表面改性纳米碳酸钙及其填充改性HDPE力学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚乙烯作为世界上生产量最大、种类繁多的最重要的合成树脂之一,其应用早已深入人们的日常生活。虽然其自身具有许多优点,但也存在着性能方面的某些弱点,这限制了它的应用市场。
     本课题选用纳米碳酸钙填充改性的方法对高密度聚乙烯进行力学性能方面的改性,首先是针对纳米碳酸钙表面团聚以及与基体树脂结合性差的问题,选择了偶联剂对纳米粒子进行了相关改性实验,并研究了经表面处理过的纳米二氧化硅/纳米碳酸钙二元协同改性HDPE的性能;然后本课题从高分子包覆改性纳米碳酸钙的的角度,采用苯乙烯原位聚合改性纳米碳酸钙,并研究了其反应所得的复合粒子与HDPE进行反应性共混对HDPE性能的影响。针对上述问题取得以下结论:
     ⑴利用FT-IR、SEM、XRD、TG分析等对改性前后纳米CaCO_3的表面形貌、分散情况进行了分析比较。结果表明,相较于硅烷偶联剂KH-151和KH570,钛酸酯偶联剂KH101改性效果最好。并得出最佳改性条件为:偶联剂用量为纳米CaCO_3的3wt.%,环己酮用量为纳米CaCO_3质量的5倍,反应温度为80℃,反应时间为60min。
     ⑵单独使用经偶联剂表面处理过的纳米碳酸钙和纳米二氧化硅对HDPE进行填充改性:①纳米CaCO_3,填充量为20%~25%冲击强度有最大值,含量在10%-20%拉伸强度有最大值。②纳米SiO_2,填充量为6%~8%之间拉伸和冲击强度有最大值。
     ⑶二元填充改性,纳米CaCO_3:纳米SiO_2:HDPE=25:7:100质量比的体系比单独纳米CaCO_3纳米SiO_2各自单独填充HDPE拉伸和冲击强度的最大值没下降多少,同时提高了拉伸、冲击两种力学性能,达到了预期填充改性效果。
     ⑷苯乙烯原位聚合改性纳米碳酸钙得到PS-nanoCaCO_3复合粒子,选用丙烯酸对纳米碳酸钙表面预处理,通过对比实验得出最佳反应条件为:反应时间为8小时,引发剂过硫酸钾用量为单体量的1%,乳化剂十二烷基苯磺酸钠的用量为单体量的3%,加入经丙烯酸改性的的纳米碳酸钙的量为单体量的25%。
     ⑸PS-nanoCaCO_3和HDPE的反应性共混,通过实验可知同时加入引发剂DCP和多官能团物质TMPTA,能够使得共混体系有较为良好的相容性。尝试了加入不同比例的TMPTA对共混体系反应性的影响,随着TMPTA量的增加,共混体系的相容性有所改善,但是变化到2.0%相较于1.0%不是非常的明显,本实验选取添加量为1.0%。
     ⑹对比了共混物不同比例所得产物的相容性,并研究了产物的力学性能,得出PS-nanoCaCO_3添加量为10份时,共混改性效果最佳,平衡扭矩最大,力学性能最优,其中拉伸强度提高14.2%,冲击强度提高了15.2%。80/20的力学强度相对也有所提高,随着PS-nanoCaCO_3比例的继续提高,力学性能成下降趋势。
Polyethylene as the world's largest, with wide variety of productions is one of the most important synthetic resin, its application already goes deep into people's daily life. Although it has many advantages, but there is also some of the weaknesses properties which limited its application market.
     This topic use nano CaCO_3 filling modification to modify high density polyethylene to improve its mechanical properties .First coupling agent has been chose to solve the problem of reunited and poor matrix combination. Study has been taken on the modification experiments by surface processed nano-silica/nano CaCO_3 dual cooperative modified HDPE performance. Then research has been done from the Angle of nanometer calcium carbonate, using in situ polymerization of styrene modification, and the nano CaCO_3 composite particle from the reaction with HDPE reacted to the HDPE sexual blend properties. In view of the above questions made the following conclusions:
     (1)The surface morphology and dispersing condition of nano CaCO_3 are analyzed and compared by the analysis of FT-IR, SEM, XRD and TG.Results show that , compared with silane coupling agent KH 151 and KH570, titanate coupling agent KH101 modified the best effect. And we find optimum conditions of titanium coupling agent modification: nano CaCO_3 content 3wt%, the content of cyclohexanone is five times of nano CaCO_3, the reaction temperature is q 80℃, stirring time is 60min.
     (2)Use nano CaCO_3 and nano-silica separately to modify HDPE:①nano CaCO_3: For filling quantity 20% ~ 25% impact strength has maximum, content in 10%-20% tensile strength have maximum.②nano-silica: For filling quantity between 6% to 8% tensile and impact strength have maximum
     (3)Binary filling modification, the mass ratio of the system is Nano CaCO_3: nano SiO_2: HDPE =25:7:100,compared with HDPE separately filled with nano CaCO_3 or nano SiO_2, its impact strength and tensile has improved and not drop many from the maximum, the performance is good.
     (4)In situ polymerization of styrene modification of nano CaCO_3 get PS - nano CaCO_3 composite particle, choose acrylic for nano CaCO_3 surface pretreatment, through the contrast experiments obtain the best reaction conditions: the reaction time is eight hours, the content of initiator of potassium peroxydisulfate is 1% of the monomer, emulsifier dodecylbenzenesulfonic acid sodium consumption is 3% of the monomer, the dosage of modified nano CaCO_3 is 25% of monomer quantity.
     (5)It is indicated that in reactive blend of PS- nanoCaCO_3 and HDPE, the addition of DCP and TMPTA can improve the compatibility. Tried to add different proportions of TMPTA in blend system , results show that with the increased of TMPTA, blending systems compatibility improved, but changes from 1.0% to 2.0% is not very obvious, in this experiment the additives is 1.0%
     (6)Compare the compatibility and mechanical property of the blend wit different proportion of raw material, Contrast of the products, and the compatibility of the mechanical properties of the product research, when the dosage of PS - nanoCaCO_3 is 10 percent, blending modified effects is best, balance torque get maximum and has the best mechanical properties. tensile strength increased 14.2% and the impact strength increased 15.2 percent. Mechanics intensity of 80/20 reaction system is also been improved, with improvement of PS-nanoCaCO_3 the mechanical property continue decline.
引文
[1] Nov a Sclairtech catalyst coming to gas-phase PE [J] .Plastics Technology, 2001(5).
    [2]徐僖,王琪·聚合物纳米材料制备新技术,北京:2000全国材料大会邀请报告,2000,10
    [3] Wang K, Choi M, Koo C, et al. Synthesis and characterization of maleated polyethylene/clay nanocomposites [J]. Polymer, 2001, 42 (24): 9 819-9 826.
    [4]Basell raises the bar for gas-phase PE catalysts [J]. Chemical Engineering Progress, 2005,101 (3): 9
    [5]王德禧·聚合物基纳米复合材料的最新进展[J]·工程塑料应用, 2002, 30 (11): 57-59.
    [6] Wang K, Xu M, Choi Y S, et al. Effect of aspect ratio of clay on melt extensional process of polyethylene/clay nanocomposites [J]. Polymer Bulletin, 2001, 46 (6): 499-505·
    [7]Boreali公司推出新型聚乙烯生产技术[J].赵淑战,译.国内外石油化工快报,2006,36 (1):25 .
    [8] Luo Weihua, Zhou Nanqiao, Zhang Zhihong, et al. Effects of vibration force field on structure and properties of HDPE/Ca-CO3nanocomposites [J]. Polymer Testing, 2006, 25: 124-129.
    [9] Haijan M, Sadrmohaghegh C, Scott G. Solid phase dispersants synthesized by mechanochemical procedure. Euro Polym [J]. 1984 ,20(2) :135~138
    [10]胡庆福,胡晓没,刘宝树.纳米碳酸钙制备及其应用.非金属矿.2000.23(4):24-26
    [11] Araujo E M, Barbosa R, Rodrigues A W B, et al. Processing and characterization of polyethylene/Brazilian clay nanocom-posites [J]. Materials Science and Engineering, 2007, A445-446: 141-147.
    [12] Jean H K, Kim J.The effect of the amount of in situ formed copolymers on the final morphology of reactive polymer blends with an in situ compatibilizer. Macromolecules, 1998,31(26): 927~9280
    [13]黄玉强,华幼卿;聚烯烃/纳米SiO2复合材料研究进展[J]化工新型材料, 2003, 31 (7): 13-17.
    [14] Poter R S ,Jonza J M,Kimara M. PolyestersⅡ:A review of phase behavior in binary blends : amorphous ,crystalline ,liquid crystalline ,and on transreaction. Polym Eng Sci, 1989,29(1) :55
    [15]翟雄伟,炬荣琴,潘明旺;钛酸酯偶联剂在碳酸钙填充PVC中的应用研究m.河北工业大学学报200l,0,(1):84~88
    [16]马迸,邓先和,潘朝群.纳米碳酸钙的表面改性研究进展.橡胶工业,2006,53,(6):377-381
    [17]张彦奇,华幼卿·LLDPEP/纳米SiO2复合材料的力学性能和光学性能研究[J]高分子学报, 2003, 5: 683-687.
    [18] Mingqiu Zhang, Minzhi Rong, Hanmin Zeng. Atomicforce microscopy study on structure and properties of irradiation grafted silica particles in polypropylene based nanocomposites[J]. Appl P Sic,2001,80:2218-2227
    [19]余海峰,张玲,包华;钛酸酯偶联剂改性纳米CaCO3/PVC的结构和性能[J].华东理工大学学报(自然科学版). 2005,31(1):119
    [20]崔黎黎,范慧俐,肖军平等.纳米材料表面修饰的研究进展[J].材料导报. 2006,20,专辑Ⅵ:5-6
    [21]徐立新,王丹灵,宋艳青.纳米SiO2表面聚苯乙烯接枝包覆研究[J].浙江工业大学学报,2007,35(2):178-18
    [22]欧玉春,杨锋,庄严.在位分散聚合聚甲基丙烯酸甲酯/二氧化硅纳米复合材料研究[J].高分子学报,1997,(2):199
    [23]徐国财,马家举,邢宏龙.纳米粒子的分散及其有机复合材料的复合技术[J].中国科学基金. 2001,(3):109-112
    [24]陈世容,瞿晚星,徐卡秋.硅烷偶联剂的应用进展[J].有机硅材料. 2003,17(5):28
    [25]龚春锁,揣成智.钛酸酯偶联剂对无机填料的改性研究[J].化工技术与开发,2007,36(9):4-7
    [26] X W LI,W CHEN,C Q BIAN, et al. Surface modification of TiO2 nanoparticles by polyaniline [J]. Applied Surface Science,2003,217:16-22
    [27] Kurokawa Y. Preparation of a Nanocomposite of Polypropylene and Smectite[J].od Mater Sci lett1996,15(17):1481-1485.
    [28]Gloguen J M, Lefebvre J M.Plastic Deformation Behavior of Thermo-plastic/Clay Nanocomposites [J].Polymer, 2001,42(10):5841-5847.
    [29] Kawasumi M, Hadegawa N. Preparation and Mechanical Properties of Polypropylene Clay[J]. Hybrida Macromolecules, 1997,30(20):6333-6343.
    [30]赵安赤.纳米塑料及纳米粒子改性高密度聚乙烯研究[J].改性塑料通讯.2000,35(2):36-44.
    [31] Jean, Y C. Positron annihilation spectroscopy for chemical analysis: a novel probe for micro structural analysis of polymers[J]. Microchem. 1990,42(8):72-81.
    [32]Gaylord,N.G.in Reactive Extrusion: Principles and Practice (Ed. M.Xanthos) Hanser, Munich,1992,Ch.3, p. 58
    [33]W.K.Wong,D.C.Varrall, Role of molecular structure on the silane cross linking of polyethylene: the importance of resin molecular structure change during silane grafting[J]. Polymer, 1994, 35: 5447-5452.
    [34]Peter Van Ballegooie,Alfred Rudin,Reactive Extrusion of Polystyrene/Polyethylene Blends[J]. Polymer Engineering And Science,1988,28:1434-1442.
    [35] K. E. Oliphant, K. E. Russell and W. E. Baker, Melt grafting of a basic monomer on to polyethylene in a twin-screw extruder: reaction kinetics, Polymer,1999,36:1597-1603.
    [36] W. E. BAKER and M. SALEEM, Polystyrene-Polyethylene Melt Blends Obtained Through Reactive Mixing Process. Polymer Engineering And Science, 2001,27:1634-1641.
    [37] Yi-Jun Sun, Guo-Hua Hu,Morand Lambla, In situ compatibilization of polypropylene and poly(butylenes terephthalate) polymer blends by one-step reactive extrusion, Polymer,1996: 4119-4127
    [38]Willis J M,Favis B D. Processing - Morphology relationships of compatibilized polyolefin/polyamide blends. Part 1:The effect of an ionomer compatibilizer on blend morphology. PolymEng Sci ,1988 ,28(21) :1416~1426
    [39]Xanthos M. Interfacial agents for multiphase polymer systems recent advance. Polym Eng Sci , 1988 ,28 (21) :1392~1399
    [40] Rutkowska M,Eisenberg A. Ionomeric blends 3 miscibility enhancement via ionic interaction in polyurethane - styrene blends effect of ion content .Macromolecules ,1984 ,17 :821~824
    [41] Bellinger M, Sauer J A , Hara M. Deformatopm and fracture of sulfonated polystyrene ionomer/ PS blends. Polym Prepr ,1991 ,32(3) :261~262
    [42] Willis J M,Favis B D. Processing - Morphology relationships of compatibilized polyolefin/ polyamide blends.Part 1 :The effect of an ionomer compatibilizer on blend morphology. PolymEng Sci ,1988 ,28(21) :1416~1426
    [43] Cambell J R , Conroy P M, Florence R A. Impact modification of polyphenylene oxide/polystyrene blends with ionomeric elastomers.Am Chem Soc Polym Prepr ,1986 ,27 :331
    [44] Wildes G S , Harada J T. Compatibilization of PC/ ABS blends using an amine functional SAN.Annu Tech Conf SOC PLAST ENG. 1998 ,56th(Vol . 2) :2438~2442
    [45]谢邦互,李光宪.用苯乙烯-丙烯腈无规共聚物作增容剂改善碳酸酯/聚甲基丙烯酸甲酯的相容性.高分子学报,1998 , (1) :8~13
    [46] Poter R S ,Jonza J M,Kimara M. PolyestersⅡ:A review of phase behavior in binary blends: amorphous ,crystalline ,liquid crystalline ,and on transreaction. Polym Eng Sci ,1989 ,29(1) :55
    [47]Haijan M,Sadrmohaghegh C,Scott G. Solid phase dispersants synthesised by mechanochemical procedure. Eur Polym [J ].1984 ,20(2) :135~13
    [48] Liu Suhuai, Chen Guangming, Qi Zongneng. A SEM study of apolystyrene/clay nanocomposite[J]. Journal of Applied Polymer Science, 2000,accepted.
    [49] Bhattacharya J., Chakravarti S.K., Talapatra S., Saha S.K., Aqueous polymerization on clay surfaces. III. The polymerziation of methyl methacrylate by montmorillonite/thiourea initiating system, J. Polym. Sci., Part A: Polym. Chem., 1989, 27(12),3977-3983
    [50]任显诚,白兰英,王贵恒,张伯兰.纳米级CaCO3粒子增韧增强聚丙烯的研究,中国塑料,2000,14(1),22-26
    [51]Zhang Zhengxi, Hua Youqing, Toughning and reinforcing effect of nano CaCO3 on polypropylene, China Synthetic Rubber Industry, Communications, 2003, 26(2),121
    [52] Shang S.W., Williams J.W., Soderholm K.J.M.,Work of adhesion influence on the rheological properties of silica filled polymer composites[J]. Mater. Sci.,1995, 30(17),4323-4334
    [53]Rong Min Zhi, Zhang Ming Qiu, Zheng Yong Xiang, Zeng Han Min, Friedrich K,Improvement oftensile properties of nano-SiO2/PP composites in relation to percolation mechanism,Polymer,2001,42,3301-3304
    [54] Vaia R.A., Ishii H., Giannelis E.P.,Snthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates, Chem. Mater., 1993, 5(12),1694-1696
    [55] Hasegawa Naoki, Kawasumi Masya, Kato Makoto,Usuki Arimitsu,Okada Akane, Preparation and mechanical properties of polypropylene-clay hybrids using a maleic anhydride-modified polypropylene oligomer, Journal Applied Polymer Science, 1998, 67(2),87-92
    [56]华幼卿,章正熙,黄玉强,聚烯烃纳米复合材料研究进展,I.聚烯烃/粘土纳米复合材料,高分子材料科学与工程,2002,18(2),1-5
    [57] Gary Thomas Burns, Deng Qin, James Richard Hahn, Clifford Carlton Reese, Process for making hydrophobic silica with reduced surface area under neutral conditions, USP 5942590, 1999-8-24
    [58]罗忠富,黄锐,卢艾,蔡碧华,范五一.纳米CaCO3增强增韧HDPE复合材料的研究,中国塑料,2000,14(8),25-29
    [59] Ribbe A., Prucker O., Rühe J., Imaging of polymer monolayers attached to silica surfaces by element specific transmission electron microscopy, Polymer, 1996,37(7),1087-1093
    [60] Tsubokawa Norio, Saltoh Kazuhiro, Shiral Yuklo,Surface grafting of polymers onto ultrofine silica: cationic polymerization initiated by benzylium perchiorate groups introduced onto ultrafine silica surface, Polymer Bulletin, 1995,399-406
    [61] Wang S J et al.Structural characteristics of HDPE/CaCO3 polymer composites probed by positron annihilation.Phys[J]. Status Solidi (a) 2002,142(6):275-279.
    [62] Gilman Jeffrey W L Catheryn,et.tl. Flammabili Properties of Polymer Layered–silicate Nanocomposites[J]. Polypropylene and Polystrrene Nano-composites. Chem mater, 2000,12 (6): 1866-1873.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700