油田防腐管道管输规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对油田管道的腐蚀现象,本文研究了油田地面工程中三种防腐性能优良的管道。它们是用于输送原油和污水用的纳米涂层管道,输送油田污水用的钢骨架增强塑料复合管和连续增强塑料复合管。本文对这三种管道的管输规律进行了研究。其中的纳米涂层管道是用采用类荷叶结构的纳米三防涂料处理的管道,这种涂料有疏水和疏油的超双疏特性。室内实验和现场试验表明了:纳米涂层管道在输油过程中不仅压降梯度更小,输油温度更低,防垢、防结蜡效果明显,具有防腐、防垢、防结蜡的“三防”特性,而且使用年限大大增加。通过经济效益预测,发现这种管道初投资较小,经济效益显著。通过对钢骨架增强塑料复合管和连续增强塑料复合管的实验研究,验证并修正了伍德公式、伯拉休斯公式和海澄-威廉公式这三种常见的沿程水头损失计算公式,明确了这两种管道管件的局部水头损失,为这两种非金属管道水力热力设计提供了基础数据,这对提高水力设计的准确性及可靠性,具有极为重要的意义。
In view of corrosion phenomenon occur on the pipeline of oil field, this thesis studied three kinds of anticorrosive pipelines which were used in the construction of oil field. They are: pipeline with nanometer layer which is used to transport crude oil and waste water, the polythene composite pipeline with steel skeleton and the successively strengthen polythene composite pipeline, both of which are used to transport waste water of oil field. It studied the transportion law of these pipelines. The pipeline with nanometer layer is one of them. It was processed with nanometer three-proofing paint that has the similar construction with lotus leaf. This kind of paint has the nature of hydrophobicity and oleophobic property. After doing experiment in the laboratory and field, we know that the pipeline with nanometer layer is able to not only transport the emulsion with lower pressure gradient and in lower temperature, protect corrosion, antiscale, but also be used for a longer time. By mean of predicting the economic results, the result is that the initial investment of this kind of pipeline is relatively low, the economic is noticeable. To comprehend the characteristic of other two kinds of nonmetal pipelines, the experiment was done, soon afterwards the common formulas for calculating on way resistance were verified and modified. These formulas are Wood Formula, H.Blasius Formula, Hazen-Williams Formula. The head loss of local resistance was also calculated. This can supply fundamental datum for hydraulic design and thermodynamic design, which can enhance its accuracy and credibility. This is very significative to the construction of oil field.
引文
[1]. 《中国油气管道》编写组.中国油气管道[M].北京:石油工业出版社,2004:34.
    [2]. 钱建华.关于中国石化油气管道发展的思考[J].油气储运,2003,22(9):18~21.
    [3]. 李世荣,宋艾玲,张树军.我国油气管道现状与发展趋势[J].油气田地面工程,2006,25, (6):7~8.
    [4]. 王玉梅,李莉.90 年代国内外管道外防腐层技术[J].油气储运,1997,9(16):22~28.
    [5]. 孙绍平.给水排水管道的应用与发展[J].市政技术,2002.(3):8~13.
    [6]. 虞兆年.防腐蚀涂料和涂装[M].化学工业出版社,2002:1~2.
    [7]. 周方勤.在役输气管道腐蚀剩余寿命预测技术研究[D].成都:西南石油学院,2006.
    [8]. 李俊霞.埋地钢管腐蚀及防腐.河北化工[J].2006,29(12):43~45.
    [9]. 刘剑锋,王文娟,马健伟.埋地管道腐蚀机理及应对措施[J].石油化工腐蚀与防护,2006, 23(6):20~22.
    [10]. M .Roche,Total S.A.External Corrosion of Pipelines:What Risk[C],SPE Middle East Oil & Gas Show and Conference held in Bahrain,March,2005:12~15.
    [11]. 唐永祥,宋生奎,朱坤峰.油气管道的杂散电流腐蚀防护措施[J].石油化工安全技术, 2006,4,(22):26~29.
    [12] 罗英俊,万仁溥.采油技术手册[M].北京:石油工业出版社,2005:1331~1404.
    [13]. 严密林,赵国仙,白真权,等.大庆油田某井油管外壁腐蚀失效分析[J].材料保护,2001, 34(10):48~49.
    [14]. 郭生武.埋地钢质管道外防腐层的选择与应用.油气储运[J],2003,22(2):31~35.
    [15]. Tsuri S. etal. Effect of primer composition on catholic desponding resistance and adhesion durability of three layer polyethylene coated steel pipe[C],paper 497,NACE International corrosion,98, San Diego,Cal.USA,March:22~27.
    [16]. 丁建林.我国油气管道技术和发展趋势[J].油气储运 2003,22(9):22~25.
    [17]. 李晓星.阴极保护原理与新技术[J].合肥学院学报(自然科学版),2006(16):50~54.
    [18]. 葛国防.管道内涂层经济可行性分析[J].油气储运,2003,22(2):54~57.
    [19]. 胡士信,董旭.我国管道防腐层技术现状[J].油气储运,2004,23(7):4~8.
    [20]. 徐滨士.纳米表面工程[M].北京:化学工业出版社,2004.
    [21]. 田伟,王铀,王典亮.纳米表面工程的研究进展及展望[J].热加工工艺,2006. 35(6):52~55.
    [22]. 徐滨士.纳米表面工程及其关键技术[C].中国(青岛)材料科技周,2004.
    [23]. Xu B S,Liang X B,Dong S Y,et al.Progress of nano-surface engineering[C]. International Journal of Materials & Product Technology,2003,18(4):338~393.
    [24]. 翟锦,李欢军,李英顺,等.碳纳米管阵列超双疏性质的发现[J].物理,2003,31(8): 483~486.
    [25]. 陈新华,孟庆祥.超疏水固体表面的形态特征[J].许昌学院学报,2005,24(5): 49~57.
    [26]. 郑黎俊,乌学东,楼增,等.表面微细结构制备超疏水表面[J].科学通报,2004. 49(17): 1691~1699.
    [27]. 江雷.二元协同纳米界面材料的设计和研制[J].新材料产业,2001,(1).
    [28]. Jiang L, Wang R, Yank B et al. Pure Appl.Chem[J],2000:72~73.
    [29]. 田中华,曹海兵.钢骨架增强聚乙烯塑料复合管的特性及应用[J].齐鲁石油化工,2004, 32(4):316~318.
    [30]. 韩洪升,孙晓宝,王小兵,等.原油在纳米涂层管道中流动规律的实验研究[J]. 海洋石油, 2006,26(3):83~86.
    [31]. 相利宏.大庆原油加剂输送研究[D].大庆:大庆石油学院:36~38.
    [32]. 李传宪,罗哲鸣.原油流变性及测量[M].北京:石油大学出版社,1994:16~25.
    [33]. 韩洪升,魏兆胜,崔海清.石油工程非牛顿流体力学[M].哈尔滨:哈尔滨工业大学出版社,1993:14~115.
    [34]. 崔海清 主编,韩洪升 主审.工程流体力学[M]北京:石油工业版,1995:128~163.
    [35]. 王岩楼,张传绪,郭殿军.大庆西部外围油田开发实践[M].北京:石油工业出版社,2005, 117~119.
    [36]. FINNEMORE E J,FRANZINI J B.Fluid Mechanics with Engineering[J], Applications. Tenth Edition.Mc Graw-Hill,2002:282.
    [37]. 李恩田,石兆东,丁云辉,等.含水原油水力计算[J].管道技术与设备,2003(6): 1~4.
    [38]. 徐文杰.非金属管道在油田中的应用评价[J].油气田地面工程,2002,21,(3): 128~129.
    [39]. 张新政,侍相礼,刘玉珊.油田高含水期地面工程[M].北京:石油工业出版,2005: 191~ 192.
    [40]. 蔡一全,宫敬.水力光滑圆管临界雷诺数的确定[J].油气储运,2004,23(9):23~25.
    [41]. 王烽,袁玉梅.UPVC 给水管沿程阻力系数的研究[J].湖南大学学报(自然科学版), 2003, 30(4):78~81.
    [42]. 陈显忠.关于塑料给水管道水力计算问题的探讨[J].中国农村水利水电,2004,(12): 60~62.
    [43]. 包波.油田含油污水管道水力计算[J].油气田地面工程,2002,19(6):23~24.
    [44]. 完颜华,张国珍,伏小勇,等.PEX,PP-R 和 PAP 管局部水力损失的实验研究[J].兰州铁道学院学报,2002,21(3):68~70.
    [45]. 杨玉思,王彤,韩大鹏.住宅生活给水管网水力计算程序设计[J].长安大学学报,2004, 21(4):55~57.
    [46]. 张付卿.不可压缩单相流体紊流区沿程阻力计算[J].油气储运,1999,18(2): 28~32.
    [47]. 顾辉.输水工程应用复合材料管道的论证分析[J].水利水电工程,2000,19(3): 10~11.
     [48]. 周传辉,翁维安.流体阻力系数的计算方法[J].制冷空调,2004,(3):35~36.
    [49]. 王士军,王文海,邱林.软管沿程阻力系数的测量方法[J].北京建筑工程学院学报,2002, 18(2):26~29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700