纳米二氧化硅的疏水改性及其在苯丙乳液和渗透汽化膜制备中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米二氧化硅广泛应用于橡胶、塑料、电子、涂料、陶(搪)瓷、颜料、有机玻璃、环保等诸多领域,纳米二氧化硅呈三维网状结构,表面存在着大量的不饱和残键和不同状态的羟基,这使得纳米二氧化硅表面能高,处于热力学非稳定状态,导致纳米二氧化硅团聚存在“二次结构”,在基体内难于均匀分散,从而影响纳米二氧化硅的实际应用效果,因此一般用于聚合物时都需要对纳米二氧化硅进行改性。
     本论文采用硅橡胶(PDMS)对纳米二氧化硅表面改性,以纳米二氧化硅为原料,正庚烷为溶剂,聚二甲基硅氧烷为改性剂,采用冷凝回流法对纳米二氧化硅表面进行了改性研究,分别探讨了预处理温度、预处理时间、改性剂的用量以及交联剂的用量对纳米二氧化硅表面改性效果的影响,较佳工艺条件为:聚二甲基硅氧烷与纳米二氧化硅的比例为1:2,预处理培烧温度为600℃,预处理时间为6h,并通过对纳米二氧化硅表面羟基数的测定验证了纳米二氧化硅的改性效果。对改性前后的样品进行了IR、TEM、XRD等测试方法的一系列表征。研究表明,纳米二氧化硅表面羟基与PDMS的端羟基发生缩合反应。改性后的样品粒度分布较为均匀,分散性得到了提高,由原来的亲水疏油变为亲油疏水型。
     应用硅橡胶改性纳米二氧化硅在硅烷偶联剂的作用下,与苯丙乳液杂化,合成了硅橡胶改性纳米二氧化硅-苯丙杂化乳液,测试了该乳液的性能,并将该乳液应用在乳胶漆中,对其应用性能进行了表征。实验结果表明:所得改性苯丙乳液性能得到提高;由该改性杂化乳液制得的涂料的耐擦洗性能高,对比率,白度,储存稳定性,耐沾污性和冻融稳定性都有较大幅度的提高。制备了以硅橡胶改性白炭黑增强硅橡胶均质渗透汽化膜,经对乙醇水的渗透汽化分离研究表明:分离因子比未改性硅橡胶均质膜有所提高,当料液乙醇浓度在5%、料液温度60℃及渗透侧压力1mmHg时,乙醇对水的分离因子可达18.06,总渗透通量为117.27 g/m2.h,而未填加硅橡胶改性白炭黑均质渗透汽化膜在相同分离条件下分离因子和通量仅为6.54和9.5gm2.h。
Nano-silica is widely used in many fields such as rubber, plastics, electronics, paint, ceramic (enamel) porcelain, paint, plexiglass, environmental protection.There is a large number of unsaturated bonds and different states of residual hydroxyl on the surface of nano-silica three-dimensional network structure, which makes high nano-silica surface energy. This thermodynamic non-steady state has difficult in dispersing in the base body uniformly and results in nano-silica "secondary structure", thus affects the practical application of nano-silica. Surface modification is an important application of nano-silica and relates to application performance and industry prospects.of nano-silica.
     In this thesis, reflux method was used for nano-silica surface modification research, pretreatment temperature, effect of pretreatment time, the amount of modifier on the nano-silica surface modification were discussed in the solvent heptane when polydimethylsiloxane was used as modifier. Best conditions were that the amount of polydimethylsiloxane, pretreatment temperature roasting temperature and pretreatment time was 50%,600℃,6h respectively. Unmodification and modification nano-silica were characterized by infrared IR spectroscopy, TEM, XRD and studies showed that the condensation reaction occured between nano-silica surface hydroxyl groups and hydroxyl-terminated PDMS. Modified samples are more uniform particle size distribution, and dispersion is improved due to the change from hydrophilic to hydrophobic.
     We synthesized modification nano-silica-styrene-acrylic hybrid emulsion applied nano-silica modified with silicone rubber to hybridizate styrene-acrylic emulsion under the action of the silane coupling agent, the test performance of the emulsion, and its application properties were characterized. The results show that:modified styrene-acrylic emulsion properties are improved and the modified hybrid emulsion paint scrub obtained high-performance, in which contrast ratio, brightness, storage stability, stain resistance, and freeze-thaw stability have a more substantial increase. The mechanism of modification was studied in which chemical adsorption occurred not physical adsorption. Applied to the polymer, certain chemical reaction occurs between surface modification of nano-silica and the polymer matrix with the silane coupling agent, thus improves the compatibility and thereby increases the comprehensive performance of composite materials. So high performance exterior wall paint was prepared. The polydimethylsiloxane membranes filled with nano-silica modified with hexamethyldisiazane were prepared for the separation of ethanol from water. The pervaporation properties of nano-silica filled silicone rubber membranes was studied by contrast with no filled. It shows that the separation factor is higher than the PDMS membrane. During the 5%to 6%of the concentration of the alcohol the separation and the permeation rate were 18.06 and 117.27 g/(m2·h) respectively, While in the same separation condition the separation factor and flux of silica pervaporation without silicone is only 6.54 and 9.5 g/m2, h.
引文
[1]齐晓华,佟慧,徐翠艳.纳米材料量子尺寸效应的理解及应用[J].渤海大学学报(自然科学版),2006,4(14).
    [2]古宏晨,徐华蕊.纳米材料在我国的进展,化工进展,1999,第4期,5-7.
    [3]Elspase C W, Kresge E N, Peiffer D G, etal.Polymer Nanocomposite formationby Emulation Synthesis[P]. PCT Int Appl,WO 97/00910 Al.1997.
    [4]Zilg C,Reichert P, Dietsche.Plastics and Rubber Nano Composites Based upon Layered Silicates[J].KunstsoffePlast Europe,1998,88(10):1812.
    [5]罗发亮,张秀芹,李荣波等.聚丁二酸丁二酯/纳米二氧化硅共混体系的结晶和动态力学性能研究[J].高分子学报,2009,(10):1043-1049.
    [6]张立德,牟季美.纳米材料和纳米结构,第一版,科学出版社,2001,490-503.
    [7]Fischer H R.Nanocomposites from Polymers and Layered.Minerals[J]. Mater Res Soc SympPro.1998.519:117.
    [8]Andrea B R Mayer. Palladium and platinum nanocatalysts protected by amphiphilic block copolymers[J]. Poly J,1998,30 (3):197-205.
    [9]Giannelis E P. Polymer Layered Silicate Nanocomposites:Synthesis Properties and ApplicationsAppl Organomet,1998.12(10/11):675.
    [10]Fischer H R. Nanocomposites from Polymers and Layered Minerals[J]. Acta Polym, 1999,50(4):122.
    [11]Giannelis E P.Polymer Silicate Nanocomposites:Model Systems for Confined Polymers and Polymer Brushers[J]. Adv Polym Sci,1999.138:107.
    [12]古宏晨,徐华蕊.纳米材料在我国的进展,化工进展,1999,第4期,5-7.
    [13]H.P.Schreiber, M.R.Wertheimer and M.Lambla, J.Appl.Polym.Sci.,1982(27),2269.
    [14]侯万国,王国庭.抄袭材料的制备,表面改性及其应用,化工进展,1992,第5期,21-25.
    [15]王世敏,许祖勋,傅晶.纳米材料制备技术,第一版,化学工业出版社,2002,7-97.
    [16]晏伯武.凝胶注模成型工艺的研究[J].中国陶瓷,2006,42(2):8-11.
    [17]刘学建,黄莉萍,古宏晨等.直接凝固注模成型氮化硅陶瓷[J].无机材料学报,2001,16(5):877-882.
    [18]谢晶曦,常俊标,王绪明.红外光谱在有机化学和药物化学中的应用[M].北京:科学出版社,2001:84-85.
    [19]张恺.无机/聚合物核壳微球的合成与组装[D].长春,吉林大学博士学位论文, 2005.
    [20]张长生.聚合物/纳米SiO2复合材料的研究进展[J].塑料科技,2005(1):45-49.
    [21]罗宁,闰双景,吕志刚等.纳米SiO2的制取技术及应用研究[J].淮阴工学院学报,2003,12(1):28-30.
    [22]Usuki A. CompositeMaterial Containing Alayered Silicate[P]. US.4889885.1989.
    [23]张立德.纳米材料和纳米结构[M].北京:科学出版社,2000.
    [24]Okada A,Usuki A.The Chemistry of Polymer Clay Hybrid[J].Mater Sci&Engin:C3, 1995,109-115.
    [25]Kresge E N.Tire inner Liners Comprising a Solid Rubber and a Complex of a Reactive Rubber and Layered Silicatecaly[P]. US, US5665183.
    [26]Andrea B R Mayer. Palladium and platinum nanocatalysts protected by amphiphilic block copolymers[J]. Poly J,1998,30(3):197-205.
    [27]Ph Espiard, A Guyot. Poly(ethyl acrylate)Latexes Encapsulating Nanoparticles of Silica:3. Morphology and Mechanical Properties of Reinforeed Films[J]. Polymer,1995, 36(23):4397-4403.
    [28]段先健,吴利民,杨本意.气相白炭黑的发展及其在硅橡胶中的应用,世界橡胶工业,31(10):P17-21,2004.
    [29]刘莉,王跃林,杨本意.国内气相法白炭黑工业的发展现状与展望,有机硅材料,19(5):P1-4,2005.
    [30]段先健,吴利民.气相法白炭黑在硅橡胶中的应用,有机硅氟资讯,2005(7):P39-40.
    [31]段先健,吴利民,杨本意,王跃林.气相法白炭黑的特性及其在硅橡胶中的应用,有机硅材料,18(5):P34-38,2004.
    [32]罗宁,闰双景,吕志刚等.纳米SiO2的制取技术及应用研究[J].淮阴工学院学报,2003,12(1):28-30.
    [33]吉小利,王君,李爱无等.纳米二氧化硅粉体的表面改性研究[J].安徽理工大学学报(自然科学版),2004,24卷(增刊):5.
    [34]毋伟,贾梦秋,陈建峰等.硅烷偶联剂对溶胶凝胶法纳米二氧化硅复合材料制备及应用的影响[J].复合材料学报,2004,21(2):70-75.
    [35]白红英,贾梦秋,毋伟等.纳米SiO2的原位改性及在耐热涂料中的应用[J].表面技术,2003,32(6):59-62.
    [36]赵丽,余家国,程蓓等.单分散二氧化硅球形颗粒的制备与形成机理[J].化学学报,2003,61(4):562-5671.
    [37]陈小泉,刘焕彬,古国榜.单分散酸性纳米二氧化硅的合成新方法[J].化学研究与应用,2004,16(1):23-26.
    [38]Liu Y L, WeiW L, Hsu K Y, et al. Thermal stability of epoxy-silica hybrid materials by thermogravimetric analysis[J]. Therm ochim ica Acta,2004,412:139-147.
    [39]Macan J, Ivankovi H. IvankoviM, et al. Study of cure kinetics of epoxy-silica organic-inorganic hybrid materials[J]. Therm ochim ica Acta,2004,414:219-225.
    [40]Valter C, Cinzia D V. Nanostructured hybrid materials from aqueous polymer dispersions[J]. Advances in Colloid and Interface Science,2004, (108-109):167-185.
    [41]钱晓静,刘孝恒,陆路德,微波辐射下纳米二氧化硅接枝正辛醇的表面改性[J].合成化学,2005,13(1):80-82.
    [42]殷年伟,陈克强,卢新安.超声无皂BA/AM纳米Si02复合乳液的粒径及其分布[J].高分子材料科学与工程,2004,20(4)199-201.
    [43]钱翼清,范牛奔.烷基化纳米SiO2/MMA核壳无皂乳液聚合、产物表征及其应用[J].高分子材料科学与工程,2002,18(4):69-73.
    [44]李中军,贾汉东,申小清.水玻璃-乙酸乙酯体系的成胶特性及Si02凝胶粉末的制备[J].硅酸盐学报,2000,28(1):77-791.
    [45]秦晓东,蒋晓明,陈月珠.高比表面积超细二氧化硅粉体的制备[J].石油大学学报,2001,25,36-38.
    [46]赵秦生,李中军,刘长让.溶胶-凝胶法制备多孔Si02超细粉体[J].中南工业大学学报,1998,29(2):131-134.
    [47]伍林,易德莲,曹淑超.六甲基二硅胺烷改性纳米二氧化硅[J].武汉科技大学学报(自然科学版)2005,28(1):32-34.
    [48]梁淑敏.乙烯基三乙氧基硅烷改性二氧化硅纳米粒子的研究[J].化学工程师,2004,(7):15-16.
    [49]Masayoshi Fuji, Takashi, Masatoshi Chidazawa, etal. Wettability of fine silica powder surface modifide with several normal alcohol[J]. Colloids and surfaces,1999,154:13-24.
    [50]Ward D A, KO EI, et al. Preparing catalytic materials by the sol-gelmethod[J] Industrial Engineering Chemical Research,1995,34 (2):421-4261.
    [51]张裕卿,王林双等.纳米二氧化硅干凝胶的合成和表征[J].核化学与放射化学,2001,23(2):102-106.
    [52]Duran A,Serna C, et al. Structual considerations about SiO2 glasses prepared by slo-gel [J]. Journal of Non-Crystalline Solids,1986,82(1):69-77.
    [53]许珂敏,杨新春,段贤峰等.多孔纳米二氧化硅微粉的制备与表征[J],硅酸盐通报,2001,1:58-611.
    [54]张咏春,田明,张立群等.白炭黑的制备与表面改性[J].炭黑工业,1998,2:17-22.
    [55]王子忱,王利玮等.沉淀法合成高比表面积超细二氧化硅[J].无机材料学报,1997,12(3):391-395.
    [56]Heley J R, Jackson D, James P F. Fine low density silica powders prepared by supercritical drying of gels derived from silicon.
    [57]Liu Y L, WeiW L, Hsu K Y, et all Thermal stability of Epoxy-silica hybrid materials by thermogravimetric analysis[J]. Therm ochim ica Acta,2004,412:139-147.
    [58]Macan J, Ivankovi H. IvankoviM, et all Study of cure kinetics of epoxy-silica organic-inorganic hybrid materials[J]. Therm ochim ica Acta,2004,414:219-225.
    [59]Valter C, Cinzia D V. Nanostructured hybrid materials from aqueous polymer dispersions[J]. Advances in Collid and Interface Science,2004, (108-109):167-185.
    [60]Que W X, Hu X, Spectroscop ic investigations on sol-gelderived organic-inorganic hybrid films for photonics from ormosils and tetrap ropylorthotitanate [J]. Thin Solid Films, 2003,436:196-202.
    [61]杨南如,余桂郁.溶胶凝胶法简介.硅酸盐通报,1992(2):56-63.
    [62]张开.高分子界面科学[M].北京:中国石化出版社,1997-223.
    [63]Xu Y, Chung D L. Carbon fiber reinforced cement improved by using silane-treated carbon fibers[J]-Cement and Concrete Research,1999,29:773-776.
    [64]于欣伟,陈姚.白炭黑的表面改性技术.广州大学学报(自然科学版),2002,1(6):12-16.
    [65]王艳玲,王佼.白炭黑表面改性的研究现状[J].中国非金属矿丁业导刊,2006.(增刊):107-109.
    [66]周良玉,尹荔松,周克省等.白炭黑的制备、表面改性及应用研究进展[J].材料导报,2003,17(11):56-59.
    [67]杨海望.超微细气相法自炭黑的表面改性[J].化工新型材料,2006,27(10):8-12.
    [68]郑水林.粉体表面改性[M].北京:中国建材出版社,2003.
    [69]朱捷,葛奉娟.超细二氧化硅的制备与改性[J].南阳师范学院学报(自然科学版),2004,31(2):51-54.
    [70]欧阳兆辉.纳米二氧化硅的改性及其在丁基橡胶巾应用研究[D].武汉:武汉科技大学,2005.
    [71]颜和祥,张勇,张隐西等.硅烷偶联剂及其对白炭黑的改性研究讲展[J].橡胶-T业.2004.51(6):376-379.
    [72]杨森,工少会,熊伟等.无机填料的表面改性研究进展[J].现代塑料加丁应用,2006,18(5):53-56.
    [73]Ishida H, Koenig J L. Fourier transform infrared spectroscopic study of the silane coupling agent/porous silica interface [J]. J.Colloid Interface Sci.,1978,64(3):555.
    [74]钱知勉,朱昌辉.塑料偶联剂的机理与实效[J].塑料科技,1983,36(4):10.
    [75]欧阳兆辉,伍林,李孔标等.气相法改性纳米二氧化硅表面[J].化工进展,2005,24(11):1265-1268.
    [76]Yuaga S, Okbayahi M, Ohno H, et all Amorphous,spherical inorganic compound and process for preparation thereof [P]. US Patent:4764,497,1988
    [77]张洁.环氧改性苯丙乳液的合成及性能[J].涂料技术与文摘,2004,25(2):24-28.
    [78]阎绍峰.苯丙乳液的合成[J].辽宁工学院学报,2002,(5):51-52.
    [79]王欢等.硅溶胶/聚丙烯酸酯复合乳液的结构和性能研究[J].涂料工业,2008,38(1):47-50.
    [80]邓建国.聚合物/聚合物纳米复合材料的研究进展[J].材料导报,2000,14(3):56-57.
    [81]JP 2000-160056[日本专利公开].
    [82]徐燕莉.表面活性剂的功能,第一版,化学工业出版社,2000,65-85.
    [83]刘珍,化验员读本(第四版)[M].北京:化学工业出版社,2005:258-259.
    [84]邢文卫,李炜.分析化学实验(第二版)[M].北京:化学工业出版社,2007:100102.
    [85]甘峰.分析化学基础教程[M].北京:化学工业出版社,2007:95-96.
    [86]张小玲,张慧敏,邵清龙.化学分析实验[M].北京:北京理工大学出版社,2007:97-98.
    [87]沈苏江.部分无机颜料产品国内外标准及其技术差异[J].中国涂料,2006,21(7):16-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700