不同比率n-6/n-3多不饱和脂肪酸对动脉粥样硬化发展的干预机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心脑血管疾病是目前危害人类健康的主要杀手,而高脂血症、动脉粥样硬化(atherosclerosis, AS)是上述疾病的病理生理基础。据世界卫生组织2001年统计,全球因心脑血管疾病导致的死亡人数占全部死亡人数的30%,且在逐年递增。血脂异常(高脂血症)是AS和冠心病的主要危险因素之一。日常膳食结构不合理是诱发血脂异常的重要因素。已有的研究表明:炎症贯穿于AS发生发展的各个阶段,炎症机制已被多数学者所认可。
     多不饱和脂肪酸(polyunsaturated fatty acids, PUFAs)是人体必需脂肪酸,自身不能够合成,必需从外源食物中获得,根据不饱和键的位置分为n-6系和n-3系PUFAs。膳食脂肪酸构成比,尤其是n-6与n-3 PUFAs比值对血脂代谢及免疫功能有不同影响,因此,膳食PUFAs摄入量及两者的最佳比例至关重要。目前各国关于膳食脂肪酸构成比的推荐值不尽相同,而且仍存在争议,其在体内对脂代谢和炎症反应的调控规律尚不清楚。对于高脂血症以及AS患者,他们的日常膳食脂肪组成将影响着病情的发展进程,而对于已经患有高脂血症和AS相关疾病人群的日常膳食n-3与n-6 PUFAs最佳比率仍不清楚。
     ApoE基因缺失(apoE deficient, apoE-/-)小鼠在普通标准饮食条件下能够自发产生AS病变,且发病过程与人类AS极为相似,是研究人类AS的理想模型,为研究人类AS的发病机理以及干预治疗提供了极大的方便。因此,本研究以8周龄雄性apoE-/-小鼠为模型,模拟人类家族性Ⅲ型高脂蛋白血症和AS患者,通过调整膳食中n-6/n-3 PUFAs不同比率(分别为组1:1.28;组2:5.03;组3:9.98,组4:68.26)干预小鼠6周和13周,从脂代谢、炎症反应等方面探讨不同比率n-6/n-3 PUFAs不同干预时间对AS发展的影响及分子机制,以期为上述患病人群的日常膳食提供理论依据。
     本研究利用血生化分析、ELISA、气-质联、超速离心、比色法等分析技术,real-time RT-PCR以及Western-Blot等分子生物学技术,冷冻切片、常规病理染色等病理形态学分析实验技术,对不同饮食干预小鼠血脂和血清炎症因子水平、主动脉AS病变、肝脏脂质等进行分析,同时对影响脂代谢相关的含载脂蛋白B100(apolipoprotein B100, apoB100)脂蛋白代谢、高密度脂蛋白(high density lipoprotein, HDL)代谢以及炎症反应等相关基因的表达进行了系统分析,结果如下:
     1.不同比率n-6/n-3 PUFAs对apoE-/-小鼠AS的影响
     各组小鼠经不同比率n-6/n-3 PUFAs饮食干预,体重增长无显著差异。小鼠主动脉根部以及全长主动脉AS斑块面积分析表明,饮食干预6周,组3(n-6/n-3 PUFAs为9.98)饮食小鼠具有最低的主动脉根部斑块面积,此时AS处于脂质条纹期。低比率n-6/n-3 PUFAs(组1:1.28)饮食干预13周能够显著抑制apoE-/-小鼠主动脉根部以及全长主动脉AS病变,此时AS处于纤维斑块病变期。高比率n-6/n-3 PUFAs饮食(组4:68.26)主动脉根部及全长主动脉AS病变程度最重。而且随着饮食中n-6 PUFAs含量的增加,病变程度逐渐加重。
     2.不同比率n-6/n-3 PUFAs对apoE-/-小鼠AS干预机制探讨
     (1)不同比率n-6/n-3 PUFAs对apoE-/-小鼠脂质代谢的影响:
     ①不同饮食对小鼠血脂水平的影响。小鼠人工饮食干预/喂养后血脂水平结果表明,干预6周后,血清游离胆固醇(free cholesterol, FC)、胆固醇酯(cholesterol easter, CE)和总胆固醇(total cholesterol, TC)水平均没有受饮食成分的改变而发生明显的改变;干预13周后,组3(n-6/n-3 PUFAs为9.98)饮食具有最低的血清TC水平。小鼠饮食干预6周和13周,组3饮食显著降低了低密度脂蛋白胆固醇酯(LDL-C)水平,而组4(n-6/n-3 PUFAs为68.26)饮食显著升高了血清甘油三酯(triglyceride, TG)水平和高密度脂蛋白胆固醇酯(HDL-C)水平。
     ②不同饮食对小鼠肝脏脂质水平的影响:小鼠肝脏脂质分析表明,饮食干预6周,组1(n-6/n-3 PUFAs为1.28)小鼠肝脏组织具有最低的TC、TG水平和脂质积累,且随着饮食中n-6/n-3PUFAs比率的升高而升高,脂质积累逐渐加重。低比率n-6/n-3 PUFAs(组1)能够显著降低肝脏组织中的TC、TG水平以及脂质积累。
     ③不同饮食对血清和肝脏组织中脂肪酸成分的影响:血清和肝脏脂质经脂质提取,甲酯化反应,GC-MS分析检测,结果表明,随着饮食中n-6/n-3 PUFAs比率的增加,血清和肝脏组织中亚油酸(linoleic acid, LA)、花生四烯酸(arachidonic acid, AA)和总n-6 PUFAs含量逐渐增加,而α-亚麻酸(alpha-linolenic acid, ALA)、二十碳五烯酸(eicosapentaenoic acid, EPA)含量逐渐降低。
     ④不同饮食对小鼠含apoB100脂蛋白代谢影响:结果显示,组1(n-6/n-3 PUFAs为1.28)饮食能够显著降低血清ApoB100水平和肝脏β-羟基β-甲基戊二酰辅酶A (β-hydroxy-β-methyl glutaryl CoA, HMG-CoA)还原酶活性。与对照组相比,组1、组2饮食能够显著降低肝脏脂肪酸合成酶(fatty acid synthase, FAS)、HMG-CoA还原酶、乙酰胆固醇乙酰转移酶2(acyl cholesterol acyl transferase 2, ACAT2)、低密度脂蛋白受体(low density lipoprotein receptor, LDLR)、低密度脂蛋白受体相关蛋白(low density lipoprotein receptor related protein, LRP)、固醇调节元件结合蛋白1c(sterol regulatory element binding protein, SREBP1c)、肝X受体α(liver X receptor alpha, LXRα)基因的转录水平,显著升高过氧化物酶体增殖物激活受体(peroxisome proliferator-activated receptor, PPARα)基因的转录水平;组4饮食显著升高apoB100基因的mRNA水平。各组饮食没有影响到肝脏脂蛋白脂酶(lipoprteinlipase, LPL)基因的转录水平。以上结果说明,低比率n-6/n-3 PUFAs饮食可能通过降低肝脏脂肪酸和胆固醇的合成过程中重要酶的表达而降低脂肪酸和胆固醇的合成,但同时降低了肝细胞的LRP和LDLR基因的表达,不利于血清中的极低密度脂蛋白胆固醇酯(very low density lipoprotein cholesterol ester, VLDL-C)和LDL-C进入肝脏。
     ⑤不同饮食对小鼠HDL-C代谢影响:结果表明,高比率n-6/n-3 PUFAs(68.26)饮食能够显著升高血清中载脂蛋白A-I(apolipoprotein A-I, apo A-I)和HDL-C水平。低比率n-6/n-3 PUFAs饮食能够显著升高血清卵磷脂胆固醇脂酰转移酶(lecithin-cholesterol acyltrasferase, LCAT)活性,而且随着饮食中n-3 PUFAs含量的增加而增强。高比率n-6/n-3 PUFAs(组4)饮食明显升高apo A-I、三磷酸腺苷结合盒A1(ATP binding cassette transporter A1, ABCA1)基因的表达,明显抑制apo A-II基因的表达,而低比率n-6/n-3 PUFAs饮食显著降低apo A-I、三磷酸腺苷结合盒A1(ATP binding cassette transporter A1, ABCA1)、LCAT的转录水平。说明,n-6 PUFAs可能通过增强apo A-I和ABCA1的表达升高HDL-C水平。低比率n-6/n-3 PUFAs(组1-组3)饮食能够显著升高主动脉组织中ABCA1基因的表达,而且随着饮食中n-3 PUFAs含量的升高而逐渐增强。说明低比率n-6/n-3 PUFAs(1.28-9.98)饮食有利于主动脉组织的胆固醇外流,起到抗AS的作用。
     (2)不同比率n-6/n-3 PUFAs对apoE-/-小鼠炎症因子的影响
     ①血清、脾脏及主动脉炎性因子分析结果表明,不同饮食干预6周没有显著影响血清促炎因子白介素(interleukin, IL)1β、IL-6和肿瘤坏死因子(tumor necrosis factor, TNF)α的水平及脾脏和主动脉IL-4基因的转录,但组1(n-6/n-3 PUFAs为1.28)饮食显著抑制了脾脏IL-6和TNFα以及主动脉组织CRP基因的转录水平,组4(n-6/n-3 PUFAs为68.26)饮食显著升高了主动脉TNFα的转录水平以及单核细胞趋化蛋白-1(monocyte chemotactic protein-l, MCP-1)和血管细胞黏附分子-1(vascular cell adhesion molecule-1, VCAM-1)mRNA水平。
     ②对炎性因子C-反应蛋白(C-reactive protein, CRP)及其调控因子PPARγ基因表达分析,结果表明,组1(n-6/n-3 PUFAs为1.28)饮食能够显著降低肝脏CRP基因的mRNA和蛋白质水平,同时升高了肝脏PPARγ的转录水平。
     综上所述,不同比率n-6/n-3 PUFAs饮食干预apoE-/-小鼠6周,低比率n-6/n-3 PUFAs饮食能够显著降低肝脏脂肪酸和胆固醇的合成以及抑制apoB100的表达,但同时降低了LDLR和LRP的表达,结果导致没有降低血清LDL-C水平。然而其主动脉根部AS病变与血清LDL-C趋势是一致的,组3(n-6/n-3 PUFAs为9.98)饮食具有最低的LDL-C水平和最轻的AS病变,因此我们推测在AS发生早期,血脂水平在AS发生中起重要作用,饮食n-6/n-3 PUFAs比率为9.98时能够通过控制LDL-C水平,并在一定程度上抑制AS的发展。对HDL-C代谢相关因子的分析表明,高比率n-6/n-3 PUFAs(组4:68.26)饮食显著升高HDL-C水平,但没有抑制AS发展,说明由高比率n-6/n-3 PUFAs饮食产生的高水平HDL-C在apoE-/-小鼠中并没有发挥抗AS的作用。然而饮食干预至13周,随着AS的进一步发展,组3饮食干预小鼠仍具有最低的LDL-C水平,但此时处于纤维斑块病变时期的AS病变并未随血清LDL-C水平的降低而减轻,而低比率n-6/n-3 PUFAs(组1:1.28)饮食具有最轻的AS病变,说明在AS发展的中后期,低比率n-6/n-3 PUFAs对AS的抑制作用独立于其对血脂水平的影响,通过主动脉ABCA1基因的表达及肝脏、脾脏、主动脉炎症相关基因的表达分析,推测低比率n-6/n-3 PUFAs饮食抗apoE-/-小鼠AS的机制可能是通过增加主动脉胆固醇外流、抑制机体及主动脉局部炎症反应而实现的。
     基于本实验研究结果,我们认为:在AS发生的早期(脂质条纹期),n-6/n-3 PUFAs比率为9.98饮食干预能够通过降低血清LDL-C水平减缓apoE-/-小鼠AS的发展,而AS发展的中后期(纤维斑块病变期),n-6/n-3 PUFAs比率为1.28饮食能够通过增加主动脉胆固醇外流和抑制促炎因子的表达而抑制apoE-/-小鼠AS的发展。
Cardiovascular disease (including hyperlipidemia and atherosclerosis) continues to be the leading cause of morbidity and mortality in the industrialized world. According to the statistical result of the World Health Organization (WHO), the death toll by cardiovascular disease account 30 percent for total death toll in 2001. Moreover, the quantities will be more and more in future. Abnormal serum lipid (especially hyperlipidemia) is one of the main risk factors for atherosclerosis and cardiovascular disease. Improper dietary is the main factor for abnormal serum lipids. The present researches indicated that inflammation ran through all stages of atherosclerosis, which is authorized by researchers.
     Polyunsaturated fatty acids (PUFAs) which are not synthesized in vivo are the essential fatty acids for human growth and health. PUFAs can be classified in n-3 (omiga-3) fatty acids and n-6 (omiga-6) fatty acids. Both types of fatty acids are precursors of signaling molecules with opposing effects, that modulate membrane microdomain composition, receptor signaling and gene expression. The predominant n-6 fatty acids and its products are important regulators of cellular functions with inflammatory, atherogenic and prothrombotic effects. The n-3 fatty acids antagonize the pro-inflammatory effects of n-6 fatty acids. n-3 and n-6 fatty acids control various genes of inflammatory signaling and lipid metabolism. So, the mounts and the balance of the n-6 and n-3 fatty acids are important for health. The recommendation ratio of n-6/n-3 PUFAs was inconsistent in many countries at present, and there were some disputations. The regulations of lipid metabolism and inflammatory signaling in vivo by n-6 and n-3 fatty acids were unclear. As for the hyperlipidemia and atherosclerosis patients, dietary fatty acids influenced the progress of diseases. The mounts and the balance of n-6/n-3 PUFAs for above patients were also unclear.
     Apolipoprotein E deficient (apoE-/-) mice which spontaneously develop atherosclerosis with features similar to those observed in humans are the idea model of human atherosclerosis researches. It provides the advantage for the mechanism and intervention of atherosclerosis researches. Therefore, the present experiment observes the anti-atherogenesis effects by dietary different n-6/n-3 PUFAs in apoE-/- mice which similar similar features to those observed in humans type III familial hyperlipoproteinemia. The male mice were randomly assigned to four experimental groups (fed experimental diets) and one control group (fed control diet) at age of 8 wk old (n=12, respectively) for 6 wk and 13 wk. The experimental diets contained 5% (w/w) fat (11.5% total energy), were made by adding safflower oil and perilla seed oil based on the control diet. The n-6/n-3 PUFAs ratios of the experimental diets, for feeding groups 1-4 mice, were 1.28, 5.03, 9.98 and 68.26, respectively. At the end of the feeding period, all mice were sacrificed. The atherogenesis, lipid metabolism and inflammatory response would be analyzed and discussed. We looked forward to providing the dietary fat for humans.
     The present experiment analyzed the serum lipids, serum cytokines, aortic en face atherosclerotic lesions, liver lipids and explored the possible mechanisms of the apoB100 containing lipoprotein metabolism, high density lipoprotein cholesterol ester (HDL-C) metabolism by different n-6/n-3 PUFAs. The experiment performed using biochemical analysis, enzyme-linked immunosorbent assays (ELISA), gas chromatograph-mass spectrum (GC-MS), ultracentrifugation etc. analytic techniques; real-time RT-PCR, Western-Blot etc. molecular techniques; frozen section and staining etc. pathological morphology techniques. The results showed as follow:
     1. Different diets on atherosclerotic lesions.
     The result showed that no significant difference was observed in the growth of mice fed with different experimental diets. The results of atherosclerotic lesions in root and total en face aortic lesions area analysis indicated that the group 3 mice developed smaller area than other groups for 6 wk intervention. However, dietary low ratio of n-6/n-3 PUFAs inhibited significantly the atherosclerotic lesions in root and total en face aortic lesions area compared with the mice that dietary high ratio of n-6/n-3 PUFAs for 13 wk intervention. Moreover, as the dietary ratio of n-6/n-3 fatty acids ascended, so did the areas of aortic lesions.
     2. The mechanisms of varying the ratios of n-6/n-3 polyunsaturated fatty acids on atherogenesis
     (1) Different diets on lipid metabolism.
     ①Different diets on serum lipids. After feeding the apoE-/- mice with the diets for 6 wk, no significant differences were found in the serum concentrations of free cholesterol (FC), total cholesterol (TC) and cholesterol ester (CE) among the apoE-/- mouse groups fed with different diets. After feeding the apoE-/- mice with the diets for 6 wk and 13 wk, the serum LDL-C level of group 3 mice was significant lower than those of other groups. The serum of triglyceride (TG) and HDL-C concentration of group 4 mice were significant higher than other groups.
     ②Different diets on liver lipids. The results of liver lipids contents showed that after feeding with the diets for 6 wk, the TC and TG levels of group 1 mice were significant lower than other groups. Moreover, as the dietary ratio of n-6/n-3 fatty acids ascended, so did the TC and TG contents. Dietary low ratio of n-6/n-3 PUFAs significantly decreased TC and TG levels and lipids aggregation in the liver.
     ③Different diets on serum and liver fatty acids. The results of serum and liver fatty acids analysis indicated that as the dietary ratio of n-6/n-3 fatty acids ascended, so did the concentrations of total n-6 fatty acids, arachidonic acid (AA) and 18: 2 n-6 fatty acids in the serum and the liver tissue. Moreover, as the dietary level of n-3 fatty acids declined, the concentration of total n-3 fatty acids and eicosapentaenoic acid (EPA) were reduced in the serum and the liver.
     ④Different diets on apoB100 containing lipoprotein metabolism. After feeding the apoE-/- mice with the diets for 6 wk, the serum ApoB100 level and liverβ-hydroxy-β-methyl glutaryl CoA (HMG-CoA) reductase activity of group 1 mice were significant lower than other groups. Real-time RT-PCR results showed that the transcription levels of genes involved in apoB100 containing lipoprotein metabolism including fatty acid synthase (FAS), HMG-CoA reductase, acyl cholesterol acyl transferase 2 (ACAT2), low density lipoprotein receptor (LDLR), low density lipoprotein receptor related protein (LRP), sterol regulatory element binding protein (SREBP1c), liver X receptor alpha (LXRα) of group 1 and group 2 mice were inhibited significantly compared with the control mice. The hepatic apoB100 mRNA level was increased by the group 4 diet. These results suggested that dietary low n-6/n-3 PUFAs ratios inhibited the synthesis of fatty acids and cholesterol by decreased the enzymes involved in the synthesis of fatty acids and cholesterol. However, at the same time, the expression of LRP and LDLR were inhibited. Thus, it is not benefit to the uptake of VLDL-C and LDL-C.
     ⑤Different diets on HDL-C metabolism. Varying ratios of n-6/n-3 PUFA on HDL-C concentration was assessed with respect to serum apolipoprotein (apo) A-I concentration, endogenous lecithin-cholesterol acyltransferase (LCAT) activities, and mRNA abundance of genes involved in HDL-C metabolism. The results indicated that the group 4 diet significantly increased the HDL-C and apo A-I concentrations in serum compared with the other groups. LCAT activity in serum increased with decreased ratios of n-6/n-3 PUFA. As the dietary ratio of n-6/n-3 fatty acids ascended, so did the mRNA levels of hepatic apo A-I, scavenger receptor B class-1 (SR-B1), LCAT, ATP binding cassette transporter A1 (ABCA1), ABCG1 and LXRα, however, apo A-II mRNA level had a tendency of decline. Group 4 diet up-regulated the apo A-I and ABCA1 and down-regulated the apo A-II transcriptional levels, whereas, group 1 diet down-regulated the mRNA expressions of apo A-I, LCAT, SR-B1 and ABCG1. Our results indicate that high ratio of n-6/n-3 PUFA increases the HDL-C concentration, possibly due to up-regulating the hepatic apo A-I and ABCA1 and down-regulating the apo A-II mRNA levels. Dietary low ratios of n-6/n-3 PUFAs significantly increased the expression of ABCA1 in aorta. Moreover, as the dietary ratio of n-6/n-3 fatty acids descended, the ABCA1 mRNA level increased. The result suggested that low ratios of n-6/n-3 PUFAs were benefit to the cholesterol efflux progress from the aorta.
     (2) Varying ratios of n-6/n-3 PUFAs diets on inflammatory cytokines in apoE-/- mice.
     ①Serum concentrations of interleukin (IL) -1β, IL-6 and tumor necrosis factor (TNF)αdid not show any statistical difference among the mice fed the different diets. The results of real-time RT-PCR indicated that the group 1 diet inhibited significantly the transcription of pro-inflammatory cytokine IL-6 and TNFαin spleen and CRP in aorta, however, the group 4 diet increased significantly the expression of TNFα, MCP-1 and VCAM-1 in aorta. The expression of IL-4 in spleen and aorta did not show any significance.
     ②In the present study of dietary varying of n-6/n-3 PUFAs ratios and hepatic CRP expression, we observed statistically significant low at mRNA and protein levels in apoE-/- mice fed the low n-6/n-3 PUFA ratios compared with that of the high n-6/n-3 PUFA ratio. Low ratios of n-6/n-3 PUFAs increased the hepatic PPARγmRNA level compared with the high ratio of n-6/n-3 PUFAs, which presumably inhibited the inflammatory status in the liver of mice fed low ratios of n-6/n-3 PUFAs.
     In summary, the present study showed that dietary varying the ratios of n-6/n-3 PUFAs for 6 and 13 wk influenced the AS development, lipid metabolism and inflammatory response in apoE-/- mice. After 6 wk intervention, dietary low ratio of n-6/n-3 PUFAs inhibited significantly the synthesis of fatty acids and cholesterol in liver and decreased the expression of hepatic apoB100. However, the expression of hepatic LDLR and LRP were also inhibited. Therefore, dietary low ratio of n-6/n-3 PUFAs did not show decreased serum LDL-C level. The present results indicated that there was the same tendency between serum LDL-C concentration and atherosclerotic lesion in root in different groups. The mice of group 3 showed the smallest lesion areas and the lowest LDL-C level. So it suggested that dietary ratio of n-6/n-3 PUFAs (9.98) could inhibited the early stage of AS development via decreasing the serum LDL-C level.
     However, the results of HDL-C metabolism showed that dietary high ratio of n-6/n-3 PUFAs (68.26) increased significantly HDL-C concentration and Apo A-I, but did not suppress the AS development, suggesting that HDL-C level did not show the anti-atherogenesis in apoE-/-. After 13 wk intervention, the group 3 diet also showed the lowest serum LDL-C, but did not show the lowest atherosclerotic lesions in root and the total en face lesions. On the contrary, the group 1 (low ratio of n-6/n-3 PUFAs) indicated the lowest lesion areas, suggesting that dietary low ratio of n-6/n-3 PUFAs inhibited the AS development independent on the serum lipids at the middle-late stage of AS. In the present study, we analyzed the expression of ABCA1 in aorta, which was responsible for the cholesterol efflux progress from the artery to the liver. The expression of genes involved in the inflammatory response in liver, spleen and artery tissues were also analyzed by real-time RT-PCR. We speculated on the anti-atherogenesis mechanisms that low ratio of n-6/n-3 PUFAs increased the cholesterol efflux progress from aorta and decreased the inflammatory responses and the local inflammatory responses in aorta on the basis of the present results.
引文
[1] Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s [J]. Nature 1993; 362(6423):801-809.
    [2] Khovidhunkit W, Memon R A, Feingold K R, Grunfeld C. Infection and inflammation- induced proatherogenic changes of lipoproteins [J]. J Infect Dis 2000; 181 Suppl 3: S462-472.
    [3] Kranzhofer R, Schmidt J, Pfeiffer C A, Hagl S, Libby P, Kubler W. Angiotensin induces inflammatory activation of human vascular smooth muscle cells [J]. Arterioscler Thromb Vasc Biol 1999; 19(7):1623-1629.
    [4] Theuma P, Fonseca V A. Inflammation, insulin resistance, and atherosclerosis [J]. Metab Syndr Relat Disord 2004; 2(2):105-113.
    [5] Schmidt A M, Yan S D, Wautier J L, Stern D. Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis [J]. Circ Res 1999; 84(5):489-497.
    [6] Ross R, Glomset J A. The pathogenesis of atherosclerosis (first of two parts) [J]. N Engl J Med 1976; 295(7):369-377.
    [7] Ross R, Glomset J A. The pathogenesis of atherosclerosis (second of two parts) [J]. N Engl J Med 1976; 295(8):420-425.
    [8] Ross R. Atherosclerosis--an inflammatory disease [J]. N Engl J Med 1999; 340(2): 115-126.
    [9] Meir K S, Leitersdorf E. Atherosclerosis in the apolipoprotein-E-deficient mouse: a decade of progress [J]. Arterioscler Thromb Vasc Biol 2004; 24(6):1006-1014.
    [10] Simopoulos A P. The importance of the omega-6/omega-3 fatty acid ratio in cardio- vascular disease and other chronic diseases [J]. Exp Biol Med (Maywood) 2008; 233(6): 674-688.
    [11] Ikeda I, Wakamatsu K, Inayoshi A, Imaizumi K, Sugano M, Yazawa K. alpha-Linolenic, eicosapentaenoic and docosahexaenoic acids affect lipid metabolism differently in rats [J]. J Nutr 1994; 124(10):1898-1906.
    [12] Conquer J A, Holub B J. Effect of supplementation with different doses of DHA on the levels of circulating DHA as non-esterified fatty acid in subjects of Asian Indian background [J]. J Lipid Res 1998; 39(2):286-292.
    [13] Roche H M, Gibney M J. Effect of long-chain n-3 polyunsaturated fatty acids on fasting and postprandial triacylglycerol metabolism [J]. Am J Clin Nutr 2000; 71(1 Suppl): 232S-237S.
    [14] Nelson G J, Schmidt P C, Bartolini G L, Kelley D S, Kyle D. The effect of dietary docosahexaenoic acid on plasma lipoproteins and tissue fatty acid composition in humans [J]. Lipids 1997; 32(11):1137-1146.
    [15] Sanders T A, Hochland M C. A comparison of the influence on plasma lipids and platelet function of supplements of omega 3 and omega 6 polyunsaturated fatty acids [J]. Br J Nutr 1983; 50(3):521-529.
    [16] Schectman G, Kaul S, Kissebah A H. Heterogeneity of low density lipoprotein responses to fish-oil supplementation in hypertriglyceridemic subjects [J]. Arteriosclerosis 1989; 9(3):345-354.
    [17] Calder P C. n-3 Fatty acids and cardiovascular disease: evidence explained and mechanisms explored [J]. Clin Sci (Lond) 2004; 107(1):1-11.
    [18] Conquer J A, Holub B J. Supplementation with an algae source of docosahexaenoic acid increases (n-3) fatty acid status and alters selected risk factors for heart disease in vegetarian subjects [J]. J Nutr 1996; 126(12):3032-3039.
    [19] Davidson M H, Maki K C, Kalkowski J, Schaefer E J, Torri S A, Drennan K B. Effects of docosahexaenoic acid on serum lipoproteins in patients with combined hyperlipidemia: a randomized, double-blind, placebo-controlled trial [J]. J Am Coll Nutr 1997; 16(3): 236-243.
    [20] Rambjor G S, Walen A I, Windsor S L, Harris W S. Eicosapentaenoic acid is primarily responsible for hypotriglyceridemic effect of fish oil in humans [J]. Lipids 1996; 31 Suppl S45-49.
    [21] Kinsell L W, Partridge J, Boling L, Margen S, Michaels G. Dietary modification of serum cholesterol and phospholipid levels [J]. J Clin Endocrinol Metab 1952; 12(7):909-913.
    [22] Ahrens E H, Jr., Insull W, Jr., Blomstrand R, Hirsch J, Tsaltas T T, Peterson M L. The influence of dietary fats on serum-lipid levels in man [J]. Lancet 1957; 272(6976): 943-953.
    [23] Hegsted D M, McGandy R B, Myers M L, Stare F J. Quantitative effects of dietary fat on serum cholesterol in man [J]. Am J Clin Nutr 1965; 17(5):281-295.
    [24] Vega G L, Groszek E, Wolf R, Grundy S M. Influence of polyunsaturated fats on composition of plasma lipoproteins and apolipoproteins [J]. J Lipid Res 1982; 23(6): 811-822.
    [25] Shepherd J, Packard C J, Patsch J R, Gotto A M, Jr., Taunton O D. Effects of dietary polyunsaturated and saturated fat on the properties of high density lipoproteins and the metabolism of apolipoprotein A-I [J]. J Clin Invest 1978; 61(6):1582-1592.
    [26] Jackson R L, Kashyap M L, Barnhart R L, Allen C, Hogg E, Glueck C J. Influence of polyunsaturated and saturated fats on plasma lipids and lipoproteins in man [J]. Am J Clin Nutr 1984; 39(4):589-597.
    [27] Xu J, Nakamura M T, Cho H P, Clarke S D. Sterol regulatory element binding protein-1 expression is suppressed by dietary polyunsaturated fatty acids. A mechanism for the coordinate suppression of lipogenic genes by polyunsaturated fats [J]. J Biol Chem 1999; 274(33):23577-23583.
    [28] Clarke S D, Armstrong M K, Jump D B. Nutritional control of rat liver fatty acid synthase and S14 mRNA abundance [J]. J Nutr 1990; 120(2):218-224.
    [29] Clarke S D. Regulation of fatty acid synthase gene expression: an approach for reducing fat accumulation [J]. J Anim Sci 1993; 71(7):1957-1965.
    [30] Smith D R, Knabe D A, Smith S B. Depression of lipogenesis in swine adipose tissue by specific dietary fatty acids [J]. J Anim Sci 1996; 74(5):975-983.
    [31] Nakamura M T, Cho H P, Clarke S D. Regulation of hepatic delta-6 desaturase expression and its role in the polyunsaturated fatty acid inhibition of fatty acid synthase gene expression in mice [J]. 1561-5J Nutr 2000; 130(6):1561-1565.
    [32] Clarke S D, Turini M, Jump D B, Abraham S, Reedy M. Polyunsaturated fatty acid inhibition of fatty acid synthase transcription is independent of PPAR activation [J]. Z Ernahrungswiss 1998; 37 Suppl 1:14-20.
    [33] Salati L M, Clarke S D. Fatty acid inhibition of hormonal induction of acetyl-coenzyme A carboxylase in hepatocyte monolayers [J]. Arch Biochem Biophys 1986; 246:82-89.
    [34] Chapman C, Morgan L M, Murphy M C. Maternal and early dietary fatty acid intake: changes in lipid metabolism and liver enzymes in adult rats [J]. J Nutr 2000; 130(2): 146-151.
    [35] Tebbey P W, McGowan K M, Stephens J M, Buttke T M, Pekala P H. Arachidonic acid down-regulates the insulin-dependent glucose transporter gene (GLUT4) in 3T3-L1 adipocytes by inhibiting transcription and enhancing mRNA turnover [J]. J Biol Chem 1994; 269(1):639-644.
    [36] Rajas F, Gautier A, Bady I, Montano S, Mithieux G. Polyunsaturated fatty acyl coenzyme A suppress the glucose-6-phosphatase promoter activity by modulating the DNA binding of hepatocyte nuclear factor 4 alpha [J]. J Biol Chem 2002; 277(18):15736-15744.
    [37] Hertz R, Magenheim J, Berman I, Bar-Tana J. Fatty acyl-CoA thioesters are ligands of hepatic nuclear factor-4alpha [J]. Nature 1998; 392(6675):512-516.
    [38] Sampath H, Ntambi J M. Polyunsaturated fatty acid regulation of gene expression [J]. Nutr Rev 2004; 62(9):333-339.
    [39] Pawar A, Jump D B. Unsaturated fatty acid regulation of peroxisome proliferator- activated receptor alpha activity in rat primary hepatocytes [J]. J Biol Chem 2003; 278(38): 35931-35939.
    [40] Ren B, Thelen A P, Peters J M, Gonzalez F J, Jump D B. Polyunsaturated fatty acid suppression of hepatic fatty acid synthase and S14 gene expression does not require peroxisome proliferator-activated receptor alpha [J]. J Biol Chem 1997; 272(43): 26827-26832.
    [41] Brown M S, Goldstein J L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor [J]. Cell 1997; 89(3):331-340.
    [42] Jump D B. Fatty acid regulation of gene transcription [J]. Crit Rev Clin Lab Sci 2004; 41(1):41-78.
    [43] Kim H J, Miyazaki M, Man W C, Ntambi J M. Sterol regulatory element-binding proteins (SREBPs) as regulators of lipid metabolism: polyunsaturated fatty acids oppose cholesterol-mediated induction of SREBP-1 maturation [J]. Ann N Y Acad Sci 2002; 967:34-42.
    [44] Xu J, Zimmer D B. Differential regulation of A gamma and G gamma fetal hemoglobin mRNA levels by hydroxyurea and butyrate [J]. Exp Hematol 1998; 26(3):265-272.
    [45] Yahagi N, Shimano H, Hasty A H, Amemiya-Kudo M, Okazaki H, Tamura Y, et al. A crucial role of sterol regulatory element-binding protein-1 in the regulation of lipogenic gene expression by polyunsaturated fatty acids [J]. J Biol Chem 1999; 274(50): 35840-35844.
    [46] Worgall T S, Johnson R A, Seo T, Gierens H, Deckelbaum R J. Unsaturated fatty acid-mediated decreases in sterol regulatory element-mediated gene transcription are linked to cellular sphingolipid metabolism [J]. J Biol Chem 2002; 277(6):3878-3885.
    [47] Yoshikawa T, Ide T, Shimano H, Yahagi N, Amemiya-Kudo M, Matsuzaka T, et al. Cross-talk between peroxisome proliferator-activated receptor (PPAR) alpha and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. I. PPARs suppress sterol regulatory element binding protein-1c promoter through inhibition of LXR signaling [J]. Mol Endocrinol 2003; 17(7):1240-1254.
    [48] Yoshikawa T, Shimano H, Yahagi N, Ide T, Amemiya-Kudo M, Matsuzaka T, et al.Polyunsaturated fatty acids suppress sterol regulatory element-binding protein 1c promoter activity by inhibition of liver X receptor (LXR) binding to LXR response elements [J]. J Biol Chem 2002; 277(3):1705-1711.
    [49] Huang Z H, Hii C S, Rathjen D A, Poulos A, Murray A W, Ferrante A. N-6 and n-3 polyunsaturated fatty acids stimulate translocation of protein kinase Calpha, -betaI, -betaII and -epsilon and enhance agonist-induced NADPH oxidase in macrophages [J]. Biochem J 1997; 325 ( Pt 2):553-557.
    [50] Zeyda M, Szekeres A B, Saemann M D, Geyeregger R, Stockinger H, Zlabinger G J, et al. Suppression of T cell signaling by polyunsaturated fatty acids: selectivity in inhibition of mitogen-activated protein kinase and nuclear factor activation [J]. J Immunol 2003; 170(12):6033-6039.
    [51] Lee J Y, Plakidas A, Lee W H, Heikkinen A, Chanmugam P, Bray G, et al. Differential modulation of Toll-like receptors by fatty acids: preferential inhibition by n-3 poly- unsaturated fatty acids [J]. J Lipid Res 2003; 44(3):479-486.
    [52] Zhao Y, Joshi-Barve S, Barve S, Chen L H. Eicosapentaenoic acid prevents LPS-induced TNF-alpha expression by preventing NF-kappaB activation [J]. J Am Coll Nutr 2004; 23(1):71-78.
    [53] Novak T E, Babcock T A, Jho D H, Helton W S, Espat N J. NF-kappa B inhibition by omega -3 fatty acids modulates LPS-stimulated macrophage TNF-alpha transcription [J]. Am J Physiol Lung Cell Mol Physiol 2003; 284(1):L84-89.
    [54] Forman B M, Chen J, Evans R M. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta [J]. Proc Natl Acad Sci U S A 1997; 94(9):4312-4317.
    [55] Vanden Berghe W, Vermeulen L, Delerive P, De Bosscher K, Staels B, Haegeman G. A paradigm for gene regulation: inflammation, NF-kappaB and PPAR [J]. Adv Exp Med Biol 2003; 544: 181-196.
    [56] Broughton K S, Whelan J, Hardardottir I, Kinsella J E. Effect of increasing the dietary (n-3) to (n-6) polyunsaturated fatty acid ratio on murine liver and peritoneal cell fatty acids and eicosanoid formation [J]. J Nutr 1991; 121(2):155-164.
    [57] Hardardottir I, Kinsella J E. Increasing the dietary (n-3) to (n-6) polyunsaturated fatty acid ratio increases tumor necrosis factor production by murine resident peritoneal macrophages without an effect on elicited peritoneal macrophages [J]. J Nutr 1992; 122(10):1942-1951.
    [58] Broughton K S, Wade J W. Total fat and (n-3):(n-6) fat ratios influence eicosanoidproduction in mice [J]. J Nutr 2002; 132(1):88-94.
    [59] Yamashita T, Oda E, Sano T, Yamashita T, Ijiru Y, Giddings J C, et al. Varying the ratio of dietary n-6/n-3 polyunsaturated fatty acid alters the tendency to thrombosis and progress of atherosclerosis in apoE-/- LDLR-/- double knockout mouse [J]. Thromb Res 2005; 116(5): 393-401.
    [60] Aggett P J, Haschke F, Heine W, Hernell O, Koletzko B, Launiala K, et al. Comment on the content and composition of lipids in infant formulas. ESPGAN Committee on Nutrition [J]. Acta Paediatr Scand 1991; 80(8-9):887-896.
    [61] Simopoulos A P. The importance of the ratio of omega-6/omega-3 essential fatty acids [J]. Biomed Pharmacother 2002; 56(8):365-379.
    [62] Wijendran V, Hayes K C. Dietary n-6 and n-3 fatty acid balance and cardiovascular health [J]. Annu Rev Nutr 2004; 24: 597-615.
    [63] Piedrahita J A, Zhang S H, Hagaman J R, Oliver P M, Maeda N. Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells [J]. Proc Natl Acad Sci U S A 1992; 89(10):4471-4475.
    [64] George J, Mulkins M, Casey S, Schatzman R, Sigal E, Harats D. The effects of N-6 polyunsaturated fatty acid supplementation on the lipid composition and atherogenesis in mouse models of atherosclerosis [J]. Atherosclerosis 2000; 150(2):285-293.
    [65] Rudel L L, Reynolds J A, Bullock B C. Nutritional effects on blood lipid and HDL cholesterol concentrations in two subspecies of African green monkeys (Cercopithecus aethiops) [J]. J Lipid Res 1981; 22(2):278-286.
    [66] Wolfe M S, Sawyer J K, Morgan T M, Bullock B C, Rudel L L. Dietary polyunsaturated fat decreases coronary artery atherosclerosis in a pediatric-aged population of African green monkeys [J]. Arterioscler Thromb 1994; 14(4):587-597.
    [67] Wang H H, Hung T M, Wei J, Chiang A N. Fish oil increases antioxidant enzyme activities in macrophages and reduces atherosclerotic lesions in apoE-knockout mice [J]. Cardiovasc Res 2004; 61(1):169-176.
    [68] Dupasquier C M, Dibrov E, Kneesh A L, Cheung P K, Lee K G, Alexander H K, et al. Dietary flaxseed inhibits atherosclerosis in the LDL receptor-deficient mouse in part through antiproliferative and anti-inflammatory actions [J]. Am J Physiol Heart Circ Physiol 2007; 293(4):H2394-2402.
    [69] Ly H, Francone O L, Fielding C J, Shigenaga J K, Moser A H, Grunfeld C, et al. Endotoxin and TNF lead to reduced plasma LCAT activity and decreased hepatic LCAT mRNA levels in Syrian hamsters [J]. J Lipid Res 1995; 36(6):1254-1263.
    [70] Grundy S M, Denke M A. Dietary influences on serum lipids and lipoproteins [J]. J Lipid Res 1990; 31(7):1149-1172.
    [71] Watkins B A, Li Y, Allen K G, Hoffmann W E, Seifert M F. Dietary ratio of (n-6)/(n-3) polyunsaturated fatty acids alters the fatty acid composition of bone compartments and biomarkers of bone formation in rats [J]. J Nutr 2000; 130(9):2274-2284.
    [72] Davis B C, Kris-Etherton P M. Achieving optimal essential fatty acid status in vegetarians: current knowledge and practical implications [J]. Am J Clin Nutr 2003; 78(3 Suppl): 640S-646S.
    [73] Matsukuma K E, Wang L, Bennett M K, Osborne T F. A key role for orphan nuclear receptor liver receptor homologue-1 in activation of fatty acid synthase promoter by liver X receptor [J]. J Biol Chem 2007; 282(28):20164-20171.
    [74] Everett L, Galli A, Crabb D. The role of hepatic peroxisome proliferator-activated receptors (PPARs) in health and disease [J]. Liver 2000; 20(3):191-199.
    [75] Minnich A, Tian N, Byan L, Bilder G. A potent PPARalpha agonist stimulates mitochondrial fatty acid beta-oxidation in liver and skeletal muscle [J]. Am J Physiol Endocrinol Metab 2001; 280(2):E270-279.
    [76] Campbell F M, Kozak R, Wagner A, Altarejos J Y, Dyck J R, Belke D D, et al. A role for peroxisome proliferator-activated receptor alpha (PPARalpha ) in the control of cardiac malonyl-CoA levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPARalpha are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase [J]. J Biol Chem 2002; 277(6):4098-4103.
    [77] Laukkanen J, Yla-Herttuala S. Genes involved in atherosclerosis [J]. Exp Nephrol 2002; 10(2):150-163.
    [78] Field F J, Albright E J, Mathur S N. Effect of dietary n-3 fatty acids on HMG-CoA reductase and ACAT activities in liver and intestine of the rabbit [J]. J Lipid Res 1987; 28(1):50-58.
    [79] Harris W S, Connor W E, Illingworth D R, Rothrock D W, Foster D M. Effects of fish oil on VLDL triglyceride kinetics in humans [J]. J Lipid Res 1990; 31(9):1549-1558.
    [80] Kasim-Karakas S E, Herrmann R, Almario R. Effects of omega-3 fatty acids on intra- vascular lipolysis of very-low-density lipoproteins in humans [J]. Metabolism 1995; 44(9): 1223-1230.
    [81] Harris W S. Fish oils and plasma lipid and lipoprotein metabolism in humans: a critical review [J]. J Lipid Res 1989; 30(6):785-807.
    [82] Wong S H, Nestel P J, Trimble R P, Storer G B, Illman R J, Topping D L. The adaptive effects of dietary fish and safflower oil on lipid and lipoprotein metabolism in perfused rat liver [J]. Biochim Biophys Acta 1984; 792(2):103-109.
    [83] Parks J S, Wilson M D, Johnson F L, Rudel L L. Fish oil decreases hepatic cholesteryl ester secretion but not apoB secretion in African green monkeys [J]. J Lipid Res 1989; 30(10):1535-1544.
    [84] Nossen J O, Rustan A C, Gloppestad S H, Malbakken S, Drevon C A. Eicosapentaenoic acid inhibits synthesis and secretion of triacylglycerols by cultured rat hepatocytes [J]. Biochim Biophys Acta 1986; 879(1):56-65.
    [85] Brown A M, Castle J, Hebbachi A M, Gibbons G F. Administration of n-3 fatty acids in the diets of rats or directly to hepatocyte cultures results in different effects on hepatocellular ApoB metabolism and secretion [J]. Arterioscler Thromb Vasc Biol 1999; 19(1):106-114.
    [86] Kim H J, Takahashi M, Ezaki O. Fish oil feeding decreases mature sterol regulatory element-binding protein 1 (SREBP-1) by down-regulation of SREBP-1c mRNA in mouse liver. A possible mechanism for down-regulation of lipogenic enzyme mRNAs [J]. J Biol Chem 1999; 274(36):25892-25898.
    [87] Worgall T S, Sturley S L, Seo T, Osborne T F, Deckelbaum R J. Polyunsaturated fatty acids decrease expression of promoters with sterol regulatory elements by decreasing levels of mature sterol regulatory element-binding protein [J]. J Biol Chem 1998; 273(40): 25537-25540.
    [88] Ou J, Tu H, Shan B, Luk A, DeBose-Boyd R A, Bashmakov Y, et al. Unsaturated fatty acids inhibit transcription of the sterol regulatory element-binding protein-1c (SREBP-1c) gene by antagonizing ligand-dependent activation of the LXR [J]. Proc Natl Acad Sci U S A 2001; 98(11):6027-6032.
    [89] Mustad V A, Ellsworth J L, Cooper A D, Kris-Etherton P M, Etherton T D. Dietary linoleic acid increases and palmitic acid decreases hepatic LDL receptor protein and mRNA abundance in young pigs [J]. J Lipid Res 1996; 37(11):2310-2323.
    [90] Seidah N G, Khatib A M, Prat A. The proprotein convertases and their implication in sterol and/or lipid metabolism [J]. Biol Chem 2006; 387(7):871-877.
    [91] Stein O, Stein Y. Atheroprotective mechanisms of HDL [J]. Atherosclerosis 1999; 144(2): 285-301.
    [92] Wilkinson P, Leach C, Ah-Sing E E, Hussain N, Miller G J, Millward D J, et al. Influence of alpha-linolenic acid and fish-oil on markers of cardiovascular risk in subjects with anatherogenic lipoprotein phenotype [J]. Atherosclerosis 2005; 181(1):115-124.
    [93] Sirtori C R, Gatti E, Tremoli E, Galli C, Gianfranceschi G, Franceschini G, et al. Olive oil, corn oil, and n-3 fatty acids differently affect lipids, lipoproteins, platelets, and superoxide formation in type II hypercholesterolemia [J]. Am J Clin Nutr 1992; 56(1):113-122.
    [94] Svensson M, Schmidt E B, Jorgensen K A, Christensen J H. The effect of n-3 fatty acids on lipids and lipoproteins in patients treated with chronic haemodialysis: a randomized placebo-controlled intervention study [J]. Nephrol Dial Transplant 2008; 23(9):2918-2924.
    [95] Okuda N, Ueshima H, Okayama A, Saitoh S, Nakagawa H, Rodriguez B L, et al. Relation of long chain n-3 polyunsaturated fatty acid intake to serum high density lipoprotein cholesterol among Japanese men in Japan and Japanese-American men in Hawaii: the INTERLIPID study [J]. Atherosclerosis 2005; 178(2):371-379.
    [96] Huggins K W, Colvin P L, Burleson E R, Kelley K, Sawyer J K, Barrett P H, et al. Dietary n-3 polyunsaturated fat increases the fractional catabolic rate of medium-sized HDL particles in African green monkeys [J]. J Lipid Res 2001; 42(9):1457-1466.
    [97] Alexander Aguilera A, Hernandez Diaz G, Lara Barcelata M, Angulo Guerrero O, Oliart Ros R M. Induction of Cd36 expression elicited by fish oil PUFA in spontaneously hypertensive rats [J]. J Nutr Biochem 2006; 17(11):760-765.
    [98] Vasandani C, Kafrouni A I, Caronna A, Bashmakov Y, Gotthardt M, Horton J D, et al. Upregulation of hepatic LDL transport by n-3 fatty acids in LDL receptor knockout mice [J]. J Lipid Res 2002; 43(5):772-784.
    [99] Barter P J. Hugh sinclair lecture: the regulation and remodelling of HDL by plasma factors [J]. Atheroscler Suppl 2002; 3(4):39-47.
    [100] Lagrost L, Mensink R P, Guyard-Dangremont V, Temme E H, Desrumaux C, Athias A, et al. Variations in serum cholesteryl ester transfer and phospholipid transfer activities in healthy women and men consuming diets enriched in lauric, palmitic or oleic acids [J]. Atherosclerosis 1999; 142(2):395-402.
    [101] Harris W S, Connor W E, McMurry M P. The comparative reductions of the plasma lipids and lipoproteins by dietary polyunsaturated fats: salmon oil versus vegetable oils [J]. Metabolism 1983; 32(2):179-184.
    [102] Arbones-Mainar J M, Navarro M A, Acin S, Guzman M A, Arnal C, Surra J C, et al. Trans-10, cis-12- and cis-9, trans-11-conjugated linoleic acid isomers selectively modify HDL-apolipoprotein composition in apolipoprotein E knockout mice [J]. J Nutr 2006; 136(2):353-359.
    [103] Burgess B, Naus K, Chan J, Hirsch-Reinshagen V, Tansley G, Matzke L, et al.Overexpression of human ABCG1 does not affect atherosclerosis in fat-fed ApoE-deficient mice [J]. Arterioscler Thromb Vasc Biol 2008; 28(10):1731-1737.
    [104] Kitayama K, Nishizawa T, Abe K, Wakabayashi K, Oda T, Inaba T, et al. Blockade of scavenger receptor class B type I raises high density lipoprotein cholesterol levels but exacerbates atherosclerotic lesion formation in apolipoprotein E deficient mice [J]. J Pharm Pharmacol 2006; 58(12):1629-1638.
    [105] Nestel P, Fujii A, Allen T. The cis-9,trans-11 isomer of conjugated linoleic acid (CLA) lowers plasma triglyceride and raises HDL cholesterol concentrations but does not suppress aortic atherosclerosis in diabetic apoE-deficient mice [J]. Atherosclerosis 2006; 189(2): 282-287.
    [106] Rallidis L S, Paschos G, Liakos G K, Velissaridou A H, Anastasiadis G, Zampelas A. Dietary alpha-linolenic acid decreases C-reactive protein, serum amyloid A and interleukin-6 in dyslipidaemic patients [J]. Atherosclerosis 2003; 167(2):237-242.
    [107] Kielar D, Dietmaier W, Langmann T, Aslanidis C, Probst M, Naruszewicz M, et al. Rapid quantification of human ABCA1 mRNA in various cell types and tissues by real-time reverse transcription-PCR [J]. Clin Chem 2001; 47(12):2089-2097.
    [108] Nakamura K, Kennedy M A, Baldan A, Bojanic D D, Lyons K, Edwards P A. Expression and regulation of multiple murine ATP-binding cassette transporter G1 mRNAs/isoforms that stimulate cellular cholesterol efflux to high density lipoprotein [J]. J Biol Chem 2004; 279(44):45980-45989.
    [109] Haghpassand M, Bourassa P A, Francone O L, Aiello R J. Monocyte/macrophage expression of ABCA1 has minimal contribution to plasma HDL levels [J]. J Clin Invest 2001; 108(9):1315-1320.
    [110] Aiello R J, Brees D, Bourassa P A, Royer L, Lindsey S, Coskran T, et al. Increased atherosclerosis in hyperlipidemic mice with inactivation of ABCA1 in macrophages [J]. Arterioscler Thromb Vasc Biol 2002; 22(4):630-637.
    [111] van Eck M, Bos I S, Kaminski W E, Orso E, Rothe G, Twisk J, et al. Leukocyte ABCA1 controls susceptibility to atherosclerosis and macrophage recruitment into tissues [J]. Proc Natl Acad Sci U S A 2002; 99(9):6298-6303.
    [112] Timmins J M, Lee J Y, Boudyguina E, Kluckman K D, Brunham L R, Mulya A, et al. Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I [J]. J Clin Invest 2005; 115(5):1333-1342.
    [113] Wang N, Lan D, Chen W, Matsuura F, Tall A R. ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins [J]. Proc Natl Acad SciU S A 2004; 101(26):9774-9779.
    [114] Kennedy M A, Barrera G C, Nakamura K, Baldan A, Tarr P, Fishbein M C, et al. ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation [J]. Cell Metab 2005; 1(2):121-131.
    [115] Vaughan A M, Oram J F. ABCG1 redistributes cell cholesterol to domains removable by high density lipoprotein but not by lipid-depleted apolipoproteins [J]. J Biol Chem 2005; 280(34):30150-30157.
    [116] Uehara Y, Miura S, von Eckardstein A, Abe S, Fujii A, Matsuo Y, et al. Unsaturated fatty acids suppress the expression of the ATP-binding cassette transporter G1 (ABCG1) and ABCA1 genes via an LXR/RXR responsive element [J]. Atherosclerosis 2007; 191(1): 11-21.
    [117] Ahn Y S, Smith D, Osada J, Li Z, Schaefer E J, Ordovas J M. Dietary fat saturation affects apolipoprotein gene expression and high density lipoprotein size distribution in golden Syrian hamsters [J]. J Nutr 1994; 124(11):2147-2155.
    [118] Azrolan N, Odaka H, Breslow J L, Fisher E A. Dietary fat elevates hepatic apoA-I production by increasing the fraction of apolipoprotein A-I mRNA in the translating pool [J]. J Biol Chem 1995; 270(34):19833-19838.
    [119] Kuivenhoven J A, Pritchard H, Hill J, Frohlich J, Assmann G, Kastelein J. The molecular pathology of lecithin:cholesterol acyltransferase (LCAT) deficiency syndromes [J]. J Lipid Res 1997; 38(2):191-205.
    [120] Ng D S. Insight into the role of LCAT from mouse models [J]. Rev Endocr Metab Disord 2004; 5(4):311-318.
    [121] Jonas A. Regulation of lecithin cholesterol acyltransferase activity [J]. Prog Lipid Res 1998; 37(4):209-234.
    [122] Vaysse-Boue C, Dabadie H, Peuchant E, Le Ruyet P, Mendy F, Gin H, et al. Moderate dietary intake of myristic and alpha-linolenic acids increases lecithin-cholesterol acyltransferase activity in humans [J]. Lipids 2007; 42(8):717-722.
    [123] Parks J S, Bullock B C, Rudel L L. The reactivity of plasma phospholipids with lecithin: cholesterol acyltransferase is decreased in fish oil-fed monkeys [J]. J Biol Chem 1989; 264(5):2545-2551.
    [124] Kozarsky K F, Donahee M H, Rigotti A, Iqbal S N, Edelman E R, Krieger M. Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels [J]. Nature 1997; 387(6631):414-417.
    [125] Rigotti A, Trigatti B L, Penman M, Rayburn H, Herz J, Krieger M. A targeted mutation inthe murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism [J]. Proc Natl Acad Sci U S A 1997; 94(23):12610-12615.
    [126] Brundert M, Ewert A, Heeren J, Behrendt B, Ramakrishnan R, Greten H, et al. Scavenger receptor class B type I mediates the selective uptake of high-density lipoprotein-associated cholesteryl ester by the liver in mice [J]. Arterioscler Thromb Vasc Biol 2005; 25(1): 143-148.
    [127] Lo C J, Chiu K C, Fu M, Lo R, Helton S. Fish oil decreases macrophage tumor necrosis factor gene transcription by altering the NF kappa B activity [J]. J Surg Res 1999; 82(2): 216-221.
    [128] Babcock T A, Novak T, Ong E, Jho D H, Helton W S, Espat N J. Modulation of lipopolysaccharide-stimulated macrophage tumor necrosis factor-alpha production by omega-3 fatty acid is associated with differential cyclooxygenase-2 protein expression and is independent of interleukin-10 [J]. J Surg Res 2002; 107(1):135-139.
    [129] Billiar T R, Bankey P E, Svingen B A, Curran R D, West M A, Holman R T, et al. Fatty acid intake and Kupffer cell function: fish oil alters eicosanoid and monokine production to endotoxin stimulation [J]. Surgery 1988; 104(2):343-349.
    [130] Renier G, Skamene E, DeSanctis J, Radzioch D. Dietary n-3 polyunsaturated fatty acids prevent the development of atherosclerotic lesions in mice. Modulation of macrophage secretory activities [J]. Arterioscler Thromb 1993; 13(10):1515-1524.
    [131] Yaqoob P, Calder P. Effects of dietary lipid manipulation upon inflammatory mediator production by murine macrophages [J]. Cell Immunol 1995; 163(1):120-128.
    [132] Wallace F A, Miles E A, Evans C, Stock T E, Yaqoob P, Calder P C. Dietary fatty acids influence the production of Th1- but not Th2-type cytokines [J]. J Leukoc Biol 2001; 69(3):449-457.
    [133] Zhang P, Smith R, Chapkin R S, McMurray D N. Dietary (n-3) polyunsaturated fatty acids modulate murine Th1/Th2 balance toward the Th2 pole by suppression of Th1 development [J]. J Nutr 2005; 135(7):1745-1751.
    [134] Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation [J]. N Engl J Med 1999; 340(6):448-454.
    [135] Pischon T, Hankinson S E, Hotamisligil G S, Rifai N, Willett W C, Rimm E B. Habitual dietary intake of n-3 and n-6 fatty acids in relation to inflammatory markers among US men and women [J]. Circulation 2003; 108(2):155-160.
    [136] Niu K, Hozawa A, Kuriyama S, Ohmori-Matsuda K, Shimazu T, Nakaya N, et al. Dietarylong-chain n-3 fatty acids of marine origin and serum C-reactive protein concentrations are associated in a population with a diet rich in marine products [J]. Am J Clin Nutr 2006; 84(1):223-229.
    [137] Ferrucci L, Cherubini A, Bandinelli S, Bartali B, Corsi A, Lauretani F, et al. Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers [J]. J Clin Endocrinol Metab 2006; 91(2):439-446.
    [138] Ridker P M. Clinical application of C-reactive protein for cardiovascular disease detection and prevention [J]. Circulation 2003; 107(3):363-369.
    [139] Hirschfield G M, Gallimore J R, Kahan M C, Hutchinson W L, Sabin C A, Benson G M, et al. Transgenic human C-reactive protein is not proatherogenic in apolipoprotein E- deficient mice [J]. Proc Natl Acad Sci U S A 2005; 102(23):8309-8314.
    [140] Paul A, Ko K W, Li L, Yechoor V, McCrory M A, Szalai A J, et al. C-reactive protein accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice [J]. Circulation 2004; 109(5):647-655.
    [141] Reifenberg K, Lehr H A, Baskal D, Wiese E, Schaefer S C, Black S, et al. Role of C-reactive protein in atherogenesis: can the apolipoprotein E knockout mouse provide the answer? [J]. Arterioscler Thromb Vasc Biol 2005; 25(8):1641-1646.
    [142] Schwedler S B, Amann K, Wernicke K, Krebs A, Nauck M, Wanner C, et al. Native C-reactive protein increases whereas modified C-reactive protein reduces atherosclerosis in apolipoprotein E-knockout mice [J]. Circulation 2005; 112(7):1016-1023.
    [143] Endres S, Ghorbani R, Kelley V E, Georgilis K, Lonnemann G, van der Meer J W, et al. The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells [J]. N Engl J Med 1989; 320(5):265-271.
    [144] Selvaraj R K, Klasing K C. Lutein and eicosapentaenoic acid interact to modify iNOS mRNA levels through the PPARgamma/RXR pathway in chickens and HD11 cell lines [J]. J Nutr 2006; 136(6):1610-1616.
    [145] Jiang C, Ting A T, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines [J]. Nature 1998; 391(6662):82-86.
    [146] Lopez-Garcia E, Schulze M B, Manson J E, Meigs J B, Albert C M, Rifai N, et al. Consumption of (n-3) fatty acids is related to plasma biomarkers of inflammation and endothelial activation in women [J]. J Nutr 2004; 134(7):1806-1811.
    [147] Zhao G, Etherton T D, Martin K R, West S G, Gillies P J, Kris-Etherton P M. Dietary alpha-linolenic acid reduces inflammatory and lipid cardiovascular risk factors in hyper-cholesterolemic men and women [J]. J Nutr 2004; 134(11):2991-2997.
    [148] Ciubotaru I, Lee Y S, Wander R C. Dietary fish oil decreases C-reactive protein, interleukin-6, and triacylglycerol to HDL-cholesterol ratio in postmenopausal women on HRT [J]. J Nutr Biochem 2003; 14(9):513-521.
    [149] Zhao G, Etherton T D, Martin K R, Vanden Heuvel J P, Gillies P J, West S G, et al. Anti- inflammatory effects of polyunsaturated fatty acids in THP-1 cells [J]. Biochem Biophys Res Commun 2005; 336(3):909-917.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700