群体决策的共识模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现实生活中,人们经常会面临各种各样的决策,由于各人的社会经历、文化水准、社会地位等方面的差异,对同一问题往往有不同的理解和看法,因而所做的决策不尽相同甚至相反。群体共识模型主要研究如何协调各种不同意见和看法以形成群体总的看法和意见。本文对群体决策中的一些共识问题进行了研究,主要工作与创新点如下:
     1.在最小共识成本的概念基础上,提出了基于集结算子的最小成本共识模型。当集结算子选择加权向量为(1/2,...,0,...1/2)T的OWA算子时,提出的新的共识模型退化到Ben-Arieh等的共识模型。同时,论文研究了在一般的集结算子(例如加权平均算子和OWA算子)下带线性成本的最小成本共识模型,并给了求解这些模型的线性规划方法。
     2.在群体决策中,基于偏好关系的一致性度量一般包括两个问题:个体偏好关系的一致性和群体共识。在AHP中,决策者用判断矩阵(即:乘性偏好关系)来表达他们的偏好。当采用加权几何平均综合排序向量法(RGMM)来进行AHP群体决策时,几何一致性指标通常被用来度量个体判断矩阵的一致性。本文进一步定义了度量群体判断矩阵和个体判断矩阵间共识度的共识指标。在Chiclana等的共识框及Xu和Wei的个体一致性改进模型的基础上,论文提出了基于RGMM法的AHP共识模型。仿真表明提出的两个共识模型都能改进判断矩阵的共识度,从而帮助决策者达到共识。同时,提出的AHP群体决策共识模型有两个优点1)在达到共识的同时,个体判断的矩阵的一致性也得到改进;2)共识模型满足Pareto准则。
     3.提出解决模糊偏好关系的一致性问题(比如个体一致性的构建、共识模型和不完全偏好关系的管理)的线性优化模型。提出的方法在构建个体一致性和达成共识时最优保存原始偏好信息,在计算不完全模糊偏好关系时最大化了模糊偏好关系的一致性水平。由于线性优化模型的求解简单花费时间少,因此,在群体决策问题中,本文得到的结果对模糊偏好关系的一致性问题的应用来说是简单和方便的。
     4.通过引进区间数值标度的概念和定义区间数值标度的逆运算,提出了区间二元语义模型及相关的处理二元语义的计算模型。区间二元语义模型通过区间数来匹配语言标签集中的标签,是已有的二元语义模型的推广。此外,通过定义传递性构造矩阵的区间一致性,论文提出了由传递性构造矩阵得到区间数值标度的一致性方法。
     5.提出了语言标签集上的分布评价的概念并研究了它的运算规则。提出了语义的分布评价的加权平均算子和OWA算子。进一步,提出了基于分布评价的语言偏好关系,研究了基于分布式的语言偏好关系的共识测度,讨论了共识测度的两个性质。最后,提出了基于分布评价的语言偏好关系的共识模型。研究结果为基于分布评价的语言偏好关系的应用提供了基础。
     论文最后对研究结果进行总结,并提出需要进一步深入研究的问题。
The main aim of this dissertation is to study the consensus model in group decision making (GDM). In GDM, consensus models are decision aid tools and help experts modify their individual opinions to reach a closer agreement. We have proposed different consensus approaches to reach consensus in GDM problems. Our main results are summarized as follows.
     1. Based on the concept of minimum-cost consensus, we propose a novel framework to achieve minimum-cost consensus under aggregation operators. Analytical results indicate that the proposed framework reduces to the consensus model of Ben-Arieh et al. when the selected aggregation operator is the ordered weighted averaging (OWA) operator with weight vector (1/2,...,0,...1/2)T. Furthermore, this paper closely examines the minimum-cost consensus models with a linear cost function under the common aggregation operators (e.g., the weighted veraging operator and the OWA operator) Linear-programming-based approaches are also developed to solve these models.
     2. For consensus models of group decision making using preference relations, the consistency measure includes two subproblems:individual consistency measure and consensus measure. In the analytic hierarchy process (AHP), the decision makers express their preferences using judgement matrices (i.e., multiplicative preference relations). Also, the geometric consistency index is suggested to measure the individual consistency of judgement matrices, when using row geometric mean prioritization method (RGMM), one of the most extended AHP prioritization procedures. This paper further defines the consensus indexes to measure consensus degree among judgement matrices (or decision makers) for the AHP group decision making using RGMM. By using Chiclana et al.'s consensus framework, and by extending Xu and Wei's individual consistency improving method, we present two AHP consensus models under RGMM. Simulation experiments show that the proposed two consensus models can improve the consensus indexes of judgement matrices to help AHP decision makers reach consensus. Moreover, our proposal has two desired features:(1) in reaching consensus, the adjusted judgement matrix has a better individual consistency index (i.e., geometric consistency index) than the corresponding original judgement matrix;(2) this proposal satisfies the Pareto principle of social choice theory.
     3. We propose linear optimization models for solving some issues on consistency of fuzzy preference relations, such as individual consistency construction, consensus model and management of incomplete fuzzy preference relations. Our proposal optimally preserves original preference information in constructing individual consistency and reaching consensus (in Manhattan distance sense), and maximizes the consistency level of fuzzy preference relations in calculating the missing values of incomplete fuzzy preference relations. Linear optimization models can be solved in very little computational time using readily available softwares. Therefore, the results in this paper are also of simplicity and convenience for the application of consistent fuzzy preference relations in GDM problems.
     4. By introducing the concept of the interval numerical scale and by defining a generalized inverse operation of the interval numerical scale, we propose an interval version of2-tuple fuzzy linguistic representation model and develop the corresponding computational model to deal with the linguistic2-tuples. The interval version of2-tuple fuzzy linguistic representation model uses interval numbers to match the terms in a linguistic terms set, and generalizes the existing2-tuple fuzzy linguistic representation models. Further, by defining the interval consistency of the transitive calibration matrix,this paper proposes a consistency-based approach to derive the interval numerical scale from the transitive calibration matrix. Under established interval numerical scale, the transitive calibration matrix is of perfect consistency in terms of the interval sense.
     5. We propose the concept of distribution assessments in a linguistic term set, and study the operational laws of linguistic distribution assessments. The weighted averaging operator and the ordered weighted averaging operator for linguistic distribution assessments are presented. We also develop the concept of distribution linguistic preference relations, whose elements are distribution assessments. Further, we study the consensus measures for group decision making based on distribution linguistic preference relations. Two desirable properties of the proposed consensus measures are shown. A consensus model also has been developed to help decision makers improve the consensus level among distribution linguistic preference relations. Finally, illustrative numerical examples are given. The results in this paper provide a theoretic basis for the application of linguistic preference relations based on distribution assessment in group decision making.
引文
[1]顾基发.意见综合—怎么达成共识[J].系统工程学报,2001,16(5):340-348.
    [2]Aguaron J, Escobar M T, Moreno-Jimenez J M. Consistency stability intervals for a judgement in AHP decision support systems [J]. European Journal of Operational Research,2003,145(2)382-393.
    [3]Aguaron J, Moreno-Jimenez J M. The geometric consistency index:Approximated Thresholds [J]. European Journal of Operational Research,2003,147:137-145.
    [4]Arrow K J. Social Choice and Individual Values [M].2nd edition, Wiley, New York,1963.
    [5]Alonso S, Chiclana F, Herrera F, Herrera-Viedma E, et al. A consistency-based procedure to estimate missing pairwise preference values [J]. International Journal of Intelligent Systems,2008,23:155-175.
    [6]Alonso S, Cabrerizo FJ, Chiclana F, et al. Group decision-making with incomplete fuzzy linguistic preference relations [J]. International journal of intelligent systems,2009,24:201-222.
    [7]Arbel A. Approximate articulation of preference and priority derivation [J]. European Journal of Operational Research,1989,43:317-326.
    [8]Barzilai J, Golany B. AHP rank reversal normalization and aggregation rules [J]. INFOR,1994,32:57-64.
    [9]Bezdek J, Spillman B, Spillman R. Fuzzy measures of preferences and consensus in group decision making. In:Proceedings of1977IEEE conference on decision and control, pp1303-1309.
    [10]Bezdek J, Spillman B, Spillman R. A fuzzy relation space for group decision theory [J]. Fuzzy Sets and System,1978,1:255-268.
    [11]Ben-Arieh D, Easton T. Multi-criteria group consensus under linear cost opinion elasticity [J]. Decision Support System,2007,43(3):713-721.
    [12]Ben-Arieh D, Easton T, Evans B. Minimum cost consensus with quadratic cost functions [J]. IEEE Transactions on Systems, Man and Cybernetics,2009,39(1):210-217.
    [13]Ben-Arieh D, Chen Z. Linguistic labels aggregation and consensus measure for autocratic decision-making using group recommendations [J]. IEEE Transactions on Systems, Man and Cybernetics,2006,36(3):558-568.
    [14]Bordogna G., Fedrizzi M, Pasi G. A linguistic modeling of consensus in group decision making based on OWA operators [J]. IEEE Transactions on Systems, Man and Cybernetics,1997,27(1)126-133.
    [15]Bryson N. Group decision-making and the analytic hierarchy process:Exploring the consensus-relevant information content [J]. Computers&Operations Research,1996,23(1)27-35.
    [16]Cabrerizo F J, Alonso S, Herrera-Viedma E. A consensus model for group decision making problems with unbalanced fuzzy linguistic information [J].International Journal of Information Technology and Decision Making,2009,8(1):109-131.
    [17]Cabrerizo F J, Perez I J, Herrera-Viedma E. Managing the consensus in group decision making in an unbalanced fuzzy linguistic context with incomplete information [J]. Knowledge Based Systems,2010,23:169-181.
    [18]Cabrerizo F J, Moreno J M, Perez I J. Analyzing consensus approaches in fuzzy group decision making:advantages and drawbacks[J]. Soft Computing,2010,14:451-463.
    [19]Cao D, Leung L C, Law J S. Modifying inconsistent comparison matrix in analytic hierarchy process: a heuristic approach [J]. Decision Support Systems,2008,44:944-953.
    [20]Chiclana F, Herrera F, Herrera-Viedma E. Integrating three representation models in fuzzy multipurpose decision making based on fuzzy preference relations [J]. Fuzzy Sets Systems,1998,97(1):33-48.
    [21]Chiclana F, Herrera F, Herrera-Viedma E. Integrating multiplicative preference relations in a multipurpose decision-making model based on fuzzy preference relations [J]. Fuzzy Sets and Systems,2001,122:277-291.
    [22]Chiclana F, Herrera F, Herrera-Viedma E, et al. Some induced ordered weighted averaging operators and their use for solving group decision-making problems based on fuzzy preference relations [J]. European Journal Operational Research,2007,182(1):383-399.
    [23]Chiclana F, Mata F, Martinez L, et al. Integration of a consistency control module within a consensus decision making model [J]. International Journal of Uncertainty Fuzziness and Knowledge-based Systems,2008,16:35-53.
    [24]Chiclana F, Herrera-Viedma E, Alonso S, et al. Cardinal consistency of reciprocal preference relations:An characterization of multiplicative transitivity [J]. IEEE Transactions on Fuzzy Systems,2009,17:14-23.
    [25]Crawford G., Williams C. A note on the analysis of subjective judgement matrices [J]. Journal of Mathematical Psychology,1985,29:387-405.
    [26]Cavallo B, D'Apuzzo L. A general unified framework for pairwise comparison matrices in multicriterial methods [J]. International Journal of Intelligent Systems,2009,24:377-398.
    [27]Chang T Y, Chen Y T. Cooperative learning in E-learning:A peer assessment of student-centered using consistent fuzzy preference [J]. Expert Systems with Applications,2009,36:8342-8349.
    [28]Cordon O, Herrera F, Zwir I. Linguistic modeling by hierarchical systems of linguistic rules[J]. IEEE Transactions on Fuzzy Systems,2002,10:2-20.
    [29]De Baets B, De Meyer H. Transitivity frameworks for reciprocal relations:cycle-transitivity versus FG-transitivity [J]. Fuzzy Sets and Systems,2005,152:249-270.
    [30]De Baets B, De Meyer H, De Schuymer B, et al. Cyclic evaluation of transitivity of reciprocal relations [J]. Social Choice and Welfare,2006,26:217-238.
    [31]Dong Y C, Zhang G Q, Hong W Q, et al. Consensus models for AHP group decision making under row geometric mean prioritization method [J]. Decision Support Systems,2010,49:281-289.
    [32]Dong Y C, Li H Y, Xu Y F. On the reciprocity indexes in the aggregation of fuzzy preference relations using OWA operators [J]. Fuzzy Sets Systems,2008,159(2):185-192.
    [33]Dong Y C, Xu Y F, Yu S. Linguistic multiperson decision making based on the use of multiple preference relations [J]. Fuzzy Sets Systems,2009,160(5):603-623.
    [34]Dong Y C, Xu Y F, Yu S. Computing the numerical scale of the linguistic term set for the2-tuple fuzzy linguistic representation model [J]. IEEE Transactions on Fuzzy Systems,2009,17(6)1366-1378.
    [35]Dong Y C, Xu Y F, Li H Y, et al. A comparative study of the numerical scales and the prioritization methods in AHP [J]. European Journal of Operational Research,2008,186:229-242.
    [36]Dong Y C, Xu Y F, Li H Y, et al. The OWA-based consensus operator under linguistic representation models using position indexes [J]. European Journal of Operational Research,2010,203:455-463.
    [37]Dong Y C, Hong W C, Xu Y F, et al. Selecting the individual numerical scale and prioritization method in the analytic hierarchy process:A2-tuple fuzzy linguistic approach[J]. IEEE Transactions on Fuzzy Systems,2011,19(1):13-25.
    [38]Dong Y C, Xu Y F, Li H Y. On consistency measures of linguistic preference relations [J]. European Journal of Operational Research,2008,189:430-444.
    [39]Degani R, Bortolan G. The problem of linguistic approximation in clinical decision making[J]. International Journal of Approximate Reasoning,1988,2:143-162.
    [40]Delgado M, Verdegay J L, Vila M A. On aggregation operations of linguistic labels [J]. International Journal of Intelligent Systems,1993,8:351-370.
    [41]Delgado M, Vila M A, Voxman W. On a canonical representation of fuzzy numbers [J]. Fuzzy Sets and Systems,1998,93:125-135.
    [42]Escobar M T, Moreno-Jimenez J M. Aggregation of individual preference structures in AHP group decision making [J]. Group Decision and Negotiation,2007,16:287-301.
    [43]Escobar M T, Aguaron J, Moreno-Jimenez J M. A note on AHP group consistency for the row geometric mean prioritization procedure [J]. European Journal of Operational Research,2004,153:318-322.
    [44]Fan Z P, Xiao S, Hu G. An optimization method for integrating two kinds of preference information in group decision-making [J]. Computers&Industrial Engineering,2004,46:329-335.
    [45]Fan Z P, Feng B, Suo W L. A fuzzy linguistic method for evaluating collaboration satisfaction of NPD team using mutual-evaluation information [J]. International Journal of Production Economics,2009,122(2):547-557.
    [46]Fan Z P, Liu Y. A method for group decision-making based on multi-granularity uncertain linguistic information [J]. Expert Systems with Applications,2010,37(5):4000-4008。
    [47]Fedrizzi M, Brunelli M. On the priority vector associated with a reciprocal relation and a pairwise comparison matrix [J]. Soft Computing,2010,14:639-645.
    [48]Fedrizzi M, Giove S. Incomplete pairwise comparison and consistency optimization [J]. European Journal of Operational Research,2007,183:303-313.
    [49]Fedrizzi M, Kacprzyk J, Nurmi H. Consensus degrees under fuzzy majorities and fuzzy preferences using OWA (ordered weighted average) operators [J]. Control Cybernet,1993,22:78-86.
    [50]Fiana J S, Hurley W J. The analytic hierarchy process:does adjusting a pairwise comparison matrix to improve the consistency ratio help?[J]. Computers&Operations Research,1997,24:749-755.
    [51]Fodor J, Roubens M. Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer, Dordrecht,1994.
    [52]Forman E, Peniwati K. Aggregating individual judgments and priorities with the analytic hierarchy process [J]. European Journal of Operational Research,1998,108:165-169.
    [53]Garcia-Lapresta J L. A general class of simple majority decision rules based on linguistic opinions[J]. Information Science,2006,176:352-365.
    [54]Garcia-Lapresta J L, Martinez-Panero M, Meneses L C. Defining the Borda count in a linguistic decision making context[J]. Information Science,2009,179:2309-2316.
    [55]Garcia-Lapresta J L, Meneses L C. Modeling rationality in a linguistic framework[J]. Fuzzy Sets and Systems,2009,160:3211-3223.
    [56]Harker P T. Derivatives of the Perron root of a positive reciprocal matrix:with application to the analytic hierarchy process [J]. Applied Mathematics and Computation,1987,22:217-232.
    [57]Herman M W, Koczkodaj WW. A Monte Carlo study of pairwise comparison [J]. Information Processing Letters,1996,57:25-29.
    [58]Herrera F, Herrera-Viedma E, Verdegay J L. Direct approach processes in group decision making using linguistic OWA operators[J]. Fuzzy Sets and Systems,1996,79:175-190.
    [59]Herrera F, Herrera-Viedma E, Verdegay J L. A model of consensus in group decision making under linguistic assessments [J]. Fuzzy Sets and Systems,1996,78:73-87.
    [60]Herrera F, Herrera-Viedma E, Verdegay J L. A rational consensus model in group decision making using linguistic assessments [J]. Fuzzy Sets Systems,1997,88(1):31-49.
    [61]Herrera F, Herrera-Viedma E, Verdegay J L. Linguistic measures based on fuzzy coincidence for reaching consensus in group decision making [J]. International Journal of Approximate Reasoning,1997,16:309-334.
    [62]Herrera F, Herrera-Viedma E. Linguistic decision analysis:steps for solving decision problems under linguistic information [J]. Fuzzy Sets and Systems,2000,115:67-82.
    [63]Herrera F, Martinez L. A2-tuple fuzzy linguistic representation model for computing with words[J]. IEEE Transactions on Fuzzy Systems,2000,8(6):746-752.
    [64]Herrera F, Martinez L. A model based on linguistic2-tuples for dealing with multigranularity hierarchical linguistic contexts in multiexpert decision-making [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B,2001,31(2):227-234.
    [65]Herrera F, Herrera-Viedma E, Chiclana F. Multiperson decision-making based on multiplicative preference relations [J]. European Journal of Operational Research,2001,129:372-385.
    [66]Herrera F, Herrera-Viedma E, Martinez L. A fuzzy linguistic methodology to deal with unbalanced linguistic term sets [J]. IEEE Transactions on Fuzzy Systems,2008,16(2):354-370.
    [67]Herrera F, Alonso S, Chiclana F, et al. Computing with words in decision making:foundations, trends and prospects[J]. Fuzzy Optimization and Decision Making,2009,8(4):337-364.
    [68]Herrera-Viedma E, Herrera F, Chiclana F. A consensus model for multiperson decision making with different preference structures [J]. IEEE Transactions on Systems, Man and Cybernetics Part A: Systems and Humans,2002,32:394-402.
    [69]Herrera-Viedma E, Herrera F, Chiclana F, et al. Some issues on consistency of fuzzy preference relations[J]. European Journal of Operational Research,2004,154:98-109.
    [70]Herrera-Viedma E, Mata F, Martinez L, et al. A consensus support system model for group decision-making problems with multigranular linguistic preference relations [J]. IEEE Transactions Fuzzy Systems,2005,13(5):644-658.
    [71]Herrera-Viedma E, Alonso S, Chiclana F, et al. A consensus model for group decision making with incomplete fuzzy preference relations [J]. IEEE Transactions on Fuzzy Systems,2007,15:863-877.
    [72]Herrera-Viedma E, Chiclana F, Herrera F, at al. A group decision-making model with incomplete fuzzy preference relations based on additive consistency [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B,2007,37:176-189.
    [73]Herrera-Viedma E, Lopez-Herrera A G. A model of information retrieval system with unbalanced fuzzy linguistic information [J]. International Journal of Intelligent Systems,2007,22(11)1197-1214.
    [74]Huang Y S, Liao J T, Lin Z L. A study on aggregation of group decisions [J]. Systems Research and Behavioral Science,2009,26:445-454.
    [75]Ishibuchi H, Tanaka H. Multiobjective programming in optimization of the interval objective function[J]. European Journal of Operational Research,1990,48:219-225.
    [76]Leung L C, Cao D. On consistency and ranking of alternatives in fuzzy AHP [J]. European Journal of Operational Research,2000,124:102-113.
    [77]Lawry J. An alternative approach to computing with words [J]. International Journal of Uncertainty Fuzziness and Knowledge-based Systems,2001,9(Suppl):3-16.
    [78]Kacprzyk J, Fedrizzi M. A "soft" measure of consensus in the setting of partial (fuzzy) preferences [J]. European Journal Operational. Research,1988,34(3):316-325.
    [79]Kacprzyk J, Fedrizzi M, Nurmi H. Group decision making and consensus under fuzzy preferences and fuzzy majority [J]. Fuzzy Sets Systems,1992,49(1):21-31.
    [80]Kacprzyk J. Group decision making with a fuzzy linguistic majority[J]. Fuzzy Sets and Systems, 1986,18:105-118.
    [81]Kacprzyk J. On some fuzzy cores and soft consensus measures in group decision making. In:Bezdek J (ed) The analysis of fuzzy information. CRC Press, Boca Raton,1987:119-130.
    [82]Kacprzyk J, Fedrizzi M. Soft consensus measure for monitoring real consensus reaching processes under fuzzy preferences [J]. Control Cybernet,1986,15:309-323.
    [83]Ma J, Fan Z P, Jiang Y P, et al. A method for repairing the inconsistency of fuzzy preference relations [J]. Fuzzy Sets and Systems,2006,157:20-33.
    [84]Martinez L, Ruan D, Herrera F. Computing with words in decision support systems:An overview on models and applications [J]. International Journal of Computational Intelligence Systems,2010,3(4):382-398.88
    [85]Mata F, Martinez L, Herrera-Viedma E. An adaptive consensus support model for group decision-making problems in a multigranular fuzzy linguistic context[J]. IEEE Transactions on Fuzzy Systems,2009,17(2):279-290.
    [86]Mendel J M. An architecture for making judgement using computing with words[J]. International Journal of Applied Mathematics and Computer Science,2002,12(3):325-335.
    [87]Mendel J M. Historical reflections and new positions on perceptual computing[J]. Fuzzy Optimization and Decision Making,2009,8(4):325-335.
    [88]Mendel J M, Wu H. Type-2fuzzistics for symmetric interval type-2fuzzy sets:part1, porward problems[J]. IEEE Transactions on Fuzzy Systems,2006,14(6):781-792.
    [89]Mendel J M, Wu H. Type-2fuzzistics for symmetric interval type-2fuzzy sets:part2, inverse problems[J]. IEEE Transactions on Fuzzy Systems,2007,15(2):301-308.
    [90]Moore R E. Method and Application of Interval Analysis, SIAM, Philadelphia,1979.
    [91]Moreno-Jimenez J M, Aguaron J, Escobar M T. The core of consistency in AHP-group decision making [J]. Group Decision and Negotiation,2008,17:249-265.
    [92]Nurmi H. Approaches to collective decision making with fuzzy preference relations [J]. Fuzzy Sets and Systems,1981,6:249-259.
    [93]Orlovsky S A. Decision-making with a fuzzy preference relation[J]. Fuzzy Sets and Systems,1978,1:155-167.
    [94]Pelta D, Yager R. Decision strategies in mediated multiagent negotiations:An optimization approach [J]. IEEE Transactions on Systems, Man and Cybernetics,2010,40(3):635-640.
    [95]Ramanathan R, Ganesh L S. Group preference aggregation methods employed in AHP:an evaluation and intrinsic process for deriving members'weight ages [J]. European Journal of Operational Research,1994,79:249-265.
    [96]Robert F D, Forman E H. Group decision support with the analytic hierarchy process [J]. Decision Support Systems,1992,8(2):99-124.
    [97]Saaty T L. The Analytic Hierarchy Process [M], McGraw-Hill, New York,1980.
    [98]Saaty T L. Decision-making with the AHP:why is the principal eigenvector necessary [J]. European Journal of Operational Research,2003,145:85-91.
    [99]Saaty T L, Vargas L G. Uncertainty and rank order in the analytic hierarchy process [J]. European Journal of Operational Research,1987,32:107-117.
    [100]Sahnoun Z, Dicesare F, Bonissone P. Efficient methods of computing linguistic consistency [J]. Fuzzy Sets and Systems,1991,39:15-26.
    [101]Sengupta A, Pal T K. On comparing interval numbers [J]. European Journal of Operational Research,2000,127:28-43.
    [102]Spillman B, Bezdek J, Spillman R. Coalition analysis with fuzzy sets. Kybernetes,1979,8:203-211.
    [103]Spillman B, Spillman R, Bezdek J. A fuzzy analysis of consensus in small groups. In:Wang PP, Chang SK (eds) Fuzzy automata and decision processes. North-Holland, Amsterdam,1980:331-356.
    [104]Srdjevic B. Linking analytic hierarchy process and social choice methods to support group decision-making in water management [J]. Decision Support Systems,2007,42:2261-2273.
    [105]Tong S. Interval number and fuzzy number linear programming [J]. Fuzzy Sets and Systems,1994,66:301-306.
    [106]Tanino T. Fuzzy preference orderings in group decision making, Fuzzy Sets and Systems,1984,12:117-131.
    [107]Van den Honert R C. Stochastic group preference modelling in the multiplicative AHP:a model of group consensus [J]. European Journal of Operational Research,1998,110:99-111.
    [108]Wang Y M, Chin K S, Poon G K K. A data envelopment analysis method with assurance region for weight generation in the analytic hierarchy process [J]. Decision Support Systems,2008,45:913-921.
    [109]Wang J H, Hao J Y. A new version of2-tuple fuzzy linguistic representation model for computing with words[J]. IEEE Transactions on Fuzzy Systems,2006,14(3):435-445.
    [110]Wang J H, Hao J Y. An approach to computing with words based on canonical characteristic values of linguistic labels[J]. IEEE Transactions on Fuzzy Systems,2007,15(4):593-604.
    [111]Wang Y M, Elhag T M S. A goal programming method for obtaining interval weights from an interval comparison matrix[J]. European Journal of Operational Research,2007,177:458-471.
    [112]Wang Y M, Yang J B, Xu D L. Interval weight generation approaches based on consistency test and interval comparison matrices[J]. Applied Mathematics and Computation,2005,167:252-273.
    [113]Wang Y M, Yang J B, Xu D L. A preference aggregation method through the estimation of utility intervals[J]. Computers&Operations Research,2005,32:2027-2049.
    [114]Wang T C, Chang T H. Forecasting the probability of successful knowledge management by consistent fuzzy preference relations [J]. Expert Systems with Applications,2007,32:801-813.
    [115]Wang T C, Chen Y H. Applying consistent fuzzy preference relations to partnership selection [J]. Omega,2007,35:384-388.
    [116]Xu Z S, Wei C P. A consistency improving method in analytic hierarchy process [J]. European Journal of Operational Research,1999,116:443-449.
    [117]Xu Z S. On consistency of the weighted geometric mean complex judgement matrix in AHP [J]. European Journal of Operational Research,2000,126:683-687.
    [118]Xu Z S. A method based on linguistic aggregation operators for group decision making with linguistic preference relations[J].Information Science,2004,166:19-30.
    [119]Xu Z S. Uncertain linguistic aggregation operators based approach to multiple attribute group decision making under uncertain linguistic environment [J]. Information Science,2004,168:171-184.
    [120]Xu Z S. Deviation measures of linguistic preference relations in group decision making. Omega,2005,33:249-254.
    [121]Xu Z S, Chen J. Some models for deriving the priority weights from interval fuzzy preference relations[J]. European Journal of Operational Research,2008,184:266-280.
    [122]Xu Z S. An automatic approach to reaching consensus in multiple attribute group decision making [J]. Computers&Industrial Engineering,2009,56(4):1369-1374.
    [123]Xu Z S. Goal programming models for obtaining the priority vector of incomplete fuzzy preference relation [J]. International Journal of Approximate Reasoning,2004,36:261-270.
    [124]Xu Z S, Da Q L. An approach to improving consistency of fuzzy preference matrix [J]. Fuzzy Optimization and Decision Making,2003,2:3-12.
    [125]Yager R. Quantifer guided aggregation using OWA operators[J]. International Journal of Intelligent Systems,1996,11:49-73.
    [126]Yager R. On ordered weighted averaging aggregation operators in multicriteria decision making [J]. IEEE Transactions Systems, Man and Cybernetics,1988,18(1):183-190.
    [127]Yager R, Filev D P. Parameterized and-like and or-like OWA operators [J]. International Journal of General Systems,1994,22:297-316.
    [128]Zadeh L A. The concept of a linguistic variable and its applications to approximate reasoning, Part Ⅰ[J]. Information Science,1975,8:199-249.
    [129]Zadeh L A. The concept of a linguistic variable and its application to approximate reasoning, Part Ⅱ[J]. Information Science,1975,8:301-357.
    [130]Zadeh L A. The concept of a linguistic variable and its application to approximate reasoning, Part Ⅲ[J]. Information Science,1975,9:43-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700