operator load in a visual tracking task. Electroencephalography and Clinical Neurophysiology, 1988, 69(5): 453-468.
    [78] Bruns TM, Bhadra N, Gustafson KJ. Bursting stimulation of proximal urethral afferents improves bladder pressures and voiding. J Neural Eng., 2009 6(6): 066006.
    [79] Kilgore KL, Foldes EA, Ackermann DM, et al. Combined direct current and high frequency nerve block for elimination of the onset response. Conf Proc IEEE Eng Med Biol Soc., 2009, 197~199.
    [80] Knutson JS, Harley MY, Hisel TZ, et al. Improving hand function in stroke survivors: a pilot study of contralaterally controlled functional electric stimulation in chronic hemiplegia. Arch Phys Med Rehabil, 2007, 88(4): 513~520.
    [81] Daly, Janis JM, Roger BME; Jean PT. Feasibility of a New Application of Noninvasive Brain Computer Interface (BCI): A Case Study of Training for Recovery of Volitional Motor Control after Stroke. Journal of Neurologic Physical Therapy, 2009, 33 ( 4): 203~211.
    [82] Daly JJ, Wolpaw JR. Brain-computer interfaces in neurological rehabilitation. Lancet Neurol, 2008, 7(11): 1032~1043.
    [83] Jane HB, Elessi K, Ruth M. Walking on an Uneven Surface: The Effect of Common Peroneal Stimulation on Gait Parameters and Relationship Between Perceived and Measured Benefits in a Sample of Participants With a Drop-Foot, Neuromodulation, 2007,10(1): 59~67.
    [84] Coupaud, S, McLean, A, Allan D, Longitudinal changes in bone in the first year of spinal cord injury. Proc. 7th International Workshop for Musculoskeletal Neuronal Interactions, 2010: 21~22.
    [85]Dunne AC, Allan DB, Hunt KJ. Characterisation of oxygen uptake response to linearly increasing work rate during robotics-assisted treadmill exercise in incomplete spinal cord injury. Biomed. Signal Process. Control, 2010, 5(1): 70~75.
    [86] Hermie JH, Freriksa B. Catherine Disselhorst-Klugb and Günter Raub Development of recommendations for SEMG sensors and sensor placement procedures. Journal of Electromyography and Kinesiology, 2000, 10(5): 361~374.
    [87] Popovic MB, Popovic DB, Sinkj?r T. Restitution of Reaching and Grasping Promoted by Functional Electrical Therapy, Artificial Organs, 2003 26(3): 271~275.
    [88] Eser P, Bruin ED, Telley I, Lechner HE. Effect of electrical stimulation-induced cycling on bone mineral density in spinal cord-injured patients. European Journal of Clinical Investigation, 2003,33 (5): 412~419.
    [89]姜洪源,马长波,陆念力.模糊参数自校正PID在功能性电刺激脚踏车系统中的应用.中国康复医学杂志, 2006, 21(6): 538~540.
    [90] Cheng LL, Zhang GJ, Wan BK. Radial Basis Function Neural Network-based PID Model for Functional Electrical Stimulation System Control. 31st Annual International Conference of the IEEE EMBS Minneapolis, 2009: 3481~3484.
    [91]张建福,彭聿平,闫长栋.人体生理学,北京:高等教育出版社.
    [92]王永初. PID发展趋势分析.仪器仪表学报, 1982, 2(2): 95~106.
    [93] Chang GC, Luh JJ, Liao GD, et al. A Neuro-Control System for the Knee Joint Position Control with Quadriceps Stimulation. IEEE Transactions on rehabilitationengineering, 1997, 5, (1): 2~11.
    [94] Lan N, Feng HQ, Crago PE. Neural network generation of muscle stimulation patterns for control of arm movements. IEEE Trans. Rehab. Eng., 1994, 2(4): 213~224.
    [95] Nonaldson N, Gollee H, Hunt KJ, et al. A radial basis function model of muscle stimulated with irregular inter-pulse intervals. Med. Eng. Phys., 1995, 17(6): 431~441.
    [96] Abbas JJ, Chizeck HJ. Neural network control of functional neuromuscular stimulation systems: Computer simulation studies. IEEE Trans. Biomed. Eng., 1995, 42(11): 1117~1127.
    [97] Shue GH, Crago PE, Chizeck HJ. Muscle-joint models incorporating activation, dynamics, torque-angle and torque-velocity properties. IEEE Trans. Biomed. Eng., 1995, 42 (2): 212~223.
    [98] Lan N, Crago PE, Chizeck HJ. Control of end-point force of a multijoint limb by functional electrical stimulation. IEEE Trans. Biomed. Eng., 1991, 38 (10): 953~965.
    [99] Huxley AF. Muscular contraction. Ann. Rev. Physiol., 1974, 243(1): 1~16.
    [100] Willliams HB. The value of continuous electrical muscle stimulation using a completely implantable system in the preservation of muscle function following motor nerve injury and repair. Microsurgery, 1996, 17(11): 589~596.
    [101] Nicolaidis SC, Williams HB. Muscle preservation using an implantable electrical system after nerve injury and repair. Microsurgery, 2001, 21(6): 241~247.
    [102] Kern H, Boncompagni S, Rossini K, et al. Long term denervation in humans causes degeneration of both contractile and excitation-contraction coupling apparatus, which is reversible by functional electrical stimulation: a role for my fiber regeneration. Neuropathol Exp Neurol, 2004, 63(9): 919~931.
    [103] Kralj A, Bajd T, Turk R, et al. Gait restoration in paraplegic patients: a feasibility demonstration using multichannel surface electrode FES. Rehabil R D., 1983, 20(1): 3~20.
    [104] Gallien P, Rissot B, E yssette M, et al. Restoration of gait by functional electrical stimulation for spinal cord injured patients. Paraplegia, 1995, 33(11): 660~664.
    [105] Yan TB, Christina WY, Chan H. Functional Electrical Stimulation Improves Motor Recovery of the Lower Extremity and Walking Ability of Subjects With FirstAcute Stroke. Stroke, 2005, 36: 80~85.
    [106] Hoshimiya N, Naito A, Yajima M, et al. A multichannel FES system for the restoration of motor function in high spinal cord injury patients: A respiration-controlled system form multijoint upper extremity. IEEE Trans. Biomed. Eng., 1989, 36(7): 754~760.
    [107] Buckett JR, Peckham PH, Thrope GB, et al. A flexible portable system for neuromuscular stimulation in the paralyzed upper extremity. IEEE Trans. Biomed. Eng., 1988, 35(11): 897~904.
    [108] Lan N, Feng HQ, Crago PE. Neural network generation of muscle stimulation patterns for control of arm movements. IEEE Trans. Rehabil. Eng., 1994, 2 (12): 213~224.
    [109] Kamnik R, Shi JQ, Murray-Smith R, et al. Nonlinear modeling of FES-supported standing-up in paraplegia for selection of feedback sensors. IEEE Transaction on Neural Systems and Rehabilitation Engineering, 2005, 13(1): 40~52.
    [110] Hunt KJ, Stone B, Negard NO. Control strategies for integration of electric motor assist and functional electrical stimulation in paraplegic cycling: utility for exercise testing and mobile cycling. IEEE Transactions on Neural System and Rehabilitation Engineering, 2005, 12(1): 89~101.
    [111] Kurosawa K, Futami R, Watanable T, et al. Joint angle control by FES using a feedback error learning controller. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2005, 13(3): 953~965.
    [112] Ferrarin M, Acquisto ED, Mingrino A. An experimental PID controller for knee movement restoration with closed loop FES system. 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1996, 1:453~454.
    [113] Yu NY, Chen J, Ju M. Closed-Loop Control of Quadriceps Hamstring Activation for FES-Induced Standing-Up Movement of paraplegics. Journal Of Musculoskeletal Research, 2001, 5(3): 173~184.
    [114] Ziegler G, Nichols NB. Optimum settings for automatic controllers. Trans. ASME, 1942, 64, 759~768.
    [115]刘金琨.先进PID控制MATLAB仿真(第2版).北京:电子工业出版社, 162~165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700