扶余油田地下水污染及其与新构造活动的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在扶余油田水文地质、工程地质和环境地质调查基础上对研究区的地下水污染机理和污染途径进行研究分析。研究区在扶余油田西南部,以八家子为研究中心,东西宽3.7km,南北长6.8km,总面积为25.1km~2,占油田总面积的1/4。
     研究区石油储存在白垩系的泉头组四段,新构造活动使得白垩系顶部、古近系和新近系缺失,第四系直接覆盖在泉头组之上。地下水主要存在于第四系中,分下、中更新统承压水和中、上更新统微承压水。两个含水系统分别采样,上部地下水化学特征主要为HCO_3-NaCa型,个别出现HCO_3Cl-Na型水,以Cl~-、石油类和碘三项严重污染为特征,其次,是SO_4~(2-)、NO_2~--N、总硬度。下部含水层化学特征HCO_3-Ca型水,与区域地下水的HCO_3-NaCa型有所不同。重度污染项目主要为石油类、碘和NO_3~--N三项,其次为Cl~-。与上段地下水相比较,从污染项目及其污染程度所占比例,下段地下水污染项目相对少,污染程度所占比例低,但石油类下段较上段污染严重。通过与背景值对照以及与地下水Ⅲ级标准对比,分析出两段地下水中主要污染物是石油类和氮类。
     结合油田区特殊的地质坏境,发现污染物对地下水的污染途径主要有三种形式:渗透污染、穿透污染和事故性污染。该油田区石油类渗透污染物的主要来源是渗坑和土油池及落地油。穿透污染是污染物沿着裂隙到达含水层从而污染地下水的方式。裂隙主要由强烈开采地下水产生不均匀地面沉降引起、地质构造活动引发和冻胀地裂缝。重点分析因基底发生新构造活动诱发的地裂缝作为穿透污染的重要通道对地下水水质的影响。构造裂缝又分为地表构造地裂缝,将污染物从地表通过地沟、地裂带到含水层;还有一种是地下隐伏构造裂隙或断裂,原油通过地下隐伏构造裂隙或断裂上窜至含水层。事故性污染在研究区由于设备的老化及检修的不及时也经常造成地下水的污染。
Based on hydrology and environmental geology works, the dissertation mainly discussed pollution ways and mechanism. The study site is in southwest of the oilfield, 3.7km wide and 6.8km long, totally is 25.1km~2, one quarter of the whole oilfield, and Bajiazi village is its center.
    Quantou formation of Cretaceous was oil reservoir, for the continually surging lift activities from Cretaceous to Quaternary, neotectonic activities denuded the upper of the Cretaceous, the whole Paleogene and Neogene, which made the Quaternary overlaid oil layers directly. Groundwater mainly was in Quaternary, lower-mid Pleistocene porous tiny pressure aquifer and mid-upper Pleistocene porous pressure aquifer. Chemical property of the upper aquifer mainly was HCO_3-NaCa, except HCO_3CL-Na. In this aquifer, chloride, oil and iodide were main polluting detection index. In the next place were SO_4~(2-), NO_2~- -N and total hardness. The lower aquifer was HCO_3-Ca chemical property, different from HCO_3-NaCa of areal groundwater. Heavy contaminant indexes were oil, iodide and NO_3~- -N, chloride was less. Compared with indexes of the upper aquifer, numbers of contaminant indexes were less and polluted to less extent except for oil. In both aquifers, oil and nitride were main pollutants.
    Combined with special geological environment and human activities in the oilfield, we mainly found three ways by which pollutant to groundwater: infiltrating pollution, penetrating pollution and accidental pollution. Infiltrating pollution sources came from Seepage Pit, earthy oil ponds and spilled oil. Ways of pollutants contaminating groundwater by fractures were penetrating pollution. Two types of geofractures which affected the groundwater most usually were sorted on the base of factors inducing their formation, one was subsidence geofractures consisted on extracting extensive groundwater and inducing uneven depression, the other was structural geofracture based on geological structure activities. Structural geofractures in study site included surface fractures and buried faults. On the ground, all kind of pollutants arrived in aquifer by channels and geofractures, at the same time, crude oil moved into Quaternary aquifer along the buried active fractures and fissures. Accidental pollution usually caused by old producing oil facilites leakage and it polluted groundwater heavily when workers were reckless of examining and repairing oil pipes on time.
引文
Agell K G. In situ remedial methods: air sparging[J]. The National Environmental Journal, 1992, 2(1): 20-23.
    Allen-King R M, Larry D M, Mark R T. Organiccarbon dominated trichloroethene sorption in a clay-rich glacial deposit[J]. Groundwater, 1997, 35(1): 124-130.
    Al-Sarawi M, Massod MS and Wahba SA. 1998. Physical properties as indicators of oil penetration in soils contaminated with oil lakes in the Greater Burgan Oil Fields, Kuwait[J]. Water, Air and Soil Pollution, 102: 1~15.
    Al-Sarawi M, Massoud MS and Al-Abolali F. 1998. Preliminary assessment of oil contamination levels in soils contaminated with oil lakes in the Greater Burgan Oil Fields, Kuwait[J]. Water, Air and Soil Pollution, 106: 493~504.
    Bashir A. Memon, M. Mumtaz Azmeh, Mary Wallace Pitts. The environmental hazards of locating wastewater impoundments in karst terrain[J]. Engineering Geology, 2002, 65: 169-177.
    Biodgett, W, C&Jr. Water soluble mutagen production during the bioremediation of oil contaminated soil [J]. FLA. SCI, 1997, 60(1): 2-6.
    Borden R C, Carlos A G, Mark T B. Geochemical indicators of intrinsic bioremediation[J]. Groundwater, 1995, 33(2): 180-189.
    Brown R A, Jasiulewicz F. Air sparging: a new model for remediation[J]. Pollution Engineering, 1992, 24(7): 52-55.
    Cheryl Mcmahon Anderson, Robert P. Labelle. Update of Comparative Occurrence Rates for Offshore Oil Spills[J]. Spill Science &Technology Bulletin, 2000, 6(5/6): 303-321.
    C. Sanz de Galdeano, C. López Casado, J. Delgado et al. Shallow seismicity and active faults in the Betic Cordillera. A preliminary approach to seismic sources associated with specific faults[J]. Tectonophysics, 1995, 248: 293-302.
    D D Truax, R Brittu, J H Sherrad. Bench-acalt studies of reactor based treatment of fuel contaminated oil [J]. Water Management, 1995, 15(6): 351-357.
    Douglas L. Kane, Kenneth M. Hinkel, Douglas J. Goering et al. Non-conductive heat transfer associated with frozen soils[J]. Global and Planetary Change, 2001, 29: 275-292.
    E. Rojas, J. Arzate, M. Arroyo. A method to predict the group fissuring and faulting caused by regional groundwater decline[J]. Engineering Geology, 2002, 65: 245-260.
    F. Stagnitti, Ling Li, A. Barry et al.. Modelling Solute Transport in Structured Soils: Performance Evaluation of the ADR and TRM Models[J]. Mathematical and Computer Modelling, 2001, 34: 433-440.
    Gbuselli 张保祥译.利用瞬变电磁法和直流电法圈定和监测地下水污染[J].工程物探,1995.
    Gilbert T. Tellez, N. Nirmalakhandan, Jorge L. Gardea-Torresdey. Performance evaluation of an activated sludge system for removing petroleum hydrocarbons from oilfield produced water[J]. Advances in Environmental Research.2002,6: 455-470.
    Gillham R W,O'Hannesin S F.Enhanced degradation of halogenated aliphatics by zero-valent iron[J]. Groundwater, 1994,32(6):958-967.
    Haddad B I,Geoffrey B P.A successful integrated multicomponent remediation approach implemented at a petroleum contaminated site. In:Marinos,Konkis,Tsiambaosetaleds.Engineering Geology and the Enviroment[J]. Balkema:Rotterdam,1997.1877-1882.
    
    H.M.Granja,I.C.Ribeiro,G.Soares de Carvalho et al.Some Neotectonic Indicators in Quarternary Formations of the Northwest Coastal Zone of Portugal[J].Phys. Chem. Earth(A),1999,24(4):323-336.
    J. M. Al-Hassan, M. Afzal, C. V. N. Rao, et al. Petroleum Hydrocarbon Pollution in Sharks in the Arabian Gulf[J]. Bull. Environ. Contain.Toxicol.2000,65:391-398.
    J. M. Al-Hassan, M. Afzal, V. N. R. Chava, et al. Hydrocarbon Pollution in the Arabian Gulf Catfish. Bull. Environ[J]. Contain. Toxicol.2001,66: 646- 652.
    KaoCM,LeiSE.Using a Peat Biobarrier to Remediate PCE/TCE Contaminated Aquifer[J].Wat Res, 2000,34(3):835-845.
    Lang M M,Paul V R,Lewis S.Model simulations in support of field scale design and operation of bioremediation based on cometabolic degradation[J].Groundwater,1997,35(4):565-572.
    Lesage S,HaoX,KentSN.Distinguishing natural hydrocar bons from anthropogenic contamination in groundwater[J].Groundwater,1997,35(1):149-160.
    Li Zhouhui,Robert S B.Sorption of perchloroethy lene by surfactant-modified zeolite as controlled by surfactant loading[J].Environmental Science and Technology,1998,32(15):2278-2282.
    Mario Schirmer,Barbara J. Butler. Transport Behaviour and Natural Attenuation of Organic Contaminants at Spill Sites[J].Toxicology,2004,205:173-179.
    Mayotte T J,Michael J D,Craig S C.Bench-scale evaluation of bioaugmentation to remediate carbon tetrachloride-contaminated aquifer materials[J].Groundwater, 1997,34(2):358-367.
    Mc Cray J E,Ronald W F.Numerical Simulation of air sparging for remediation of NAPL contamination[J]. Groundwater, 1997,35(1):99-110.
    Monica P. Suarez,Hanadi S. Rifai.Modeling Natural Attenuation of Total BTEX and Benzene Plumes with Differernt Kinetics[J]. Ground Water Monitoring & Remediation,2004,24(3):53-68.
    National Research Council.Alternatives for Ground Water Cleanup.Washington D C:Academy Press, 1994.315-324.
    O'Hannesin S F,Gillham R W.Long-term performance of an in-situ"iron wall" for remediation of VOCs [J]. Groundwater, 1997,36(1): 164-170.
    Paul D. Lundegard,Paul C.Johnson.A Composite Plume Approach for the Analysis of Dissolved Contaminants in Ground Water vs. Distance from Source Areas[J].Ground Water Monitoring & Remediation,2004,24(3):69-75.
    P. Grathwohl. Desorption of Trichlorethylene in Aquifer Material: Rate Limitation at the Grain Scale[J]. Environ, Sci,Techno. 1993, 27(12):2360-2366.
    Peter Bayer, Michael, Georg Teutsch. Combining Pump-and-Treat and Physical Barriers for Contaminant Plume Control[J]. Gound Water, 2004, 42(6): 856-867.
    P. F. Karrow, O. L. White. A history ofneotectonic studies in Ontario[J]. Tectonophysics, 2002, 353: 3-15.
    P. MCCORMACK, P. JONES, M. J. HETHERIDGE et al. Analysis of Oilfield Produced Waters and Production Chemicals by Electrospray Ionisation Muti-stage Mass Spectrometry (ESI-MS~n)[J]. Wat. Res., 2001, 35(15): 3567-3578.
    Porta A. A review of European bioremediation practice. In: Hinchee R E, Olfenbuffel R F eds[J]. On-Site Biorecalmation. Massachusetts USA: Butterworth-Heinemann, 1991. 1-13.
    Qingxin Li, Congbao Kang, Changkai Zhang. Waste water produced from an oilfield and continuous treatment with an oil-degrading bacterium[J]. Process Biochemistry, 2005, 40: 873-877.
    R. R. LESSARD & G. DEMARCO. The Signifiance of Oil Spill Dispersants[J]. Spill Science & Technology Bulletin, 2000, 6(1): 59-68.
    Sale T, David A. Mobile NAPL recovery: conceptual, field, and mathematical consideration[J]. Ground water, 1997, 35(3): 418-426.
    Sheng Guanyao, Xu Shihe, Boyd S A. Cosorption of organic contaminants from water by hexadeyl-trimethy lammonium-exchanged clays[J]. Water Research, 1996, 30(6): 1483-1489.
    Sheng Guanyao, Xu Shihe, Boyd S A. Mechanism(s) controlling sorption of neutral organic contaminants by surfactant derived and natural organic matter[J]. Environmental Science and Technology, 1996, 30(5): 1553-1557.
    Simon C. George, Mark Lisk, Roger E Summons, Robinson A. Qwezada. Constraining the Oil Charge History of the South Pepper Oilfield from the Analysis of Oil-bearing Fluid Inclusions[J]. Org. Geochem. 1998, 29(1): 631-648.
    Stockmarr J(郭华明译).修订后的丹麦1998—2003年地下水水质监测计划.地质科学译丛,1998,15(4):26-30.
    Taylor S W, Clifford R L, Elizabeth A L. Biofouling of contaminated ground-water recovery wells: characterization of microorganisms[J]. Groundwater, 1997, 35(6): 973-980.
    Wood B D et al.. Modeling contaminants transport and bio-degradation in a layered porous media system [J]. Water Resour. Res., 1994, 30(6): 1833-1845.
    Yongshi Wang, Maowen Li, Xiongqi Pang et al. Fault-fracture mesh petroleum plays in the Zhanhua Depression, Bohai Bay Basin: Part 1. Source rock characterization and quantitative assessment[J]. Organic Geochemistry, 2005, 36: 183-202.
    Z. Chen, G. H. Huang, A. Chakma. Integrated Environmental Risk Assessment for Petroleum-Contaminated Sites-A North American Case Study[J]. Wat. Sci. Tech, 1998, 38 (4-5): 131-138.
    毕守业,王德荣,贾大成等.吉林省地体构造的基本特征[J].吉林地质,1995,14(1):1-4.
    陈家军,王红旗,奚成刚等.大庆油田开发中石油类污染物对地下水环境影响模拟分析[J].应用生态学报,2001,12(1):113-116.
    陈秀成,曹瑞钰.地下水污染治理技术的进展[J].中国给水排水,2001,17(4):23-26.
    陈余道,蒋亚萍,黄宗万等.浅层地下水中石油烃污染研究的物理模型[J].桂林工学院学报,2004,24(4):492-497.
    陈余道,朱学愚,武三三.淄博市临淄地区地下水源地石油烃污染特征[J].中国岩溶,1997,16(1):35-40
    窦立荣,李建中.东北区早白垩世同裂谷期构造层序地层特征.石油勘探与开发,1995,22(3):7-13.
    郭华明,王焰新,陈艳玲等.地下水有机污染的水文地球化学标志物探讨—以河南油田为例[J].地球科学—中国地质大学学报,2001,26(3):304-308
    郭华明,王焰新.地下水有机污染治理技术现状及发展前景[J].地质科技情报,1999,18(2):69-72.
    郭建伟,齐宝辉.中原油田洒落石油对地面生态的污染与防治[J].地质技术经济管理,2004,26(5):34-39.
    国家环境保护总局,国家发展计划委员会,国家经济贸易委员会等.国家环境保护“十五”规划.中国环境科学出版社,2002:21-22.
    何富荣.油气田环境保护基础知识[M].石油大学出版社,1997:107-111.
    胡广仁.柴油泄漏引起的地下水污染.见:环境地质研究(第辑).北京:地震出版社,1993,120-126.
    黄成敏.环境地学导论[M].四川大学出版社,2005:61-62
    姜琦刚,刘古声,邱凤民.松辽平原中西部地区生态环境逐渐恶化的地学机理[J].吉林大学学报(地球科学版),2004,34(3):430-434.
    敬宪科.石油资源开发中的环境污染问题[J].甘肃环境研究与监测,1996,9(2):27-29.
    蓝俊康.植物修复技术在污染治理中的应用现状[J].地质灾害与环境保护,2004,15(1):46-51.
    兰盈盈,肖长来,梁秀娟.吉林省西部主要生态环境地质问题及对策[J].吉林水利,2004,4:1-4.
    李长安,张玉芬.一次重要的第四纪构造运动及环境效应[J].地质科技情报,1999,18(4):42-46.
    李昌静,卫钟鼎.地下水水质及其污染[M].建筑工业出版社,1983.
    李传友,汪一鹏,张良怀等。吉林省松原地区1119年6 3/4级的地震的发震构造条件[J].国地震,1999,15(3):237-246.
    李春.外地下水资源的保护与管理研究动态[J].国人口·资源与环境,2001,11(Total No.51):163-54.
    李凌波,林大泉,籍伟等.某石油化工厂区有机污染物的表征Ⅱ.地下水[J].石油学报(石油加工),2001,17(6):84-90.
    梁冰,薛强,刘晓丽.油气田地区土壤—水环境中有机污染的数值模拟及模型预测[J]质灾害与防 治学报.2003,13(3),19~22.
    廖资生,林学钰.松嫩盆地地下水有害组分的形成及分布规律[J].勘察科学技术,2002,4:3-8.
    廖资生,林学钰.松嫩盆地的地下水化学特征及水质变化规律[J].地球科学——中国地质大学学报,2004,29(1):96-102.
    刘青岩.二氧化氯技术处理地下水石油污染的应用研究[R].华大学环境工程系硕士论文,1995.
    刘新华,沈照理,钟佐燊等.淄博市地下水水源地石油化工型油类污染及其治理方案研究[J].代地质-中国地质大学研究生院学报,1995,1:17-18.
    刘新华,沈照理,钟佐粲等.淄博市地下水水源地石油化工型油类污染及其治理方案研究[R].中国地质大学博士论文,1994.
    刘元胜.对徐州市地下水石油类污染的浅析[J].地下水,1994,16(2);66-67.
    刘兆昌,张兰生.地下水系统的污染与控制[M].北京:中国环境科学出版社,1991.
    刘兆昌.华北地区污灌系统对地下水污染的数学模拟[J].中国环境科学,1989,19(6):406-414.
    刘子良,梁春秀.辽盆地南部构造裂缝成因机制及分布方向[J].油勘探与开发,1999,26(5):83-85.
    陆光华,刘颖洁.地下水有机污染的生物修复技术及应用[J].水资源保护,2003,4:15-18.
    吕华,马振民.某研究区地下水石油类污染的调查与预测[J].有色金属,2005,57(2):145-49.
    吕昕,张晓健,瞿福平等.物处理过程中活性污泥对氯代芳香化合物吸附性能的研究[J].环境化学,1998,17(1):34-37.
    莫汉宏,安凤春,杨克武等.江西省莲塘镇地下水中有机污染物的初步探查[J].环境科学丛刊,1992,13(2):38-54.
    桑德拉.波斯特尔(Sandra L.Postel),阿伦.沃尔大(Aaron T.Wolf).为水而战[J].《外交政策》,2001,5.
    施德鸿.城市地下水资源的开发利用与生存环境.第三届全国减轻自然灾害研讨会.1998,5.
    孙才志,林学钰.松嫩盆地水资源分布特征、开发潜力及21世纪用水对策[J].自然资源学报,2001,16(4):354-359.
    孙讷正.地下水流的数学模型和数值方法[M].北京:地质出版社,1989.
    王秉忱,杨天行.地下水污染地下水水质模拟方法[M].北京:北京师范学院出版社,1985.
    王东海,李广贺,贾道昌.石油类污染物在砂砾石层中的迁移与分布[J].环境科学,1998,19(5):18-21.
    王洪涛,罗剑,李光富.含油污水外排对土壤和潜水层污染的模拟分析[J].清华大学学报(自然科学版),2000,40(11):109-113.
    王洪涛,周抚生,宫辉力.数值模拟在评价含油污水对地下水污染中的应用[J].北京大学学报(自然科学版),2000,36(6):865-872.
    王宏伟,龚庆红,赵向东.吉林省平原区地下水主要蓄水构造[J].吉林地质,2004,23(4):64-68.
    王静,沈玉萍,刘福权等.吉林省地质灾害及其防治的遥感应用[J],国土资源遥感,1998,4:80-85.
    王业耀,孟凡生。石油烃污染地下水原位修复技术研究进展[J],化工环保,2005,25(2):117-120.
    王永春.松辽盆地南部岩性油气藏的形成和分布[M].北京:石油工业出版社,2001,20-56.
    王玉梅,党俊芳.油气田地区的地下水污染分析[J].地质灾害与环境保护,2000,11(3):271~273
    翁帮华,陈赓良,向启贵等.气田水对浅层地下水环境影响的评价方法[J],天然气工业,2004,23(增刊):153-157.
    吴敦敖,翁焕新.杭州市地下水氮污染类型及污染源因分析[J].环境污染与防治,1988,10(3):36-38.
    武强,陈佩佩,张宇等.我国城市地裂缝灾害问题与对策[J].中国地质灾害与防治学报,2002,13(2):70-79.
    奚成刚,陈家军,许兆义.油田开发过程中事故环境风险评价[J].中国安全科学学报,2002,12(3):35-38.
    谢广林.地裂缝[M].地震出版社,1988.
    薛强,梁冰,冯夏庭等.石油污染物在地下环境系统中运移的多相流数值模型[J].化工学报,2005,56(5):920-924.
    杨绍刚,张丽玲,李春霞等.松辽平原(吉林省部分)环境地质问题与整治[J].吉林地质,2002,21(4):34-43.
    易明初.新构造活动与区域地壳稳定性[M].北京:地震出版社,2003:3-6.
    于军,王晓梅,苏小四等.苏锡常地区地裂缝地质灾害形成机理分析[J].吉林大学学报,2004,34(2):236-241.
    古伟,吴文忠,徐盈,李植生.有机有毒污染物在土壤及底泥系统中的吸附—解析行为研究进展[J].环境科学进展,1998,5(3):1-23.
    张殿发,林年丰.松嫩平原第四纪以来的生态环境演化的影响因素[J].吉林地质,2000,19(1):23-29
    张功成等.松辽盆地伸展和反转构造样式[J].石油勘探与开发,1996,23(2):16-20.
    张蜀江.21世纪:为水而战[J].科学之友,2002,4:10-12
    张兴儒,张士权.油气田的发展、建设及其环境影响[M].北京石油工业出版社,1998.
    赵勇胜,林学钰.地下水污染模拟及污染的控制和处理[M].长春:吉林科学技术出版社,1994.
    赵勇胜,曹玉清.地下水的有机污染[J].工程勘察,1995:28-42.
    赵振业.二氧化氯对地下水石油污染物去除作用的研究[J].兰州铁道学院学报,1996,15(4): 36-41.
    郑西来,荆静,席临萍.包气带中原油的迁移和降解[J].水文地质和工程地质,1998,25(1):35-37.
    中国门户网.中国面临严重水危机2030年接近“缺水警戒线”,www.chinagate.com.cn.
    钟佐粲.地下水有机污染控制及就地恢复技术研究进展(一)[J].水文地质工程地质,2001,3:1-3.
    钟佐粲,刘菲.地下水有机污染控制及就地恢复技术研究进展(二)[J].水文地质工程地质,2001,26-31.
    钟佐粲,刘菲.地下水有机污染控制及就地恢复技术研究进展(三)[J].水文地质工程地质,2001,5:76-79.
    庄延革.吉林省常见的农业地质灾害及其防治措施初探[J].吉林地质,2002,21(4):44-49.
    周念清,徐绍辉.水力截获技术在治理地下水石油污染中的应用[J].岩土工程技术,1998,2:48-52.
    朱利中,陈宝梁.有机膨润土在废水处理中的应用及其发展[J].环境科学进展,1998,6(3):53-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700