基于微卫星分子标记的中国疫区内苹果蠹蛾Cydia pomonella(L.)种群遗传多样性和遗传结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苹果蠹蛾Cydiapomonella(L.)属鳞翅目Lepidoptera,卷蛾科Tortricidae,是果园中的重要害虫,目前已分布于全世界71个国家和地区。苹果蠹蛾寄主众多,每年给世界水果种植业造成严重危害。我国于1957年首次在新疆报道了苹果蠹蛾,该虫目前已扩散至新疆全境、甘肃河西走廊地区、宁夏中卫、内蒙古阿拉善盟及黑龙江东南部地区。
     据报道,苹果蠹蛾对不同生境和气候条件具有较强的适应性,当其成功入侵到一新的地区后,往往随着时间的推移而发生遗传分化和演变,从而形成了具有不同生理特性及生物学特性的种群,增加了害虫防治的难度。所以,了解苹果蠹蛾入侵到中国之后的微进化进程、种群的遗传多样性及遗传结构,探讨分化成因及追溯扩散历史,对于制定有效的苹果蠹蛾防治策略及拦截措施具有重要意义。另外,物种的分化源于种群的分化。对于古老种群而言,迁移和遗传漂变的平衡影响着种群的遗传结构及分化模式。对于新的入侵种群,诸多的进化事件如瓶颈效应(或奠基者效应)、地理隔离及入侵历史等影响着种群遗传多样性及遗传结构形成的模式。因而,研究苹果蠹蛾在中国这样一个新的入侵生态系统中的微进化模式,同时具有重要的分子进化学上的意义。
     本研究利用8个微卫星位点,从我国主要苹果蠹蛾疫区(新疆、甘肃、黑龙江)采集12个苹果蠹蛾地理种群,并利用德国、瑞士的2个苹果蠹蛾种群作为对照种群,首次对我国苹果蠹蛾的种群遗传学进行了微卫星分子标记研究。运用多种遗传多样性及遗传分化参数,结合分子方差分析、贝叶斯聚类分析及系统发育分析等研究方法,对全部14个苹果蠹蛾种群的遗传多样性及遗传结构进行了深入系统的分析。结果与结论如下:
     1)扩增了中国苹果蠹蛾主要疫区的12个种群及德国、瑞士2个西欧种群共339头个体在8个微卫星位点上的等位基因片段。各种群的平均等位基因丰富度为4.17~12.23,观察杂合度为0.201~0.550。21.9%的成对位点显示出基因型连锁不平衡,但没有表现出在某一位点全部不平衡。无义等位基因频率在0.010~0.203,与多数鳞翅目昆虫的无义等位基因频率相当。14个种群中,4个种群显示出偏离哈迪-温伯格平衡,结合较高的近交系数0.097~0.486,说明中国疫区内苹果蠹蛾种群内部的杂合子较缺乏。
     2)基于平均等位基因丰富度、杂合度水平等遗传多样性指标,发现本研究中所选取的西北地区的苹果蠹蛾种群的遗传多样性呈现出由西向东、由北向南逐渐降低的趋势。这一结果表明,苹果蠹蛾在入侵的过程中由于奠基者种群的不断拓展,新建立的种群较原有种群的遗传多样性显著降低。但是BOTTLENECK的分析表明,所有种群均没有经历瓶颈效应,可能是由于较短的入侵历史或者入侵过程中奠基者种群较大的个体数量。采自黑龙江的苹果蠹蛾种群具有比西北种群更高的遗传多样性。较短的入侵历史及较高的遗传多样性说明黑龙江种群经历了具有不同遗传起源的种群的多次入侵。同时,黑龙江苹果蠹蛾种群较高的遗传多样性也说明其不是西北种群扩散的结果,而是具有不同的入侵来源。另外,欧洲苹果蠹蛾种群较西北种群具有更高的遗传多样性,说明西北地区的苹果蠹蛾种群入侵历史相对较近。
     3)基于分子方差分析、成对固定指数及贝叶斯聚类分析,发现中国疫区内的苹果蠹蛾种群具有明显的亚结构。其中,成对固定指数在多数种群中表现出了较高的分化程度(FST=0.040~0.337,P<0.05);分子方差分析表明人为分组的新疆、甘肃、黑龙江及西欧苹果蠹蛾种群各组之间的遗传分化明显,占了全部遗传分化的9.64%;贝叶斯聚类分析表明,新疆北部的伊犁、精河、奎屯种群具有相似的遗传结构(平均从属系数,clusterred,Ili0.526,Jin0.896,Kuy0.577),结合较高的遗传多样性,说明3个种群可能具有相似的遗传起源且相对较长的入侵历史。尤其是伊犁种群,在西北苹果蠹蛾种群中具有最高的遗传多样性(R=9.16,Ho=0.356),由此推断伊犁种群可能最早入侵到西北地区。新疆南部的库尔勒种群具有与甘肃张掖种群相似的遗传结构(平均从属系数,clusteryellow,Kor0.760,Zha0.805),结合二者之间较低的固定指数、邻接系统树分析及苗木引种历史,可以推断张掖苹果蠹蛾是随着两地间苗木的调运而引入。黑龙江种群与西部种群具有不同的遗传结构,结合较高的固定指数(FST=0.157~0.324,P<0.05),进一步证明了黑龙江的苹果蠹蛾种群不是来自于西部苹果蠹蛾疫区。IBD分析(r=0.164,P=0.176)显示西北地区苹果蠹蛾种群间地理距离与遗传距离不存在明显的相关性,这表明人为协助的扩散在种群分化中起到了重要作用,而苹果蠹蛾本身较弱的飞行能力又限制了扩张种群与其他种群的基因交流,从而加速了遗传分化。
     4)邻接系统树分析表明,新疆北部的精河、伊犁、奎屯种群具有较近的亲缘关系,这与贝叶斯聚类分析的结果一致。甘肃张掖种群与库尔勒种群聚为一个分支,进一步证明两地之间苹果蠹蛾种群通过人为因素进行长距离扩散的可能。黑龙江苹果蠹蛾种群与西欧种群具有较近的亲缘关系,这进一步证明了贝叶斯聚类分析的结果。要探明东北种群与西欧种群亲缘关系较近的原因,需要探明整个欧洲包括俄罗斯远东地区苹果蠹蛾种群的亲缘关系。系统发育关系并不能反映苹果蠹蛾在中国的传播路径,造成这一结果的原因是较短的入侵历史以及人为协助的被动扩散。
Cydia pomonella (L.)(Lepidoptera:Tortricidae), the codling moth, is the destructive fruit pest in fruit orchard and also the notorious invasive species, spreading to nearly all the apple growing areas over71countries or regions. Host plants for codling moth include many kinds of pome fruits. As a notoriously invasive pest, the codling moth has caused a great deal of damage to production of pomes. The first reported sightings of the Chinese codling moth were in1957in Xinjiang. It has now been observed throughout Xinjiang, Hexi Corridor in Gansu Zhongwei city of Ningxia, Alxa of Inner Mongolia and southeastern Heilongjiang.
     The successful adaption of codling moth to different habitats and climates by forming various populations which may differ with physiological and biological traits enforces its local fitness and makes it more difficult to control. So, the understanding of the micro-evolutionary processes and the reasons caused population variation after successful invasion of codling moth in China, and also the investigation of invasive history are necessary in order to develop effective pest management and interception strategies. Furthermore, speciation primarily results from the population differentiation. For populations established over long period of time, the genetic equilibrium of drift and gene flow forms the population structuring and patterns of variation. In contrast, in newly established populations, the population genetic diversity and structure are often determined by the historical events, such as bottleneck effects (or founder effects), vicariance events and dispersal history. Studies of the micro-evolutionary of codling moth in such a newly invaded ecosystem in China has a significance for understanding the process of molecular evolution.
     This dissertation deals with the genetic variations of12C. pomonella populations collected from the mainly distributed regions (Xinjiang, Gansu and Heilongjiang) in China and compared them with one German and one Swiss population using eight microsatellite loci. We deeply investigates the population genetic diversity and structure of14selected population based on many parameters of genetic variation, analysis of molecular variance, Bayesian clustering analysis and phylogenetic relationship. The results and conclusions of this dissertation are as follow:
     1) We amplified the allelic sequences of eight microsatellite loci of339individuals from14populations, covering the potential distributions of codling moth in China. All of the eight selected loci were polymorphic and the number of alleles of each population per locus ranged from4.17to12.23, observed heterozygosity ranged from0.201to0.550.21.9%disequilibrium was found in392pairs of loci. The frequency of null alleles ranged from0.010 to0.203that is typical for lepidopteran. Four of the14populations revealed significant departures from HWE, together with high mean values of inbreeding index ranging from0.097to0.486, indicating the existence of heterozygote deficiencies.
     2) A west-east and north-south gradient in genetic diversity was observed based on mean allele richness and level of heterozygosity. This result can be explained by the colonization of new areas via sequential founder populations or with bottleneck effects. However, the BOTTLENECK analysis revealed no clear genetic evidence for bottleneck effect in any of the studied populations. The lack of a bottleneck effect may be determined by the recent invasion history and successful colonisation by large numbers of migrants. Moreover, the two populations from Heilongjiang showed highest genetic diversities among the studied populations, which may result from the new invasion event from different genetic resources. Taking together the higher genetic diversity and distinct genetic structure revealing by cluster analysis, we can deduce that C. pomonella of Heilongjiang were not seeded by invasion populations from western China. Furthermore, the codling moth populations from Germany and Switzerland displayed a higher level of genetic diversity compared with that of populations from northwestern China. This result supports that the codling moth in China has relatively shorter history than that in southeastern Europe, the documented origin.
     3) There was strong genetic structuring in14populations based on Bayesian clustering approach, AMOVA and pairwise FST. The values of pairwise FST ranged from0.040to0.337. Sixty-eight comparisons out of ninety-one showed high or very high genetic differentiations (P<0.05). AMOVA results indicated that9.64%of overall variation was explained by geographic locations which were arbitrarily grouped according to the collected regions including Xinjiang, Gansu, Heilongjiang and western Europe. Bayesian clustering analysis showed that Ili, Jinghe and Kuytun populations from northern Xinjiang had similar genetic structure (average membership coefficient, cluster red, Ili0.526, Jin0.896, Kuy0.577). The results linking to relatively higher genetic diversity estimates of the three populations suggests these three populations were established by individuals belonging to the same maternal lineage. Genetic diversity of C. pomonella population from Ili was highest among populations from northwestern China (a=9.16, Ho=0.356), suggests that Ili region is most likely to be the origin center of codling moth in northwestern China. Bayesian clustering analysis also indicated that the populations from Zhangye and Korla had similar genetic structures (average membership coefficient, cluster yellow, Kor0.760, Zha0.805), together with the results of low pairwise FST, the analysis of NJ phylogenetic tree and the records of seeding transport, suggesting that similarity of genetic structures is due to human activity associated with the movement of nursery material. The level of genetic differentiation between populations from northeastern and northwestern China was great (FST=0.157~0.324,P<0.05). The results further supports the hypothesis that the invasion of codling moth in China from at least two different path ways. In the present study, the result of Mantel test (r=0.164,P=0.176) indicated that the pattern of variation was weakly associated with geographic distance among populations from northwestern China. The weak flight capacity and the human-aided dispersal improve the differentiation of geographic populations.
     4) Phylogenetic analysis based on NJ tree indicated that the Jinghe, Ili and Kuytun populations form northern Xinjiang had a close phylogenetic relationship. This result is consistent with the result of Bayesian clustering analysis. The close phylogenetic relationship between populations from Zhangye and Korla further confirms the probability of human-aided dispersal over large geographic distance. We also found the populations from Heilongjiang had similar genetic structure with those of western European populations. A phylogenetic study based on a greater number of collection sites is necessary to clarify the relationship between C. pomonella populations from Eropean countries before precise conclusions can be drawn, especially the phylogenetic relationship of populations from western Europe and far east region of Russia, the latter is close to Heilongjiang and was documented as distributed region of codling moth. The neighbor joining tree did not show distinct phylogenetic relationship associated with geographic distribution, which can be explained by relatively short history or passive dispersal by anthropic factors.
引文
蔡清秀,林柳,潘文婧,罗述金,张立.2008.勐养保护区亚洲象微卫星位点筛选及种群遗传多样性分析.兽类学报,28(2):126-134
    褚栋,刘国霞,范仲学,陶云荔,张友军.2006.烟粉虱复合种不同地理种群的遗传分化.中国农业科学,39(8):1571-1580
    董昆.2010.基于COI基因的苹果蠹蛾地理种群遗传差异分析及幼虫快速分子鉴定[硕士学位论文].杨凌,西北农林科技大学郭平仲.1993.群体遗传学导论.北京:中国农业出版社
    韩明花,王永模,王哲,沈佐锐.2009.基于微卫星标记的桃蚜种群寄主遗传分化.昆虫知识,46(2):244-249
    胡志昂,张亚平.1997.中国动植物的遗传多样性.杭州:浙江科学技术出版社黄原.1998.分子系统学—原理、方法及应用.北京:中国农业出版社
    金瑞华,张家娴,白章红等.1996.苹果蠹蛾分布与降雨关系研究初报.植物检疫,10(3):129-141
    金瑞华.1989.植物检疫学(中册).北京:北京农业大学出版社,115-120
    阚国仕,李雪,丁建云.2009.美国白蛾种群遗传分化的分析.生态学杂志,28(10):2032-2036
    林伟.1996.生态因子在苹果蠹蛾地理分布中的作用.植物检疫,10(1):1-7
    马向超,张爽,黄大庄,任志彬.2011.桑天牛不同地理种群遗传分化的AFLP分析.蚕业科学,37(2):
    303-307
    孟祥峰.2008.基于微卫星标记和线粒体基因序列的中国二化螟Chilosuppressalis(Walker)种群遗传结构研究[博士学位论文].杭州,浙江大学
    全迎春,孙效文,梁利群,2005.应用微卫星多态性分析四个鲤鱼群体的遗传多样性.动物学研究,26(6):595-602施立明.1990.遗传多样性及其保存.生物科学信息,3:143-146孙洁茹,李燕,闫硕,张青文,徐环李.2011.微卫星标记分析中国梨木虱种群的遗传多样性.昆虫学
    报,54(7):820-827万方浩,郭建英,张峰等.2009.中国生物入侵研究.北京:科学出版社
    万宣伍,刘映红,张彬,周浩东.2010.基于微卫星分子标记的重庆地区桔小实蝇遗传分化研究.中
    国农业科学,43(13):2688-2696魏晓棠,肖海军,白桦,张京萱,厉艳,王英超,薛芳森.2010.大猿叶虫四地理种群的PCR-RFLP方
    法鉴别及遗传多样性分析.昆虫学报,53(2):209-215徐晋麟,徐沁,陈淳.2005.现代遗传学原理(第二版).北京:科学出版社
    阎华超,高岚,李桂兰.2006.分子标记技术的发展及应用.生物学通报,41(2):17-19杨瑞.2008.苹果蠹蛾Cydiapomonella(L.)在中国的适生性研究[硕士学位论文].杨凌.西北农林科
    技大学张劳,王玉英.1999.群体遗传学概论.北京:中国农业出版社
    张学祖.1957.苹果蠹蛾在我国的新发现.昆虫学报,7(4):467-472
    赵星民.2011.北方寒地苹果蠹蛾发生规律及综合防治研究.植物检疫,25(1):87-88
    周宇爝.2009.分子标记发展简史.现代农业科学,11:264-270朱军.2002.遗传学(第三版).北京:中国农业出版社
    Agarwal M, Shrivastava N, Padh H.2008. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Reports,27:617-631
    Angers B, Bernatchez L.1997. Complex evolution of a salmonid microsatellite locus and its consequences in inferring allelic diversity from size information. Molecular Biology and Evolution,14(3):230-238
    Arber W.1965. Host-controlled modification of bacteriophage. Annal Review of Microbiology,19:365-378
    Arias L, Bejarano E E, Marquez E, Moncada J, Velez I, Uribe S.2005. Mitochondrial DNA divergence between wild and laboratory populations of Anopheles albimanus Wiedemann (Diptera: Culicidae). Neotropical Entomology,34(3):499-506
    Audermard H.1991. Population dynamics in codling moth. In: Tortricid pests-their biology, natural enemies and control.(Eds.) by Van der Geest L P S, Evenhuis H H. Elsevier Science Publishers, Amsterdam, pp.329-338
    Barton, N H, Briggs, D E G, Eisen, J A, Coldstein, D B, Patel, N H.2004.进化.(宿兵等译)北京:科学出版社,2007
    Beebee T J C, Rowe G.2004.分子生态学.(张军丽,廖斌,王胜龙译)广州:中山大学出版社,2009
    Boivin T, Chabert d'Hieres C, Bouvier J C, Beslay D, Sauphanor B.2001. Pleiotropy of insecticide resistance in the codling moth, Cydia pomonella. Entomologia Experimentalis et Applicata,99(3):381-386
    Bonnet E, Van der Peer Y.2002. ZT:a software tool for simple and partial Mantel tests.Journal of Statistical Software,7:1-12
    Brookfield J F Y.1996. A simple new method for estimating null allele frequency from heterozygote deficiency. Molecular Ecology,5:453-455
    Brown J E, Stepien C A.2009. Invasion genetics of the Eurasian round goby in North America: tracing source and spread patterns. Molecular Ecology,18:64-79
    Bues R, Toubon J F.1992. Polymorphisme enzymatique dans differentes populations de Cydia pomonella L.(Lep. Tortridae). Acta Oecologica,13:583-591
    Callen D F, Thompson A D, Shen Y, Phillips H A, Richards R I, Mulley J C, Sutherland G R.1993. Incidence and origin of "null" alleles in the (AC)n microsatellite markers. American Journal of Human Genetics,52(5):922-927
    Cannon G B.1963. The effects of natural selection on linkage disequilibrium and relative fitness in experimental population of Drosophila melanogaster. Genetics,48:1201-1216
    Carde R T, Minks A K.1995. Control of moth pests by mating disruption:successes and constrains. Annual Review of Entomology,40:559-585
    Chakraborty R, De Andrade M, Daiger S P, Budowle B.1992. Apparent heterozygote deficiencies observed in DNA typing data and their implications in forensic applications. Annals of Human Genetics,56,45-57
    Chapuis M-P, Estoup A.2007. Microsatellite Null Alleles and Estimation of Population Differentiation. Molecular Biology and Evolution,24(3):621-631
    Chen M H, Dorn S.2009. Microsatellites reveal genetic differentiation among populations in an insect species with high genetic variability in dispersal, the codling moth, Cydia pomonella(L.)(Lepidoptera: Tortricidae). Bulletin of Entomological Research,14:1-11
    Chen Y G, Lin C H, Sabatti C.2006. Volume measures for linkage disequilibrium. BMC Genetics,7:54
    Cheney S, Hadapad A B, Zebitz C P W.2008. AFLP analysis of genetic differentiation in CpGV resistant and susceptible Cydia pomonella (L.) populations. Mitteilungen der Deutschen Gesellschaft fur Allgemeine und Angewandte Entomologie,16:117-120
    Ciosi M, Miller N J, Kim K S, Giordano R, Estoup A, Guillemaud T.2008. Invasion of Europe by the western corn rootworm, Diabrotica virgifera virgifera:multiple transatlantic introductions with various reductions of genetic diversity. Molecular Ecology,17:3614-3627
    Clark P L, Molina-Ochoa J, Martinelli S, Skoda S R, Isenhour D J, Lee D J, Krumn J T, Foster J E.2007. Population variation of the fall armyworm, Spodoptera frugiperda, in the Western Hemisphere. Jounal of Insect Science,5:1-10
    Coates B S, Sumerford D V, Miller N J, Kim K S, Sappington T W, Blair D, Siegfried B D, Lewis L C.2009. Comparative Performance of Single Nucleotide Polymorphism and Microsatellite Markers for Population Genetic Analysis. Journal of Heredity,100(5):556-564
    Cornuet J M, Luikart G.1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics,144:2001-2014
    Cox C B, Moore P D.2005.生物地理学—生态与进化的途径(第七版).(赵铁桥译)北京:高等教育出版社,2007
    Cristescu R, Sherwin W B, Handasyde K, Cahill V, Cooper D W.2010. Detecting bottlenecks using BOTTLENECK1.2.02in wild populations:the importance of the microsatellite structure. Conservation Genetics,11:1043-1049
    Dakin E E, Avise J C.2004. Microsatellite null alleles in parentage analysis. Heredity,93:504-509
    De Waal J Y, Malan A P, Levings J, Addison M F.2010. Key elements in the successful control of diapausing codling moth, Cydia pomonella (Lepidoptera:Tortricidae) in wooden fruit bins with a South African isolate of Heterorhabditis zealandica (Rhabditida: Heterorhabditidae). Biocontrol Science and Technology,20(5):489-502
    Di Rienzo A, Peterson A C, Garza J C, Valdes A M, Slatkin M, Freimer N B.1994. Mutational processes of simple-sequence repeat loci in human populations. Proceedings of National Academy Sciences of the United States of America,91:3166-3170
    Dieringer D, Schlotterer C.2003. MICROSATELLITE ANALYSER (MSA):a platform independent analysis tool for large microsatellite data sets. Molecular Ecology Notes,3:167-169
    Dlugosch K M, Parker I M.2008. Founding events in species invasions:genetic variation, adaptive evolution, and the role of multiple introductions. Molecular Ecology,17:431-449
    Dorn S, Schumacher P, Abivardi C, Meyhofer R.1999. Global and regional pest insects and their antagonists in orchards:spatial dynamics. Agriculture, Ecosystems&Environment,73:111-118
    Espinoza J L, Fuentes-Contreras E, Barros W, Ramirez C C.2007. Utilization de microsatelites para la determination de la variabilidad genetica de la polilla de la manzana Cydia pomonella (L.)(Lepidoptera:Tortricidae) en Chile central. Agricultura Tecnica (Chile),67:244-252
    Excoffier L, Laval G, Schneider S.2005. Arlequin ver.3.0:An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online,1:47-50
    Felsenstein J.1989. PHYLIP-Phylogeny Inference Package (Version3.2). Cladistics,5:164-166
    Franck P, Reyes M, Olivares J, Sauphanor B.2007. Genetic differentiation in the codling moth:comparison between microsatllite and insecticide resistant markers. Molecular Ecology,16:3554-3564
    Franck P, Timm A E.2010. Population genetic structure of Cydia pomonella: a review and case study comparing spatiotemporal variation. Journal of Applied Entomology,134:191-200
    Frank P, Guerin F, Loiseau A, Sauphanor B.2005. Isolation and characterization of microsatellite loci in the codling moth Cydia pomonella(L.)(Lepidoptera, Tortricidae). Molecular Ecology Notes,5:99-102
    Fuentes-Contreras E, Espinoza J L, Lavandero B, Ramirez C C.2008. Population genetic structure of codling moth (Lepidoptera: Tortricidae) from apple orchards in Central Chile. Journal of Economic Entomology,101:190-198
    Ghabooli S, Shiganova T A, Zhan A B, Cristescu M E, Eghtesadi-Araghi P, MacIsaac H J.2011Multiple introductions and invasion pathways for the invasive ctenophore Mnemiopsis leidyi in Eurasia. Biological invasions,13:679-690
    Gillis N K, Walters L J, Fernandes F C, Hoffman E A.2009. Higher genetic diversity in introduced than in native populations of the mussel Mytella charruana: evidence of population admixture at introduction sites. Diversity and Distribution,15:784-795
    Grapputo A, Boman S, Lindstrom L, Lyytinen A, Mappes J.2005. The voyage of an invasive species across continents:genetic diversity of North American and European Colorado potato beetle populations. Molecular Ecology,14:4207-4219
    Herborg L-M, Weetman D, Van Oosterhout C, Hanfling B.2007. Genetic population structure and contemporary dispersal patterns of a recent invader, the Chinese mitten crab, Eriocheir sinensis. Molecular Ecology,16:231-242
    Higbee B S, Calkins C O, Temple C A.2001. Overwintering of codling moth (Lepidoptera:Tortricidae) larvae in apple harvest bins and subsequent moth emergence. Journal of Economic Entomology,94:1511-1517
    Kaplan N L, Hudson R R, Langley C H.1989. The hitchhiking effect revisited. Genetics.123:887-899
    Kimura M.1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambrige
    Lander E S.1996. The new genomics:global views of biology. Science,274:536-539
    Lee C E.2002. Evolutionary genetics of invasive species. Trends in Ecology&Evolution,17:386-391
    Lewin B.2006.基因Ⅷ精要.(赵寿元译)北京:科学出版社,2007
    Li W H,Graur D.1991.分子进化基础.(陈建华译)北京:科学出版社,1997
    Lima L H C, Campos L, Moretzsohn M C, Navia D, de Oliveira M R V.2002. Genetic diversity of Bemisia tabaci (Genn.) Populations in Brazil revealed by RAPD markers. Genetics and Molecular Biology,25(2):217-223
    Loxdale H D&Lushai G.2001. Use of genetic diversity in movement studies of flying insects.pp.361-386in Woiwod I P, Reynolds D R&Thomas C D (Eds) Insect Movement: Mechanisms and Consequences: Royal Entomological Society20th International Symposium volume.13-14September1999, Imperial College, London, UK
    Mantel N.1967. The detection of disease clustering and a generalized regression approach. Cancer Research,27:209-220
    Margaritopoulos J T, Kasprowicz L, Malloch G L, Fenton B.2009. Tracking the global dispersal of a cosmopolitan insect pest, the peach potato aphid. BMC Ecology,9:13
    Meglecz E, Petenian F, Danchin E, Coeur D'Acier A, Rasplus J-Y, Faure E.2004. High similarity between flanking regions of different microsatellites detected within each of two species of Lepidoptera: Parnassius apollo and Euphydryas aurinia. Molecular Ecology,13:1693-1700
    Meng X F, Shi M, Chen X X.2008. Population genetic structure of Chilo suppressalis (Walker)(Lepidoptera:Crambidae):strong subdivision in China inferred from microsatellite markers and mtDNA gene sequences. Molecular Ecology,17:2880-2897
    Meraner A, Brandstatter A, Thaler R, Aray B, Unterlechner M, Niederstatter H, Parson W, Zelger R, Dalla Via J, Dallinger R.2008. Molecular phylogeny and population structure of the codling moth(Cydia pomonelld) in Central Europe:I. Ancient clade splitting revealed by mitochondrial haplotype markers. Molecular Phylogenetics and Evolution,48:825-837
    Meselson M, Yuan R.1968. DNA restriction enzyme from E. coli. Nature,217:1110-1114
    Mikac K M.2010. Genetic structure and dispersal patterns of the invasive psocid Liposcelis decolor (Pearman) in Australian grain storage systems. Bulletin of Entomological Research,100:521-527
    Milankov V, Francuski L, Ludoski J, Stahls G, Vujic A.2010. Genetic structure and phenotypic of two northern populations of Cheilosia aff. longula (Diptera: Syrphidae) has implications for evolution and conservation. European Journal of Entomology,107:305-315
    Miller N J, Birley A J, Overall A D J, Tatchell G M.2003. Population genetic structure of the lettuce root aphid, Pemphigus bursarius (L.), in relation to geographic distance, gene flow and host plant usage. Heredity,91:217-223
    Mukha D V, Kagramanova A S, Lazebnaya I V, Lazebnyi O E, Vargo E L, Schal C. Intraspecific variation and population structure of the German cockroach, Blattella germanica, revealed with RFLP analysis of the non-transcribed spacer region of ribosomal DNA. Medical and Veterinary Entomology,21(2):132-140
    Myers C T, Hull L A, Krawczyk G.2006. Comparative survival rates of oriental fruit moth (Lepidoptera: Tortricidae) larvae on shoots and fruit of apple and peach. Journal of Economic Entomology,99:1299-1309
    Nachman M W.2002. Variation in recombination rate across the genome:evidence and implications. Current Opinion in Genetics&Development,12(6):657-663
    Nei M, Kumar S.2000.分子进化与系统发育.(吕宝忠等译)北京:高等教育出版社,2002
    Nei M, Maruyama T, Chakraborty R.1975. The bottleneck effect and genetic variability in populations. Evolution,29:1-10
    Novak S J, Mack R N.1993. Genetic variation in Bromus tectorum (Poaceae):comparison between native and introduced populations. Heredity,71:167-176
    Orsini L, Corander J, Alasentie A, Hanski I.2008. Genetic spatial structure in a butterfly metapopulation correlates better with past than present demographic structure. Molecular Ecology,17:2629-2642
    Pashley D P, Bush G L. The use of allozymes in studying insect movement with special reference to the codling moth, Laspeyresia pomonella (L.)(Olethreutidae). In: Movement of highly mobile insects: concepts and methodology in research.(Eds.) by Rabb R L, Kennedy G G. North Carolina State University Press, Raleigh, NC,333-341
    Piry S, Luikart G, Cornuet J M. BOTTLENECK: A computer program for detecting recent reductions in effective population size from allele frequency data. Journal of Heredity,90:502-503
    Primmer C R, Saino N, Mφller A P, Ellegren H.1998. Unraveling the processes of microsatellite evolution through analysis of germ line mutations in barn swallows, Hirundo rustica. Molecular Biology and Evolution,15:1047-1054
    Ramachandran S, Deshpande O, Roseman C C, Rosenberg N A, Feldman M W, Cavalli-Sforza L L.2005. Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proceedings of National Academy Sciences of the United States of America,102:15942-15947
    Roff D A.1994. The evolution of flightlessness:is history important? Evolutionary Ecology,8:639-657
    Roman J, Darling J A.2007. Paradox lost:genetic diversity and success of aquatic invasions. Trends in Ecology&Evolution,22:454-464
    Rousset F.2008. GENEPOP'007:a complete re-implementation of the GENEPOP software for Windows and Linux. Molecular Ecology Resources,8(1):103-106
    Sanger F, Nicklen S, Coulson A R.1977. DNA sequencing with chain-terminating inhibitors. Proceedings of National Academy Sciences of the United States of America,74:5463-5467
    Schuelke M.2000. An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology,18:233-234
    Schumacher P, Weyeneth A, Weber D C, Dorn S.1997. Long flight in Cydia pomonella L.(Lepidoptera: Tortricidae) measured by a flight mill:influence of sex, mated status and age. Physiological Entomology,22:149-160
    Shel'Deshova G G.1967. Ecological factors determining distribution of the codling moth Laspeyresia pomonella L.(Lepidoptera, Tortricidae) in the northern and southern hemispheres. Annual Review of Entomology,46:349-359
    Skinner D M, Beattie W G, Blattner F R, et al.1974. The repeat sequence of a hermit crab satellite deoxyribonucleic acid is (-T-A-G-G-)n.(-A-T-C-C-)n. Biochemistry,13:3930-3937
    Slatkin M.1993. Isolation by distance in equilibrium and non-equilibrium populations. Evolution,47:264-279
    Smithies O.1955. Grouped variation in the occurrence of new protein components in normal human serum. Nature,175:307-308
    Smulders M J.1997. Use of short microsatellite from database sequence to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of others Lycopersicon species. Theoretical Applied Genetics,97:264-272
    Sokolowski.1980. Effect of temperature on the embryonic development of the codling moth. Polkie Pismo Entomologniczne,48(2):237-244
    Stich B, Melchinger A E, Piepho H P, Hamrit S, Schipprack W, Maurer H P, Reif J C.2007. Potential causes of linkage disequilibrium in a European maize breeding program investigated with computer simulations. Theoretical Applied Genetics,115(4):529-536
    Stone G N, Atkinson R J, Brown G, et al.2002. The population genetic consequences of range expansion: A review of pattern and process, and the value of oak gallwasps as a model system. Biodiversity Science,10(1):80-97
    Szpiech Z A, Jakobsson M, Rosenberg N A.2008. ADZE:a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics,24:2498-2504
    Thaler R, Brandstatter A, Meraner A, Chabicovski M, Parson M, Zelger R, Dalla Via J, Dallinger R.2008. Molecular phylogeny and population structure of the codling moth(Cydia pomonella) in Central Europe:Ⅱ. AFLP analysis reflects human-aided local adaptation of a global pest species. Molecular phylogenetics and Evolution,48:838-849
    Timm A E, Geertsema H, Warnich L.2006. Gene flow among Cydia pomonella (Lepidoptera:Tortricidae) geographic and host populations in South Africa. Journal of Economic Entomology,99:341-348
    Torriani M V G, Mazzi D, Hein S, Dorn S.2010. Structured populations of the oriental fruit moth in an agricultural ecosystem. Molecular Ecology,19:2651-2660
    Tsutsui N D, Suarez A V, Holway D A, Case T J.2000. Reduced genetic variation and the success of an invasive species. Proceedings of National Academy Sciences of the United States of America,97:5948-5953
    Van Oosterhout C, Hutchinson W F, Wills D P M, Shipley P.2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes,4:535-538
    Vignal A, Milan D, SanCristobal M, Eggen A.2002. A review on SNP and other types of molecular markers and their use in animal genetics. Genetics Selection Evolution,34:275-305
    Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M.1995. AFLP:A new technique for DNA fingerprinting. Nucleic Acids Research,23:4407-4414
    Watts P C, Keat S, Thompson D J.2010. Patterns of spatial genetic structure and diversity at the onset of a rapid range expansion:colonization of the UK by the small red-eyed damselfly Erythromma viridulum. Biological Invasions,12:3887-3903
    Wellenreuther M, Sanchez-Guillen R A, Cordero-Rivera A, Svensson E I, Hansson B.2011. Environmental and Climatic Determinants of Molecular Diversity and Genetic Population Structure in a Coenagrionid Damselfly. PLoS ONE,6(6):e20440
    Williams J G K, Kubelik A R, Livak K J, Rafalski J A, Tingey S V.1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research,18:6531-6535
    Wondji C S, Hemingway J, Ranson H.2007. Identification and analysis of Single Nucleotide Polymorphisms (SNPs) in the mosquito Anophelesfunestus, malaria vector. BMCGenomics,8:5.
    Wright S.1951. The genetical structure of populations. Annals of Eugenics,15:323-354
    Wright S.1969. Evolution and the Genetics of Populations.vol.2. The Theory of Gene Frequencies. University of Chicago Press, Chicago,211-220
    Wright S.1978. Evolution and Genetics of Population. University of Chicago, Chicago.
    Zhou Y, Gu H N, Dorn S.2005. Isolation of microsatellite loci in the codling moth, Cydia pomonella (Lepidoptera:Tortricidae). Molecular Ecology Notes,5:226-227
    Zuckerkandle E, Pauling L.1965. Evolutionary divergence and convergence in proteins. In: Evolving Genes and Proteins.(Eds.) by Bryson V, Vogel H J. Academic Press, New York, pp.97-166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700