映山红花总黄酮对全脑缺血大鼠脑基底动脉产生的内皮衍生超级化因子反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内皮衍生超极化因子(endothelium dependent hyperpolarizing factor , EDHF)是由内皮细胞产生的非一氧化氮(nitric oxide, NO)、非前列环素(prostacyclin , PGI2 )的一类具有舒血管作用的物质。研究表明在多种属﹑多部位的血管如人、犬冠状动脉﹑小鼠肠系膜动脉以及猪冠状动脉中均发现存在EDHF。它们和内皮素、血栓素A_2等血管收缩因子协同作用,调节局部血管紧张度和血流量。在缺氧、酸中毒等病理情况下,EDHF通过舒张血管对器官血液供应的维持有着重要的意义。但在脑缺血模型脑血管中,EDHF化学本质尚不清楚。
     映山红花总黄酮(total flavones of rhododendra, TFR)是从杜鹃科植物映山红花中提取的有效成分。前期研究表明TFR具有止咳、祛痰,镇痛,抗炎,心肌缺血保护作用。张建华在实验研究中表明TFR对正常大鼠脑基底动脉具有舒张作用。本实验探讨在大鼠全脑缺血模中,离体大鼠脑基底动脉血管舒张作用有无EDHF反应,并研究TFR的EDHF作用及其可能的机制。
     目的:
     1.观察TFR诱导的全脑缺血再灌大鼠脑基底动脉产生EDHF介导的平滑肌细胞的超级化作用和舒张作用;
     2.探讨TFR抗大鼠脑缺血再灌注损伤作用的EDHF机制及与钾离子通道的关系。
     方法:
     1.四血管结扎法建立大鼠全脑缺血模型。
     2.采用细胞内电位记录实验方法,观察并测定血管平滑肌细胞膜电位超极化的变化。
     3.采用离体血管舒缩功能测定法,将大鼠脑基底动脉置于灌流浴槽中,观察并测量血管直径的变化。
     4.急性消化分离基底动脉平滑肌细胞,全细胞膜片钳法记录大鼠基底动脉平滑肌细胞钾电流的变化。
     结果:
     1四血管结扎法造大鼠全脑缺血模型,脑缺血时大鼠的脑电图幅度迅速下降,再灌注后脑电图的幅度逐渐恢复。分析大鼠脑电图,四血管结扎法成功建造大鼠全脑缺血模型。
     2在实验中,应用NO合酶抑制剂(L-NAME,3×10~(-5)mol/L)和PGI_2合酶抑制剂(Indomethacin,10~(-5)mol/L), ACh可引起全脑缺血再灌大鼠CBA平滑肌细胞产生浓度依赖性的显著的平滑肌细胞超极化作用和血管舒张作用;
     3在实验中,应用NO合酶抑制剂(L-NAME,3×10-5mol/L)和PGI2合酶抑制剂(Indomethacin,10~(-5)mol/L),不同浓度的TFR均可诱导全脑缺血再灌大鼠CBA平滑肌细胞产生浓度依赖性的平滑肌细胞超极化作用和血管舒张作用。
     4全细胞膜片钳记录平滑肌细胞钙激活的钾电流实验中发现,TFR(300~ 2700 mg/L)能使胶原酶消化的全脑缺血大鼠基底动脉平滑肌细胞的KCa外向电流呈现浓度依赖性的增强。
     结论:
     1.全脑缺血再灌模型可明显增强大鼠CBA中非NO、非PGI_2介导的平滑肌细胞超级化和血管舒张,即EDHF反应,的敏感性。
     2.映山红花总黄酮TFR能明显地诱导全脑缺血再灌大鼠CBA产生浓度依赖性的非NO、非PGI_2介导的血管平滑肌细胞超级化作用和血管舒张作用,即EDHF反应;
     3. TFR介导的全脑缺血再灌大鼠CBA的EDHF反应可以被内源性H_2S合成酶CSE的阻断剂PPG所抑制,提示其TFR介导的EDHF反应可能涉及到硫化氢的生成;
     4. TFR介导的全脑缺血再灌大鼠CBA的EDHF反应机制涉及K通道的作用。
     5.映山红花总黄酮TFR作为抗脑缺血再灌注损伤的新药开发有潜在的临床应用价值。
The vascular endothelium releases endothelium-derived relaxing factors in response to some agonists or physical stimuli that mediate relaxation. These factors include nitric oxide (NO), prostacyclin (PGI2), and several factors called endothelium-derived hyperpolarizing factors (EDHFs). At present, the role of EDHF has been researched in various peripheral vascular beds including coronary artery of human and dog , mesenteric artery of rats.
     Total flavones of rhododendra (TFR) was extracted from the flower of total flavones of Rhododendra. The essential components of TFR are hyperin, quercetin and other flavonoids. It has been preliminary assessed to be of protection against myocardial and cerebral ischemia. In this study, it was studied that EDHF-mediated responses of relaxation and hyperpolarization of vascular smooth muscle cell (VSMC) induced by TFR in rat cerebral basilar artery (CBA) subjected to cerebral ischemia/reperfusion (I/R) .
     Purpose:
     1. To study the EDHF-mediated hyperpolarization of VSMC and vasorelaxtion relaxation induced by TFR in rat CBA subjected I/R.
     2. To investigate the effects of TFR on outwardand K+ currents in rat CBA VSMC.
     Method:
     1. Cerebral ischemia reperfusion was induced by 4-vessle occlusion (4-VO) in rat.
     2. Isolated rat CBA segmnts were suspended in baths containing PSS solution, the relaxation was observed by using measurement of vessel diameter.
     3. Transmembrane potentials were recorded to evaluate the hyperpolarization effects in rat CBA VSMC.
     4. Whole-cell patch clamp recording was used to measure the Ca2+-activated potassium (Kca) current in rat CBA VSMC.
     Results:
     1. In the presence of 3×10~(-5) mol/L Nω-nitro-L–arginine-methyl-ester (L-NAME, an inhibitor of nitric oxide synthase) and 1×10~(-5) mol/L indomethacin (Indo, an inhibitor of PGI_2 synthesis), the globa cerebral I/R markedly enhanced 1×10-7 ~ 1×10~(-5) mol/L acetylcholine-elicited hyperpolarization of RMP of VSMC and vasorelaxation in rat CBA,respetively.
     2. In the presence of L–NAME and Indo, 11 ~ 2700 mg/L TFR induced significant and dose-dependent hyperpolarization of RMP of VSMC and vasorelaxation in rat CBA subjected to global cerebral I/R.
     3. The hyperpolarization and relaxation were obviously inhibited by tetraethylammonium (an inhibitor of IKCa at 1 mmol/L) and 1×10-4 mol/L DL-propargylglycine, an inhibitor of endogenous hydrogen sulfide (H_2S) synthase.
     4. 300~2700mg/L TFR markedly enhanced the Ca2+-activated potassium (Kca) current in rat CBA VSMC.
     Conclusions:
     1. Global cerebral I/R could enhance the non-NO-non-PGI_2–mediated responses of hyperpolarization and vasorelaxation in rat CAB.
     2. In rat CAB subjected to global cerebral I/R, TFR significantly induced EDHF-mediated the responses of hyperpolarization and relaxation, and the response may be related to endogenous H_2S.
引文
[1] Cohen RA. The endothelium-derived hyperpolarizing factor puzzle: a mechanism without a mediator? [J]. Circulation, 2005, 111(6):724-7.
    [2] Yada T, Shimokawa H, Hiramat su O, et al. Hydrogen peroxide, an endogenous endothelium derived hyperpolarizing factor, plays an important role in coronary autoregulation in vivo [J]. Circulation, 2003, 107 (7):1040 -5.
    [3] Miura H, Bosnjak JJ, Ning G, et al . Role for hydrogen peroxide in flow- induced dilation of human coronary arterioles [J]. Circ Res, 2003, 92(2): e31- e40.
    [4] Matoba T, Shimokawa H, Nakashima M, et al. Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice [J]. Clin Invest, 2000, 106 (12):1521-30.
    [5] Fisslthaler B, Popp R, Kiss L, et al. Cytochrome P450 2C is an EDHF synthase in coronary arteries [J]. Nature, 1999, 401(6752):493-7.
    [6] Mechanical and electrical properties of smooth muscle cells and their regulations by endothelium-derived factors in the guinea pig coronary artery.Nishiye E, Chen GF, Hirose T, Kuriyama H.Jpn J Pharmacol. 1990 Dec;54(4):391-405.
    [7]张建华,陈志武.大鼠脑基底动脉舒张作用的EDHF机制及杜鹃花总黄酮的作用.中国博士学位论文数据库.2009.
    [8]郭岩,陈志武.映山红总黄酮对脑缺血再灌注损伤的保护作用及其机制.中国博士学位论文数据库.2008.
    [9] Archer SL,Gragasin FS,Wu X,et al.Endothelium-derived hyperpolarizing factor in human internal mammary artery is 11,12-epoxyeicosatrienoic acid and causes relaxation by activating smooth muscle BK(Ca) channels [J]. Circulation. 2003; 107(5): 769-76.
    [10]Bauersachs J,Hecker M,Busse R.Display of the characteristics of endothelium-derived hyperpolarizing factor by a cytochrome P450-derived arachidonic acid metabolite in the coronary microcirculation [J].Br J Pharmacol.1994; 113(4):1548-53.
    [11] Matoba T,Shimokawa H,Nakashima M,et al.Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice [J].J Clin Invest. 2000;106 (12): 1521-30.
    [12] Chaytor AT,Martin PE,Edwards DH,et al.Gap junctional communication underpins EDHF-type relaxations evoked by ACh in the rat hepatic artery [J].Am J Physiol Heart Circ Physiol.2001;280(6):H2441-50.
    [13] GoldP,You J,et al.Endotheliumderived hyperpolarizing factor in the brain:a new regulator of cerebral blood flow? [J].Stroke.2002;33(3):661-3.
    [14] You J,Golding EM,Bryan RM Jr.Arachidonic acid metabolites,hydrogen peroxide,and EDHF in cerebral arteries [J].Am J Physiol Heart Circ Physiol.2005; 289(3):H1077-83.
    [15]过氧化氢和11,12-环氧二十碳三烯酸对内皮依赖性超极化因子介导的脑基底动脉舒张作用的影响.宋标,陈志武[J]中国临床药理学与治疗学[J]. 2010;15(2):121-125
    [16]石琳,杜军保,定方等.高肺血流量对肺血管结构及胱硫醚-γ-裂解酶基因表达的影响[J].北京大学学报(医学版).2003;35(6):566-70
    [17] Zhao W,Wang R.H(2)S-induced vasorelaxation and underlying cellular and molecular mechanisms [J].Am J Physiol Heart Circ Physiol.2002;283(2):H474-80。
    [18] Cellular mechanisms underlying Hyperin-induced relaxation of rat basilar artery. Fan YF, Chen ZW, Guo Y, Wang QH, Song B [J].Fitoterapia. 2011 Feb 12.
    [19]李丽,方芳,陈立峰,方宏桥.满山红的化学成分及药理作用[J].黑龙江医药科学2009,32(3):64-5
    [20] Guo Y, Chen ZW. Protective effects of total flavones of rhododendra on cerebral ischemia reperfusion injury[J]. Am J Chin Med, 2008, 36(2):343-54.
    [21] Yu T, Chen QE, Chen ZW, et al. Protective effects of total flavones of rhododendra against global cerebral ischemia reperfusion injury[J].2009, 37(5):877-87.
    [22] Daidzein and 17 beta-estradiol enhance nitric oxide synthase activity associated with an increase in calmodulin and a decrease in caveolin-1. Woodman OL, Missen MA, Boujaoude M[J].J Cardiovasc Pharmacol. 2004;44(2):155-63.
    [23]A transferable, beta-naphthoflavone-inducible, hyperpolarizing factor is synthesized by native and cultured porcine coronary endothelial cells [J]. Circulation. 1996;94(12):3341-7
    [24] Pulsinelli WA, Brierley JB. A new model of bilateral hemisphericischemia in the unanesthetized rat Stroke, 1979, 10(3):267.
    [25] Miura H,Liu Y,Gutterman DD.Human coronary arteriolar dilation to bradykinin depends on membrane hyperpolarization:contribution of nitric oxide and Ca2+-activated K+channels [J].Circulation.1999;99(24):3132-8.
    [26] Petersen KA,Nilsson E,Olesen J,et al.Presence and function of the calcitonin gene-related peptide receptor on rat pial arteries investigated in vitro and in vivo [J].Cephalalgia.2005;25(6):424-32.
    [27] Najibi S, Cowan CL, Palacino JJ, Cohen RA. Enhanced role of potassium channele in relaxation to acetylcholine in hypercholesterolemic rabbit carotid artery [J]. Am J Physiol, 1994, 266:2061-7.
    [28] Bolton TB,Lang RJ,Takewaki T.Mechanism of action of noradrenaline and carbachol on smooth muscle of guinea-pig anterior mesenteric artery [J].J Physiol. 1984;351:549–572.
    [29] Félétou M,Vanhoutte PM.Endothelium-dependent hyperpolarisation of canine coronary smooth muscle [J].Br J Pharmacol.1988;93(3):515-24.
    [30] Taylor SG,Southerton JS,Weston AH,et al.Endothelium-dependent effects of acetylcholine in rat aorta:a comparison with sodium nitroprusside and cromakalim [J].Br J Pharmacol.1988;94(3):853-63.
    [31] Huang AH,Busse R,Bassenge E.Endothelium-dependent hyperpolarization of mooth muscle cells in rabbit femoral arteries is not mediated by EDRF(nitri coxide)[J].Naunyn-Schmiedebergs Arch Pharmacol.1988;338(4):438-42.
    [32] Nagao T,Vanhoutte PM.Hyperpolarization as a mechanism for endothelium-dependent relaxations in the porcine coronary artery [J].J Physiol. 1992;445:355-67.
    [33] Garland JG,McPherson GA.Evidence that nitric oxide does not mediate thehyperpolarization and relaxation to acetylcholine in the rat small mesentery artery [J].Br J Pharmacol.1992;105(2):429-35.
    [34] McGuire JJ,Ding H,Triggle CR.Endothelium-derived relaxing factors:a focus on endothelium-derived hyperpolarizing factor(s) [J].J Physiol.2001;79 (6):443-70.。
    [35] Bellien J,Iacob M,Gutierrez L,et al.Crucial role of NO and endothelium-derived hyperpolarizing factor in human sustained conduit artery flow-mediated dilatation. [J]Hypertension.2006;48(6):1088-94.
    [36] Garland CJ,Dora KA.Evidence against C-type natriuretic peptide as an arterial 'EDHF' [J].Br J Pharmacol.2008;153(1):4-5.
    [37] Berhane Y,Bailey SR,Putignano C,et al.Characterization of agonist-induced endothelium-dependent vasodilatory responses in the vascular bed of the equine digit [J].J Vet Pharmacol Ther.2008;31(1):1-8.
    [38] Winter P,Dora KA.Spreading dilatation to luminal perfusion of ATP and UTP in rat isolated small mesenteric arteries [J].J Physiol.2007;582(Pt 1):335-47.
    [39]张建华,武征,陈志武.杜鹃花总黄酮预处理对大鼠离体心脏缺血再灌注损伤的保护作用[J].安徽医科大学学报.2006;41(3):286-90.
    [40] Usi F,Saponara S,Pessina F,et al.Effects of quercetin and rutin on vascularpreparations:a comparison between mechanical and electrophysiological phenomena [J].Eur J Nutr.2003;42(1):10-7.
    [41] GoldP,You J,et al.Endotheliumderived hyperpolarizing factor in the brain:a new regulator of cerebral blood flow?Stroke.2002;33(3):661-3
    [42] Zhao W,Zhang J,Lu Y,et al.The vasorelaxant effect of H2S as a novel endogenousgaseous K(ATP)channel opene [J]r.EMBO J.2001;20(21):6008-16.
    [43] Hwa JJ,Ghibaudi L,Williams P,et al.Comparison of acetylcholine-dependent relaxation in large and small arteries of rat mesenteric vascular bed [J]. J Physiol.1994;266(3 Pt 2):H952-8.
    [44] Bauersachs J,Popp R,Hecker M,et al.Nitric oxide attenuates the release of endothelium-derived hyperpolarizing factor [J].Circulation.1996;94(12):3341-7.
    [45] Schildmeyer LA,Bryan RM Jr.Effect of NO on EDHF response in rat middle cerebral arteries [J].Am J Physiol Heart Circ Physiol.2002;282(2):H734-8.
    [46] Hosoki R,MatsukiN,Kimura H.The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide [J].Biochem Biophys Res Commun.1997;237(3):527-31.
    [47] Chen P,Poddar R,Tipa EV,et al.Homocysteine metabolism in cardiovascular cells and tissues:implications for hyperhomocysteinemia and cardiovascular disease [J].Adv Enzyme Regul.1999;39:93-109.
    [48] Bao L,Vlcek C,Paces V,et al.Identification and tissue distribution of human cystathionine beta-synthase mRNA isoforms [J].Arch Biochem Biophys. 1998; 350:9-103.
    [49]A modeling study of T-type Ca2+ channel gating and modulation by L-cysteine in rat nociceptors.Nelson MT, Milescu LS, Todorovic SM, Scroggs RS [J]. Biophys J. 2010 Jan 20;98(2):197-206.
    [1]金宏伟,王晓良.电压依赖性钾通道与人类神经性疾病[J].生理科学进展,2002,33(1):21-25.
    [2]王世敏,蒋学俊,李晓艳.心脏电压依赖性钾通道的研究进展[J].中国心脏起搏与心电生理杂志, 2002,16(1):67-70.
    [3]Rasmusson RL, Morales MJ, Wang S, et al. Inactivation of voltage-gated cardiac K+channels[J]. Circ Res, 1998,82(7):739-50.
    [4] Jackson MB et al. Action PotentialBroadening and Frequency– dependent Facilitation Calcium Signals in Pituitary Nerve Terminals[J]. Proc Natl Acad Sci,1991, 88 (2): 380~384.
    [5]Jerng HH, Shahidullah M, Covarrubias M. Inactivation ga-ting of Kv4 potassium channels: molecule interaction involving the inner vestibule of the pore[J]. J Gen Physiol, 1999,113(5):641-660.
    [6]Giese KP, Storm JF, Reuter D, et al. Reduced K+channel in-activation, spike broadening, and after hyperpolarization inKvbetal.1-deficient mice with impaired learning [J]. LearnMed, I998,5(4-5):257-273.
    [7] Tong Lu et al. Impaired Ca2+-Dependent Activation of Large Conductance Ca2 + -Activated K+Channels in the Coronary Artery Smooth Muscle Cells of Zucker Diabetic Fatty Rats[J]. Biophys J, 2008,1~29.
    [8]郭洪波,王帅,邹飞.下丘脑神经元钙激活钾通道的温度效应[J].中国公共卫生, 2002,18(1):81-82.
    [9]Grissmer S et al. Calcium activated potassium channels in resting and activated human T lymphocytes.Expression levels, calcium dependence, ion selectivity, and pharmacology[J]. JGen Physiol, 1993,102:601~630.
    [10] Tong Lu et al. Impaired Ca2+-Dependent Activation of Large Conductance Ca2 + -Activated K+Channels in the Coronary Artery Smooth Muscle Cells of Zucker Diabetic Fatty Rats[J]. Biophys J, 2008,1~29.
    [11] Alizadeh A A et al. Genomic-scale geneexpression profiling of normal and malignant immune cells [J]. Curr OpinImmunol, 2000, 12:219~225.
    [12]Tamargo J,Caballero R,Gomez R,et al.Pharmacology of cardiac po-tassium channels[J].Cardiovasc Res,2004,62(1):9-33.
    [13]丁报春,秦达念.生理学名词比较[M].长沙:湖南科学技术出版社, 2001.124-125.
    [14]任崇余,曹济民.Kv钾通道及其相互作用蛋白KChIP2与心律失常[J].国际病理科学与临床杂志,2006(02):126-129.
    [15] Noma A. ATP-regulated K+Channels in Cardiac Muscle[J]. Nature, 1983, 305:147.
    [16]Halestrap AP. Regulation of mitochondrial metabolism through changes in matrix volume[J]. Biochem Soc Trans, 1994,22(2):522-529.
    [17]Czyz A, Szewczyk A, Nalecz MJ, et al. The role of mito-chondrial potassium fluxes in controlling the protonmotive force in energized mitochondria[J]. Biochem Biophys Res,1995,210(1):98-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700