花生四烯酸细胞色素P450表氧化酶代谢产物EET抗脂多糖诱导的内皮细胞凋亡的保护作用及作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:表氧化二十碳三烯酸(Epoxyeicosatrienoic Acids, EETs)是花生四烯酸(Arachidonic Acid,AA)经细胞色素P450(Cytochrome P450 , CYP450)表氧化酶代谢产生的生物活性物质。AA是人体内多种重要心血管活性物质的前体,主要是以酯化的形式存在于细胞膜的内表面,在脂解激素作用下可由磷脂酶A2水解释放至细胞浆内。对AA的研究已有多年,最为人们熟知的是环氧化酶和脂质氧化酶代谢途径,近年研究发现还可通过细胞色素P450途径代谢(即AA代谢的第三条途径),AA经表氧化酶代谢产生四种EETs (5,6-, 8,9-, 11,12-和14,15-EET)。EETs具有与一氧化氮(NO)和前列环素(PGI2)相似的舒张血管的特性,由于早期研究发现它通过激活钙离子敏感的钾通道,使平滑肌细胞处于超极化状态而扩张血管,因此被提议为内皮源性超极化因子(Endothelium-Derived Hyperpolaring Factors , EDHFs)。近几年的研究发现,EETs在脉管系统中发挥着扩张血管以外的多种重要生物学作用,例如,生理量的EETs(100nM)或过度表达CYP-2J2可以减少细胞因子诱导的内皮细胞粘附分子的表达。国外已有学者研究发现EETs具有抗过氧化氢、鬼臼乙叉苷等因素诱导LLCPKcl4细胞凋亡的作用,然而EETs是否也具有抑制LPS诱导牛主动脉内皮细胞的凋亡作用,尚无相关报道。本研究通过给予BAECs外源性的EETs或重组腺相关病毒(recombinant adeno-associated virus,rAAV)介导的表氧化酶基因过度表达,研究它们对LPS诱导BAECs凋亡的影响,同时对其相关的信号转导机制进行初步探讨。
     方法:在原代培养的BAECs中,分别给予三种外源性EETs(8,9-, 11,12-,和14,15-EET)一小时后或利用重组腺相关病毒转染细胞色素P450表氧化酶基因CYP-2C11OR, CYP-2J2和CYP-F87V一周后,用LPS(100ng/ml)诱导内皮细胞凋亡,通过细胞形态学(吖啶橙/溴化乙锭染色)、Caspase3活性检测和流式细胞仪计数观察其凋亡变化,同时用Western blot法检测抗凋亡蛋白Bcl-2的表达水平,以及信号分子PI-3K/AKT和丝裂原活化蛋白激酶(MAPK)P38、ERK1/2的磷酸化水平。分别用MEK抑制剂PD 98059、MAPK抑制剂Apigenin、PI-3K抑制剂LY 294002和AKT抑制剂预处理细胞后,观察EETs对LPS诱导的BAECs凋亡的影响。
     结果:LPS对BAECs的毒性作用呈剂量依赖性和时间依赖性。LPS可明显诱导BAECs凋亡,但8,9-, 11,12-,和14,15-EET干预的BAECs凋亡细胞数(分别为37.03%±3.014%、33.45%±7.918%和35.75%±7.858% )明显少于溶媒对照组(47.33%±3.154%)。同样地,转染细胞色素P450表氧化酶基因后,由LPS诱导的凋亡细胞数明显少于对照组。而内源性P450表氧化酶抑制剂17-ODYA处理组的凋亡细胞数明显高于对照组。EET处理组和转基因组BAECs的Bcl-2和PI-3K表达水平,ERK1/2和AKT的磷酸化水平均高于对照组,P38磷酸化水平低于对照组。而17-ODYA处理组亦与之相反。MEK抑制剂PD 98059、MAPK抑制剂Apigenin、PI-3K抑制剂LY 294002和AKT抑制剂均可部分阻断EETs的作用。
     结论:细胞色素P450表氧化酶代谢产物EETs能明显的抑制LPS诱导的BAECs凋亡,其机制可能是EETs通过下调P38的磷酸化水平,增加ERK的磷酸化水平,减缓Bcl-2的降解,以及激活PI-3K/AKT和其他多条途径发挥抗凋亡作用。这表明细胞色素P450表氧化酶可能有保护心血管系统,防止其受到炎症损伤的作用。
Background:The epoxyeicosatrienoic acids (EETs) are cytochrome P450 (CYP) epoxygenase arachidonic acid (AA) metabolites. AA is present in vivo in the form esterified to glycerophospholipids inside of cell membrane. Activation of phospholipases (e.g. cytosolic phospholipase A2) releases free AA from the phospholipid (PL) pools and makes it available for oxidative metabolism by several enzyme systems. The PGHSs and LOXs have been extensively studied, and the“third pathway”of AA metabolism was found, wherein multiple cytochrome P450 epoxygenases metabolize AA to four epoxyeicosatrienoic acid regiosomes: 5,6-EET, 8,9-EET, 11,12-EET and 14,15-EET. EETs have vasodilatory properties similar to that of nitrogen monoxidum(NO)and prostacyclin(PGI2). Early studies have demonstrated that EETs could make smooth muscle cell (SMC) hyperpolarized through opening Ca2+-sensitive potassium channel(KCa2+), so EETs was proposed to be endothelial derived hyperpolarizing factors (EDHFs). EETs have recently been shown to play important nonvasodilatory roles within the vasculature, for example, physiological concentrations (100nM) of EETs or overexpression of human CYP2J2 decreased cytokine-induced endothelial cell adhesion molecule expression. In recent years, mang studies have already shown that EETs could inhibit LLCPKcl4 cell apoptosis induced by H2O2, etoposide etc. However, it remains elucidated whether EETs can protect bovine aortic endothelial cells (BAECs) against apoptosis induced by LPS. In this study, therefore, we investigated the effects of endogenous and exogenous EETs on apoptosis of BAECs induced by LPS and the relevant signaling mechanisms involved.
     Methods: CYP expoxygenase genes, CYP2C11OR, CYP2J2 and CYPF87V were transfected into cultured BAECs for 1 weeks using recombinant adeno-associated viral vector (rAAV), or EETs were added into the culture medium directly. BAECs were treated with LPS (100 ng/ml) or pretreated with mitogenactivated protein kinase kinase inhibitor PD98059, mitogenactivated protein kinase inhibitor Apigenin, phosphatidylinositol-3 (PI-3) kinase inhibitor LY294002 and inhibitor of AKT. Apoptosis was detected by morphological observations (Acridine Orange/Ethidium Bromide staining), flow cytometry assay and Caspase3 activity assay. As well the level of bcl-2, PI-3K, phospho-Akt, mitogen-activated protein kinase (MAPK) phospho-P38 and the phospho-ERK1/2 were probed using corresponding antibodies by Western blots. Results: LPS treatment significantly induced BAEC apoptosis, but incubation with 8,9-, 11,12-, and 14,15-EET markedly attenuated LPS-induced BAEC apoptosis (37.03%±3.014%, 33.45%±7.918% and 35.75%±7.858%, respectively) compared with vehicle control (47.33%±3.154%). Also CYP epoxygenase genes attenuated LPS-induced BAEC apoptosis and significantly reduced the ratios of apoptic BAECs. Moreover, addition of CYP epoxygenase inhibitor 17-ODYA reversed antiapoptic effects of epoxygenase gene overexpressions. Furthermore, in BAECs pretreated with EET or transfected with cytochrome P450 epoxygenase, the expression of Bcl-2, PI-3K, phosphorylation of ERK1/2, phosphorylation of Akt were significantly increased compared with that of controls, in contrast, phosphorylation of P38 were less. The antiapoptotic effects of EETs were partially blocked by mitogen activated protein kinase kinase inhibitor PD98059, mitogenactivated protein kinase inhibitor Apigenin, PI-3K inhibitor LY294002 and inhibitor of Akt.
     Conclusion: LPS induced apoptosis of the cultured endothelial cells and EETs as well as forced overexpression of epoxygenase genes can inhibits LPS-induced endothelial apoptosis partially by activation of MAPK and PI-3K/Akt pathways, which may reduce degradation of bcl-2 and activation of caspase-3. These results suggest that CYP epoxygenases may protect cardiovascular system from inflammatory injury and atherosclerosis.
引文
1. Kuan NK, Passaro E, Jr. Apoptosis: programmed cell death. Arch Surg. Jul 1998;133(7):773-775.
    2. Cummings MC, Winterford CM, Walker NI. Apoptosis. Am J Surg Pathol. Jan 1997;21(1):88-101.
    3. Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol. Jan 1995;146(1):3-15.
    4. Montague JW, Cidlowski JA. Cellular catabolism in apoptosis: DNA degradation and endonuclease activation. Experientia. Oct 31 1996;52(10-11):957-962.
    5. Cines DB, Pollak ES, Buck CA, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. May 15 1998;91(10):3527-3561.
    6. Bannerman DD, Goldblum SE. Direct effects of endotoxin on the endothelium: barrier function and injury. Lab Invest. Oct 1999;79(10):1181-1199.
    7. Olson NC, Hellyer PW, Dodam JR. Mediators and vascular effects in response to endotoxin. Br Vet J. Sep-Oct 1995;151(5):489-522.
    8. Stefanec T. Endothelial apoptosis: could it have a role in the pathogenesis and treatment of disease? Chest. Mar 2000;117(3):841-854.
    9. Ulevitch RJ, Cochrane CG, Henson PM, et al. Mediation systems in bacterial lipopolysaccharide-induced hypotension and disseminated intravascular coagulation. I. The role of complement. J Exp Med. Dec 1 1975;142(6):1570-1590.
    10. Lehr HA, Bittinger F, Kirkpatrick CJ. Microcirculatory dysfunction in sepsis: a pathogenetic basis for therapy? J Pathol. Feb 2000;190(3):373-386.
    11. Hoyt DG, Mannix RJ, Gerritsen ME, et al. Integrins inhibit LPS-induced DNAstrand breakage in cultured lung endothelial cells. Am J Physiol. Apr 1996;270(4 Pt 1):L689-694.
    12. Varani J, Ward PA. Mechanisms of endothelial cell injury in acute inflammation. Shock. Nov 1994;2(5):311-319.
    13. Frey EA, Finlay BB. Lipopolysaccharide induces apoptosis in a bovine endothelial cell line via a soluble CD14 dependent pathway. Microb Pathog. Feb 1998;24(2):101-109.
    14. Makita K, Falck JR, Capdevila JH. Cytochrome P450, the arachidonic acid cascade, and hypertension: new vistas for an old enzyme system. Faseb J. Nov 1996;10(13):1456-1463.
    15. Zeldin DC. Epoxygenase pathways of arachidonic acid metabolism. J Biol Chem. Sep 28 2001;276(39):36059-36062.
    16. Campbell WB, Gebremedhin D, Pratt PF, et al. Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ Res. Mar 1996;78(3):415-423.
    17. Capdevila JH, Falck JR, Harris RC. Cytochrome P450 and arachidonic acid bioactivation. Molecular and functional properties of the arachidonate monooxygenase. J Lipid Res. Feb 2000;41(2):163-181.
    18. Gauthier KM, Deeter C, Krishna UM, et al. 14,15-Epoxyeicosa-5(Z)-enoic acid: a selective epoxyeicosatrienoic acid antagonist that inhibits endothelium-dependent hyperpolarization and relaxation in coronary arteries. Circ Res. May 17 2002;90(9):1028-1036.
    19. Miura H, Gutterman DD. Human coronary arteriolar dilation to arachidonic acid depends on cytochrome P-450 monooxygenase and Ca2+-activated K+ channels. Circ Res. Sep 7 1998;83(5):501-507.
    20. Graier WF, Simecek S, Sturek M. Cytochrome P450 mono-oxygenase-regulated signalling of Ca2+ entry in human and bovine endothelial cells. J Physiol. Jan 15 1995;482 ( Pt 2):259-274.
    1. Capdevila J, Chacos N, Werringloer J, et al. Liver microsomal cytochrome P-450 and the oxidative metabolism of arachidonic acid. Proc Natl Acad Sci U S A. Sep 1981;78(9):5362-5366.
    2. Capdevila JH, Wei S, Yan J, et al. Cytochrome P-450 arachidonic acid epoxygenase. Regulatory control of the renal epoxygenase by dietary salt loading. J Biol Chem. Oct 25 1992;267(30):21720-21726.
    3. VanRollins M, Kaduce TL, Knapp HR, et al. 14,15-Epoxyeicosatrienoic acid metabolism in endothelial cells. Journal of Lipid Research. 1993;34:1931-1942.
    4. Liu D, Zhang D, Scafidi J, et al. C1 inhibitor prevents Gram-negative bacterial lipopolysaccharide-induced vascular permeability. Blood. Mar 152005;105(6):2350-2355.
    5. Node K, Huo Y, Ruan X, et al. Anti-inflammatory Properties of Cytochrome P450 Epoxygenase-Derived Eicosanoids. SCIENCE. 1999;285:1276-1279.
    6. Harder DR, Campbell WB, Roman RJ. Role of citochrome P450 enzymes and metabolites of arachidonic acid in the control of vascular tone. J Vasc Res. 1995;32:79-92.
    7. Takahashi A, Kono K, Ichihara F, et al. Vascular endothelial growth factor inhibits maturation of dendritic cells induced by lipopolysaccharide, but not by proinflammatory cytokines. Cancer Immunol Immunother. Jun 2004;53(6):543-550.
    8. Chen J-K, Capdevila J, Harris RC. Cytochrome P450 Epoxygenase Metabolism of Arachidonic Acid Inhibits Apoptosis. MOLECULAR AND CELLULAR BIOLOGY. 2001;21(18):6322-6331.
    9. Harrison LM, Cherla RP, van den Hoogen C, et al. Comparative evaluation of apoptosis induced by Shiga toxin 1 and/or lipopolysaccharides in human monocytic and macrophage-like cells. Microb Pathog. Feb-Mar 2005;38(2-3):63-76.
    10. Campbell WB, Gebremedhin D, Pratt PF, et al. Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ Res. Mar 1996;78(3):415-423.
    11. Graier WF, Simecek S, Sturek M. Cytochrome P450 mono-oxygenase-regulated signalling of Ca2+ entry in human and bovine endothelial cells. J Physiol. Jan 15 1995;482 ( Pt 2):259-274.
    12. Burns KD, Capdevila J, Wei S, et al. Role of cytochrome P-450 epoxygenase metabolites in EGF signaling in renal proximal tubule. Am. J. Physiol. 1995;269(c831-c840).
    13. Chen J-K, Wang DW, Falck JR, et al. Transfection of an active cytochrome P450 arachidonic acid epoxygenase indicates that 14,15-epoxyeicosatrienoic acidfunctions as an intracellular second messenger in response to epidermal growth factor. J. Biol. Chem. 1999;274(4764-4769).
    14. Bonvalet JP, Pradelles P, Farman N. Segmental synthesis and actions of prostaglandins along the nephron. Am. J. Physiol. 1987;253:F377-F387.
    15. Endou H. Cytochrome P-450 monooxygenase system in the rabbit kidney: its intranephron localization and its induction. Jpn. J. Pharmacol. 1983;33(423-433).
    16. Cines DB, Pollak ES, Buck CA, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. May 15 1998;91(10):3527-3561.
    17. Morrison DC, Ulevitch RJ. The effects of bacterial endotoxins on host mediation systems. Am J Pathol. 1978;93:526-617.
    18. Bannerman DD, Sathyamoorthy M, Goldblum SE. Bacterial lipopolysaccharide disrupts endothelial monolayer integrity and survival signaling events through caspase cleavage of adherens junction proteins. J Biol Chem. 1998;273:35371-35380.
    19. Frey EA, Finlay BB. Lipopolysaccharide induces apoptosis in a bovine endothelial cell line via a soluble CD14 dependent pathway. Microb Pathog. Feb 1998;24(2):101-109.
    20. Choi KB, Wong F, Harlan JM, et al. Lipopolysaccharide mediates endothelial apoptosis by a FADD-dependent pathway. J Biol Chem. 1998;273:20185-20188.
    21. Muschen M, Warskulat U, Douillard P, et al. Regulation of CD95 (APO-1/Fas) receptor and ligand expression by lipopolysaccharide and dexamethasone in parenchymal and nonparenchymal rat liver cells. Hepatology. Jan 1998;27(1):200-208.
    22. Harlan JM, Harker LA, Reidy MA, et al. Lipopolysaccharide-mediated bovine endothelial cell injury in vitro. Lab Invest. 1983;48:269-274.
    23. Bannerman DD, Tupper JC, Ricketts WA, et al. A constitutive cytoprotective pathway protects endothelial cells from lipopolysaccharide-induced apoptosis. J Biol Chem. May 4 2001;276(18):14924-14932.
    24. Zeng Y, Qiao Y, Zhang Y, et al. Effects of fluid shear stress on apoptosis of cultured human umbilical vein endothelial cells induced by LPS. Cell Biol Int. Nov 2005;29(11):932-935.
    25. Gupta K, Kshirsagar S, Li W, et al. VEGF prevents apoptosis of human microvascular endothelial cells via opposing effects on MAPK/ERK and SAPK/JNK signaling. Exp Cell Res. 1999;247:495-504.
    26. Dimmeler S, Assmus B, Hermann C, et al. Fluid shear stress stimulates phosphorylation of Akt in human endothelial cells: involvement in suppression of apoptosis. Circ Res. 1998;83:334-341.
    27. Zen K, Karsan A, Stempien-Otero A, et al. NF-kappaB activation is required for human endothelial survival during exposure to tumor necrosis factor-alpha but not to interleukin-1beta or lipopolysaccharide. J Biol Chem. Oct 1 1999;274(40):28808-28815.
    28. Bannerman DD, Tupper JC, Erwert RD, et al. Divergence of bacterial lipopolysaccharide pro-apoptotic signaling downstream of IRAK-1. J Biol Chem. Mar 8 2002;277(10):8048-8053.
    1. Pinner RW, Teutsch SM, Simonsen L, et al. Trends in infectious diseases mortality in the United States. JAMA. 1996;275:189-193.
    2. Levi M, ten CH, van dPT, et al. Pathogenesis of disseminated intravascular coagulation in sepsis. JAMA. 1993;270:975-979.
    3. Hinshaw LB. Sepsis/septic shock: participation of the microcirculation: an abbreviated review. Crit Care Med. 1996;24:1072-1078.
    4. Beal AL, Cerra FB. Multiple organ failure syndrome in the 1990s. Systemic inflammatory response and organ dysfunction. JAMA. 1994;271:226-233.
    5. Brandtzaeg P, Kierulf P, Gaustad P, et al. Plasma endotoxin as a predictor of multiple organ failure and death in systemic meningococcal disease. J Infect Dis. 1989;159:195-204.
    6. Curzen NP, Griffiths MJ, Evans TW. Role of the endothelium in modulating the vascular response to sepsis. Clin Sci(Lond). 1994;86:359-374.
    7. Cybulsky MI, Chan MK, Movat HZ. Acute inflammation and microthrombosis induced by endotoxin, interleukin-1, and tumor necrosis factor and their implication in gram-negative infection. Lab Invest. 1988;58:365-378.
    8. Cines DB, Pollak ES, Buck CA, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 1998;91:3527-3561.
    9. Bannerman DD, Goldblum SE. Direct effects of endotoxin on the endothelium: barrier function and injury. Lab Invest. Oct 1999;79(10):1181-1199.
    10. Rietschel ET, Brade H, Holst O, et al. Bacterial endotoxin: Chemical constitution, biological recognition, host response, and immunological detoxification. Curr Top Microbiol Immunol. 1996;216:39-81.
    11. Brigham KL, Meyrick B. Endotoxin and lung injury. Am Rev Respir Dis. 1986;133:913-927.
    12. Haimovitz-Friedman A, Cordon-Cardo C, Bayoumy S, et al. Lipopolysaccharide induces disseminated endothelial apoptosis requiring ceramide generation. J Exp Med. Dec 1 1997;186(11):1831-1841.
    13. Stefanec T. Endothelial apoptosis: could it have a role in the pathogenesis and treatment of disease? Chest. 2000;117:841-854.
    14. Reed JC. Mechanisms of apoptosis. Am J Pathol. 2000;157:1415-1430.
    15. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science. 1998;281:1312-1316.
    16. Bannerman DD, Sathyamoorthy M, Goldblum SE. Bacterial lipopolysaccharide disrupts endothelial monolayer integrity and survival signaling events through caspase cleavage of adherens junction proteins. J Biol Chem. 1998;273:35371-35380.
    17. Choi KB, Wong F, Harlan JM, et al. Lipopolysaccharide mediates endothelial apoptosis by a FADD-dependent pathway. J Biol Chem. 1998;273:20185-20188.
    18. Rietschel ET, Kirikae T, Schade FU, et al. Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J. 1994;8:217-225.
    19. Ulevitch RJ, Tobias PS. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol. 1995;13:437-457.
    20. Frey EA, Finlay BB. Lipopolysaccharide induces apoptosis in a bovine endothelial cell line via a soluble CD14 dependent pathway. Microb Pathog. Feb 1998;24(2):101-109.
    21. Poltorak A, He X, Smirnova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998;282:2085-2088.
    22. rmler M, Thome M, Hahne M, et al. Inhibition ofdeath receptor signals by cellular FLIP. Nature. 1997;388:190-195.
    23. Chen CC, Rosenbloom CL, Anderson DC, et al. Selective inhibition of E-selectin, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1 expression by inhibitors of IκB-α phosphorylation. J Immunol. 1995;155:3538-3545.
    24. Ryan KM, Ernst MK, Rice NR, et al. Role of NF-κB in p53-mediated programmed cell death. Nature. 2000;404:892-897.
    25. LaCasse EC, Baird S, Korneluk RG, et al. The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene. 1998;17:3247-3259.
    26. Bannerman DD, Tupper JC, Ricketts WA, et al. A constitutive cytoprotective pathway protects endothelial cells from lipopolysaccharide-induced apoptosis. J Biol Chem. May 4 2001;276(18):14924-14932.
    27. Zen K, Karsan A, Stempien-Otero A, et al. NF-kappaB activation is required for human endothelial survival during exposure to tumor necrosis factor-alpha but not to interleukin-1beta or lipopolysaccharide. J Biol Chem. Oct 1 1999;274(40):28808-28815.
    28. Bannerman DD, Tupper JC, Erwert RD, et al. Divergence of bacterial lipopolysaccharide pro-apoptotic signaling downstream of IRAK-1. J Biol Chem. Mar 8 2002;277(10):8048-8053.
    29. Karahashi H, Amano F. Changes of caspase activities involved in apoptosis of amacrophage-like cell line J774.1/JA-4 treated with lipopolysaccharide (LPS) and cycloheximide. Biol Pharm Bull. 2000;23:140-144.
    30. Kawasaki M, Kuwano K, Hagimoto N, et al. Protection from lethal apoptosis in lipopolysaccharide-induced acute lung injury in mice by a caspase inhibitor. Am J Pathol. Aug 2000;157(2):597-603.
    31. Erwert RD, Winn RK, Harlan JM, et al. Shiga-like toxin inhibition of FLICE-like inhibitory protein expression sensitizes endothelial cells to bacterial lipopolysaccharide-induced apoptosis. J Biol Chem. 2002;277(43):40567-40574.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700