大气中典型二噁英类物质的氧化降解机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二嗯英是多氯代二苯并-对-二噫英(PCDDs)和多氯代二苯并呋喃(PCDFs)的总称,具有致癌、致畸和致突变的效应(三致效应),已被列入《斯德哥尔摩公约》持久性有机污染物(POPs)的黑名单中。PCDD/Fs的来源主要是垃圾焚烧、化工生产、金属冶炼及精炼过程和造纸工业等。受蒸汽压和温度的影响,进入大气的PCDD/Fs会以气相或者颗粒相的形式存在。常温状态下,低氯代的PCDD/Fs(低于六个氯原子)主要分布在气相中,高氯代的PCDD/Fs则主要分布在颗粒相中。在烟道气中,由于温度比较高,82%-93%的PCDD/Fs分布在气相中。PCDD/Fs在大气中的去除途径包括干湿沉降、光降解和大气氧化反应。颗粒相PCDD/Fs主要以干湿沉降的方式去除,而气相PCDD/Fs则主要通过与大气氧化剂发生反应而被去除。为了了解气相PCDD/Fs在大气中的化学行为,研究其与大气氧化剂的反应机理和速率常数是非常必要的。
     由于PCDD/Fs毒性高,蒸汽压低,通过实验研究反应机理和获得速率常数十分困难。量子化学计算作为研究分子与分子间相互作用的手段,被广泛应用于研究化学反应机理和获得速率常数。本论文针对前人研究中存在的问题,选取毒性较强、气相分配比占80%以上的2,3,7,8-TCDD和2,3,7,8-TCDF作为模型化合物,研究了二嗯英类物质的化学反应机理,得到了以下有意义的研究结果:
     1.2,3,7,8-TCDD/F与HOX、O3、NO3、Cl的反应机理研究
     在MP WB1K/MG3S//MPWB1K/6-31+G(d,p)水平下,研究了2,3,7,8-TCDD/F与大气中HOx自由基、03、N03自由基和C1原子的反应机理,采用小曲率隧道校正(SCT)的正则变分过渡态理论(CVT)计算了298.15K下的反应速率常数。研究表明,2,3,7,8-TCDD/F与OH自由基可以发生OH自由基加成反应和H原子抽提反应,其中OH自由基加成反应占主导地位。2,3,7,8-TCDD主要发生在与O相连的CA位点,而2,3,7,8-TCDF主要发生在C1和C4位点。298.15K时2,3,7,8-TCDD/F与OH自由基反应的总速率常数分别为7.75×10-12和9.78×10-13cm3molecule-1s-1;2,3,7,8-TCDD/F与HO2自由基只能发生加成反应,298.15K时的总速率常数分别为2.53×10-25和3.61×10-25cm3molecule-1s-1;2,3,7,8-TCDD/F与O3可以发生加成反应,298.15K时的总速率常数分别为3.17×10引和6.86×10-22cm3molecule-1s-1;2,3,7,8-TCDD/F与NO3自由基、C1原子可以发生加成反应和抽提反应,加成反应为主要反应方式。298.15K时2,3,7,8-TCDD/F与N03自由基反应的总速率常数为3.96×10-14和6.46×10-15cm3molecule-1s-1,与Cl原子反应的总速率常数分别为1.23×10-9和1.37×10-10cm3molecule-1s-1.通过计算大气寿命,得出2,3,7,8-TCDD/F与OH自由基的反应是其主要去除路径。特殊情况下,如夜间与N03自由基的反应比较重要,沿海地区黎明时与Cl原子的反应占主要地位。
     2.大气环境中OH自由基引发的2,3,7,8-TCDD的氧化降解机理
     在MPWB1K/MG3S//MPWB1K/6-31+G(d,p)水平下,研究了O2/NO/H2O存在的情况下,OH自由基引发的2,3,7,8-TCDD氧化降解机理,在热力学参数的基础上采用CVT/SCT的方法计算了相关的反应速率常数。研究表明,室温下2,3,7,8-TCDD与OH自由基的反应发生在丫位上占93%。γ位的TCDD-OH生成后,可以发生二嗯英环断裂反应和02加成反应。与NO的反应是TCDD-OH-O2过氧自由基的主要化学行为。含C-O'的自由基中间体可以抽提H2O中的H原子,得到二元醇和OH自由基。新产生的OH自由基可以引发新一轮的降解反应,这可以解释存在水蒸气时PCDD/Fs的降解效率会提高的实验现象。
     3.大气环境中OH自由基引发的23,7,8-TCDF的氧化降解机理
     在MPWB1K/MG3S//MPWB1K/6-31+G(d,p)水平下,研究了O2/NO/H2O存在的情况下,OH自由基引发的2,3,7,8-TCDF氧化降解机理,并计算相关的反应速率常数。不同加成位点的分支比随温度的变化而变化,C4-加成所占的比重随着温度的升高逐渐减小,C1-加成和CA-加成所占的比重明显增加。TCDF-OH的后续反应中,TCDF-OH(A)从动力学上比较倾向于断裂C-O键,而对TCDF-OH(B)来说,O2加成反应更为重要;TCDF-OH(1)和TCDF-OH(4)(?)匕较容易与02发生抽提反应,得到闭壳的羟基二苯并呋喃和H02自由基;TCDF-OH(2)和TCDF-OH(3)的主要反应路径为脱氯。在IM2d(t)-A的异构化降解的过程中会产生二嗯英环,这可以解释实验上关于PCDF转化为PCDD的假设。TCDF-OH-O2过氧自由基与NO的反应是无垒过程,相对于TCDF-OH-O2过氧自由基的自身异构化降解来说,这是其主要化学行为。
     4. PCDDs与OH自由基反应速率常数的QSAR研究
     计算了75种PCDDs与OH自由基加成反应的速率常数,应用定量构效关系(QSAR)方法研究了PCDDs氯原子取代数目和位置对反应速率常数的影响。研究发现,PCDDs与OH自由基发生加成反应的过程中,含Cl原子的反应位点的过渡态能量相对较高,这可能是受Cl原子空间位阻的影响。对于2,3,7,8-位氯取代的PCDDs来说,反应速率常数kα>kβ,而其它PCDDs的反应速率常数kαDioxins are the general term for polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs). Due to their properties of carcinogenesis, tetratogenesis and mutagenesis, and may enter human body through food chain and endanger the human health, PCDD/Fs have been enlisted in Stockholm Convention. The major sources of PCDD/Fs are waste incineration, chemical industry production, metal smelting and refining process, and paper manufacturing industry. The PCDD/Fs in the atmosphere are in the form of gas phase or particles, which are mainly influenced by saturated vapor pressure and temperature. At the ambient temperature, low chlorinated PCDD/Fs (mainly with six or less chlorine atoms) have high concentration in the gas phase, while high chlorinated PCDD/Fs (primarily hepta-and octa-chlorinated homologues) mainly distributed in the particle phase. In the flue gas,82%~93%of PCDD/Fs are distributed in the gas phase due to high temperature. The atmospheric fate for PCDD/Fs is removed from the atmosphere via the dry or wet deposition, photolysis and the reactions with the atmospheric oxidants (including OH radical, HO2radical, O3, NO3radical, and Cl atom). Particle-phase PCDD/Fs are removed from the atmosphere via the dry or wet deposition, while gas-phase PCDD/Fs are depleted via photolysis and degradation reactions. It is critical to know the reaction mechanism and accurate rate coefficients of PCDD/Fs with various oxidants in order to assess their dominant atmospheric fate.
     Due to their toxicities and the rather low vapor pressure, the reaction mechanism and direct kinetic measurements of the reactions are difficult to obtain by experimental study. Theoretical study can provide accurate predictions for the reaction mechanism by calculating the energies and can generate kinetic data of key elementary reaction steps. In this paper, the writer has done the following works:
     1. Mechanism of2,3,7,8-TCDD/F with HOx、O3、NO3、Cl
     2,3,7,8-tetrachlorinated dibenzo-p-dioxins and2,3,7,8-tetrachlorinated dibenzofuran (2,3,7,8-TCDD/F) were chosen to research the initiation reactions with OH radical, HO2radical, O3, NO3radical, and Cl atom at the level of MPWB1K /MG3S//MPWB1K/6-31+G(d,p) due to the highest toxicities and80%in the gas phase. Based on the quantum chemical information, rate constants were calculated using canonical variational transition state theory (CVT) with small-curvature tunneling (SCT) in order to assess the relative importance of the reactions initiated by various oxidation agents.
     The results show that2,3,7,8-TCDD/F and OH radical have two possible reaction patterns, i.e., OH radical addition and H atom abstraction, and OH radical addition is the main way. The oxygen-bonded Ca is the most favorable site for OH radical addition of2,3,7,8-TCDD, and the C1and C4are the most favorable sites for OH radical addition of2,3,7,8-TCDF. The rate constants obtained from the reactions of the TCDD/F with the OH radical are7.75×10-12and9.78×10-13cm3molecule-1s-1, respectively.2,3,7,8-TCDD/F can only react with HO2radical by H atom abstraction reaction, the rate constants at298.15K are2.53×10-25and3.61×10-25cm3molecule-1s-1, respectively.2,3,7,8-TCDD/F can react with O3radical by OH radical addition reaction, the rate constants at298.15K are3.17×10-21and6.86×10-22cm3molecule-1s"1, respectively.2,3,7,8-TCDD/F can react with NO3radical and Cl atom by OH radical addition and H atom abstraction, the OH radical addition is the main reaction way, the rate constants with NO3radical and Cl atom at298.15K are3.96×10-14/6.46×10-15and1.23×10-9/1.37×10-10cm3molecule-1s-1, respectively. The atmospheric lifetime τ of the2,3,7,8-TCDD/F with respect to OH radicals, O3, NO3radicals, and Cl atoms are estimated, and the study show that2,3,7,8-TCDD/F will be mainly scavenged by OH radical, while NO3radical is the primary oxidant at night and Cl atom dominates after sunrise in coastal and marine areas.
     I. Mechanism for OH-initiated Degradation of2,3,7,8-TCDD in Atmosphere
     The OH-initiated atmospheric degradation reaction of2,3,7,8-TCDD was investigated using DFT calculation in order to find out favorable reaction pathways and reaction sites in the presence of O2and NO/H2O. Based on the quantum chemical information, rate constants were calculated using CVT/SCT over a suitable temperature range of250-400K. The results show that more than93%of the OH radical addition reaction for2,3,7,8-TCDD occurs on Cy. In the ensuing reactions of TCDD-OH, the bond cleavage of dioxin ring and O2addition are both important. The reaction with NO in atmosphere is the main removal way of the peroxy radical isomers TCDD-OH-O2. The carbonyl free radicals can abstract H atom from H2O to reach a stable state and the OH radical will be regenerated simultaneously, which can interprete the significantly increasing destruction efficiency of PCDD/Fs in the presence of water vapor.
     3. Mechanism for OH-initiated Degradation of2,3,7,8-TCDF in Atmosphere
     The OH-initiated atmospheric chemical reaction mechanism and kinetics of2,3,7,8-TCDF was investigated using the DFT and CVT/SCT in the presence of O2and NO/H2O. The reaction mechanism of2,3,7,8-TCDF with OH radical and ensuing reactions including bond cleavage of furan ring, O2addition or abstraction, dechlorination process, bimolecular reaction of TCDF-OH-O2peroxy radical with NO and reaction of carbonyl free radicals TCDF-OH-O with H2O are researched. The results show that the branching ratios R of C4-addition will decrease as the temperature rises, while the branching ratios R of CA-addition and C\-addition increase noticeably and the branching ratios R of other addition reactions are elevated slightly. In the subsequent reactions of TCDF-OH, TCDF-OH(A) is kinetically favored to open up the C-O bond, while oxygen addition is more important for TCDF-OH(B), TCDF-OH(1) and TCDF-OH(4) are more likely to produce the closed shell dibenzofuranol structures and HO2radical, The dechlorinate processes of TCDF-OH(2) and TCDF-OH(3) are the dominant pathway. In the isomerization of M2d(t)-A, the furan ring of2,3,7,8-TeCDF can be turned into dioxin ring, which may explain the experimental hypothesis that PCDFs can be transformed to PCDDs. The reaction with NO in atmosphere is the main removal way of the peroxy radical isomers TCDF-OH-O2.
     4. QSAR Study on the Rate Constants of Polychlorinated Dibenzo-p-dioxins with OH Radical
     The rate constants of75PCDDs with OH radical at298.15K are obtained, the rate constants (kα,&β,kγ, and KOHh) are further quantified by the studies on quantitative structure-activity relationships (QSAR). According to the QSAR models, the relations of these rate constants with the numbers and positions of Cl atoms were discussed. The results show that the barrier of OH radical addition on carbon that connecting with Cl atom are higher than others, which may be due to the steric hindrance of the Cl atom. The rate constants of PCDDs that Cl atoms substitution occur on the2,3,7,8-site have the following order:kα>kβ, while others are the opposite. For the kα, Nα had limited effects on kα, and the effect of the number of relative position for these Cl atoms (mainly Np) is more than the number of Cl atoms. For the kp, it is negatively associated with Nα and kβ. The effects of relative positions of these Cl atoms are different, with the following order:N0
引文
1. Quass, U.; Fermann, M.; Broker, G. The European dioxin air emission inventory project-final results. Chemosphere 2004,54(9):1319-1327.
    2. Mckay, Q. Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration:review. Chem. Eng. J.2002,86(3):343-368.
    3. Rordorf, B.F. Prediction of vapor pressures, boiling points and enthalpies of fusion for twenty-nine halogenated dibenzo-p-dioxins and fifty-five dibenzofurans by a vapor pressure correlation method. Chemosphere 1989,18(1-6):783-788.
    4. Govers, H.A.J.; Krop, H.B. Partition constants of chlorinated dibenzofurans and dibenzo-p-dioxins. Chemosphere 1998,37(9-12):2139-2152.
    5. 赵毅;张玉海;闫蓓.二噁英的生成及污染控制.环境污染治理技术及设备.2006,7(11):1-7.
    6. van Leeuwen, F.X.R.; Feeley, M.; Schrenk, D.; Larsen, J.C.; Farland, W.; Younes, M. Dioxins: WHO'S tolerable daily intake (TDI) revisited. Chemosphere 2000,40(9/11):1095-1101.
    7. Nebert, D.W.; Goujon, F.M.; Gielen, J.E. Aryl hydrocarbon hydroxylase bypolycyclic hydrocarbons:simple autosomal dominant trait in the mouse. Nature New Biol 1972,236(65): 107-110.
    8. Okey, A.B.; Riddick, D.S.; Harper, P.A. The Ah receptor:mediator of the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin(TCDD) and related compounds. Toxicol Lett.1994,70(1):1-22.
    9. Butler, R.A.; Kelley, M.L.; Powell, W.H.; Hahn, M.E.; Van Beneden, R.J. An aryl hydrocarbon receptor (AHR) homologue from the soft-shell clam, Mya arenaria:Evidence that invertebrate AHR homologues lack 2,3,7,8-tetrachlorodibenzo-p-dioxin and b-naphthofavone binding. Gene 2001,278(1/2):223-234.
    10. Puga, A.; Tomlinson, C.R., Xia, Y. Ah receptor signals cross-talk with multiple developmental pathways. Biochem. Pharmacol.2005,69(2):199-207.
    11. Hahn, M.E. The aryl hydrocarbon receptor:A comparative perspective. Comp. Biochem. Physiol. C:Pharmacol. Toxicol. Endocrinol.1998,121(1/3):23-53.
    12.林海鹏,于云江,李琴,王丽丽,王先良,车飞.二噁英的毒性及其人体健康影响的研究进展.环境科学与技术2009,32(9):93-97.
    13. Geusau, A.; Abraham, K.; Geissler, K.; Sator, M.O.; Stingl, G; Tschachler, E. Severe 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) intoxication:clinical and laboratory effects. Environ. Health. Perspect.2001,109(8):865-869.
    14. Calvert, GM.; Sweeney, M.H.; Deddens, J.; Wall, D.K. Evaluation of diabetes mellitus, serum glucose, and thyroid function among United States workers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Occup. Environ. Med.1999,56(4):270-276.
    15. Wang, L.C.; Lee, W. S.; Chang-Chien, G P.; Tsai, P.J. Characterizing the emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from crematories and their impacts to the surrounding environment. Environ Sci Technol 2003,37(1):62-67.
    16.罗琼,朱依敏,黄荷风.二噁英类内分泌干扰物对胚胎的影响及其机制.国外医学妇幼保健分册2005,16(1):45-47.
    17. Heff, I.2,3,7,8-tetrachlorodibenzo-p-dioxin:apotent and complete carcinogen in experimental animals. Chemosphere 1992,25(1-2):151-163.
    18. Nestrick, T.J.; Lamparski, L.L. Isomer-specific determination of chlorinated dioxins for assessment of formation and potential environmental emission for wood. Anal. Chem.1982, 54(13):2292-2299.
    19. Sheffield, A. Sources and releases of PCDDs and PCDFs to the Canadian environment. Chemosphere 1985,14(6-7):811-814.
    20. Svenson, A.; Kjeller, L.O.; Rappe, C. Enzyme-mediated formation of 2,3,7,8-tetrachlorinated dibenzodioxins and dibenzofurans. Environ. Sci. Technol.1989,23(7):900-902.
    21. Pappe, C. Dioxin, patterns and source identification. FreseniusJ. Anal. Chem.1994,348(1-2): 63-75.
    22. Silk, P.J.; Lonergan, G.C.; Arsenault, T.L.; Boyle C.D. Evidence of natural organchlorine formation in peat bogs. Chemosphere 1997,35(12):2865-2880.
    23. Kjeller, L.O.; Rappe, C. Time trends in levels, pattern, and profiles for polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in a sediment core from the Baltic Proper. Environ. Sci. Technol 1995,29(2):346-355.
    24. Olie, K.; Vermeulen, RL.; Hutzinger, O. Chlorobenzo-p-dioxins and chlorobenzo-furans are trace components of fly ash and flue gas of some municipal incinerators in the Netherlands. Chemosphere 1977,6(8):455-459.
    25.郑明辉;刘鹏岩;包志成;徐晓白.二噁英的生成及降解研究进展.科学通报1999,44(5):455-464.
    26. Chen, C.M. The emission inventory of PCDD/PCDF in Taiwan. Chemosphere 2004,54(10): 1413-1430.
    27. Zheng, M.H.; Bao, Z.Z.; Xu, X.B. Formation of PCDD/Fs from pyrolysis of HCHs in the presence of iron oxide. Chemosphere 1996,32(4):595-602.
    28. Bulle, C.; Bertrand, F.; Samson, R.; Deschenes, L. Sensitivity study of an OCDD environmental fate screening model in soils in the presence of PCP wood preserving oil. Chemosphere 2008,73(1):S149-S157.
    29. Breivik, K.; Alcock, R.; Li, Y.F.; Bailey, R.E.; Fiedler, H.; Pacyna, J.M. Primary source of selected POPs:Regiona and global scale emission inventories. Environ. Pollut.2004, 128(1-2):3-16.
    30. Xing, Y.; Lu, Y.L.; Dawson, R. W.; Shi, Y.; Zhang, H.; Wang, T.; Liu, W.; Ren, H. A spatial temporal assessment of pollution from PCBs in China. Chemosphere 2005,60(6):731-739.
    31. Wang, T.; Anderson, D.R.; Thompson, D.; Clench, M.; Fisher, R. Studies into the formation of dioxins in the sintering process used in the iron and steel industry.1. Characterisation of isomer profiles in particulate and gaseous emissions. Chemosphere 2003,51(7):585-594.
    32. Lee, J. M.; Kim, J.H.; Chang, Y.Y.; Chang, Y.S. Steel dust catalysis for Fenton-like oxidation of polychlorinated dibenzo-p-dioxins. J. Hazard. Mater.2009,163(1):222-230.
    33. Chang, M.B.; Chi, K.H.; Chang, S.H.; Yeh, J.W. Destruction of PCDD/Fs by SCR from flue gases of municipal waste incinerator and metal smelting plant. Chemosphere 2007,66(6): 1114-1122.
    34. Chang, M.B.; Huang, H.C.; Tsai, S.S.; Chi, K.H.; Chang-Chien, G.R. Evaluation of the emission characteristics of PCDD/Fs from electric arc furnaces. Chemosphere 2006,62(11): 1761-1773.
    35. Chen, H.L.; Hsu, C.Y.; Hung, D.Z.; Hu, M.L. Lipid peroxidation and antioxidant status in workers exposed to PCDD/Fs of metal recovery plants. Sci. Total Environ.2006,372(1): 12-19.
    36. Yu, B.W.; Jin, G.Z.; Moon, Y.H.; Kim, M.K.; Kyoung, J.D.; Chang, Y.S. Emission of PCDD/Fs and dioxin-like PCBs from metallurgy industries in S. Korea. Chemosphere 2006, 62(3):494-501.
    37. Harnly, M.; Stephens, R.; Mclaughlin, C.; Marcotte, J.; Petreas, M.; Goldman, L. Polychlorinated dibenzo-p-dioxin and dibenzofuran contamination at Metal Recovery Facilities, Open Burn Sites, and a Railroad Car Incineration Facility. Environ. Sci. Technol. 1995,29(3):677-684.
    38.张杏丽,周启星.土壤环境多氯二苯并二嗯英/呋喃(PCDD/Fs)污染及其修复研究进展. 生态学杂志2013,32(4):1054-1064.
    39. Santl, H.; Gruber, L.; Stohre, E. Some new sources of polychlorinated dibenzo-p-dioxin (PCDDs) and dibenzofuran (PCDFs) in waste papers and recycled pulps. Chemosphere 1994, 29(9-11):1995-2003.
    40. Lin, W.Y.; Wu, Y.L.; Tu, L.K.; Wang, L.C.; Lu, X. The emission and distribution of PCDD/Fs in municipal solid waste incinerators and coal-fired power plant. Aerosol Air Qual. Res.2010,10(6):519-532.
    41. Brzuzy, L.P.; Hites, R.A. Global mass balance for polychlorinated dibenzo-p-dioxins and dibenzofurans. Environ. Sci. Technol.1996,30(6):1797-1804.
    42.陈彤.城市生活垃圾焚烧过程中二噁英的形成机理及控制技术,浙江大学博士学位论文,2006.
    43. Fiedler, H.; Rottler, H.; Peichl, L.; Knetsch, G; Basler, A. Concentrations of PCDD/PCDF in atmospheric sample in Germany. Organohalogen Compd.2000,45:264-268.
    44. Lohmann, R.; Hamer, T.; Thomas, GO.; Jones, K.C. A comparative study of the gas-particle partitioning of PCDD/Fs, PCBs and PAHs. Environ. Sci. Technol.2000,34(23): 4943-4951.
    45. Abad, E.; Martinez, K.; Gustems,L.; Gomez, R.; Guinart, X.; Hernandez, L; Rivera, J. Ten years measuring PCDDs/PCDFs in ambient air in Cataloma (Spain). Chemosphere 2007, 67(9):1709-1714.
    46. Sugita, K.; Asada, S.; Yokochi, T.; Okazawa, T.; Ono, M.; Goto, S. Survey of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polychlorinated biphenyls in urban air. Chemosphere 1994,29(9-11):2215-2221.
    47. Wania, F.; Mackay, D. Tracking the distribution of persistent organic pollutants. Environ. Sci. Technol.1996,30(9):390A-396A.
    48. Abad, E.; Caixach, J.; Rivera, J. PCDD/PCDF from emission sources and ambient air in Northeast Spain. Chemosphere 1997,35(3):453-463.
    49. Chang, M.B.; Weng, Y.M.; Lee, T.Y.; Chen, Y.W.; Chang, S.H.; Chi, K.H. Sampling and analysis of ambient dioxins in Northern Taiwan. Chemosphere 2003,51(10):1103-1110.
    50. Hoff, R.M.; Straehnan, W.M.J.; Sweet, C.W.; Chan, C.H.; Shackleton, M.; Bidleman, T.F.; Briee, K.A.; Burniston, D.A.; Cussion, S.; Gatz, D.F.; Harlin, K.; Sehroeder, W.H. Atmospheric deposition of toxic chemicals to the Great Lakes:a review of data through 1994. Atmos. Environ.1996,30(20):3505-3527.
    51. Kaupp, H.; McLachlan, M.S. Atmospheric particle size distributions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polycyclic aromatic hydrocarbons (PAHs) and their implications for wet and dry deposition. Atmos. Environ.1998,33(1): 85-95.
    52. Towara, J.; Kaupp, H.; McLachlan, M.S. Distribution of airborne PCDD/F in relation to particle size. Organohalogen Compds.1993,12:115-119.
    53. Lohmann, R.; Harner, T.; Thomas, GO.; Jones, K.C. A comparative study of the gas particle partitioning of PCDD/Fs, PCBs and PAHs. Environ. Sci. Technol.2000,34(23):4943-4951.
    54. Mandalakis, M.; Tsapakis, M.; Tsoga, A.; Stephanou, E.G. Gas-particle concentrations and distribution of aliphatic hydrocarbons, PCBs and PCDD/Fs in the atmosphere of Athens (Greece). Atmos. Environ.2002,36(25):4023-4035.
    55. Chang, M.B.; Chi, K.H.; Chang, S.H.; Chen, Y.W. Measurement of PCDD/F Congener distributions in MWI stack gas and ambient air in Northern Taiwan. Atmos. Environ.2004, 38(16):2535-2544.
    56. Wang, Y.F.; Hou, H.C.; Li, H.W.; Lin, L.F.; Wang, L.C.; Chang-Chien, G.P.; You, Y.S. Aerosol Air Qual. Res.2010,10(6):378-390.
    57. Persson, N.J.; Cousins, I.T.; Molvaer, J.; Broman, D.; Naes, K. Modelling the long-term fate of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) in the Grenland Fjords, Norway. Sci Total Environ.2006,369(1-3):188-202.
    58. Brzuzy, L.P.; Hites, R.A. Estimating the atmospheric deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans from Soils. Environ. Sci. Technol.1995,29(8): 2090-2098.
    59. Eisenreich, S.J.; Looney, B.B.; Thornton, J.D. Airborne Organic Contaminants in the Great Lakes Ecosystem. Environ. Sci. Technol.1981,15(1):30-38.
    60. Koester, C. J.; Hites, R. A. Wet and dry deposition of chlorinated dioxins and furans. Environ. Sci. Technol.1992,26(7):1375-1382.
    61. Holsen, T.M.; Noll, K.E.; Liu, S.P.; Lee, W.J. Dry deposition of polychlorinated biphenyls in urban areas. Environ. Sci. Technol.1991,25(6):1075-1081.
    62. Shih, M. L.; Lee, W.S.; Chang-Chien, GP.; Wang, L.C.; Hung, C.Y.; Lin, K.C. Dry deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in ambient air. Chemosphere 2006,62(3),411-416.
    63. Wu, Y.L.; Lin, L.F.; Hsieh, L.T.; Wang, L.C.; Chang-Chien, G.P. Atmospheric dry deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans in the vicinity of municipal solid waste incinerators. J. Hazard. Mater.2009,162(1):521-529.
    64. Ligocki, M.P.; Leuenberger, C.; Pankow, J.F. Trace organic compounds in rain- Ⅱ. Gas scavenging of neutral organic compounds. Atmos. Environ.1985,19(10):1609-1617.
    65. Ligocki, M.P.; Leuenberger, C.; Pankow, J.F. Trace organic compounds in rain-Ⅲ. Particle scavenging of neutral organic compounds. Atmos. Environ.1985,19(10):1619-1626.
    66. Schroder, J.; Welsch-Pausch, K.; McLachlan, M.S. Measurements of atmospheric deposition of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) to a soil. Atmos. Environ 1997,31(18):2983-2989.
    67. Crosby, D.G.; Wong, A.S.; Plimmer, J.R.; Woolson, E.A. Photodecomposition of chlorinated dibenzo-p-dioxins. Science 1971,173(3998):748-749.
    68. Dobbs, A.J.; Grant, C. Photolysis of highly chlorinated dibenzo-p-dioxins by sunlight. Nature 1979,278,163-165.
    69. Atkinson, R.; Arey, J. Gas-phase tropospheric chemistry of biogenic volatile organic compounds:a review. Atmos. Environ.2003,37(2):S197-S219.
    70. Kim, M.K.; O'Keefe, P.W. Photodegradation of polychlorinated dibenzo-p-dioxins and dibenzofurans in aqueous solutions and in organic solvents. Chemosphere 2000,41(6): 793-800.
    71.夏传海,徐杰,吴文忠,梁鑫淼.二噁英降解方法的研究.化学进展2004,16:123-130.
    72. Valsaraj, K.T.; Thibodeaux, L.J. On the physicochemical aspects of the global fate and long-range atmospheric transport of persistent organic pollutants. J. Phys. Chem. Lett.2010, 1(11):1694-1700.
    73. Kwok, E.S.C.; Arey, J.; Atkinson, R. Gas-phase atmospheric chemistry of dibenzo-p-dioxin and dibenzofuran. Environ. Sci. Technol.1994,28(3):528-533.
    74. Kwok, E.S.C.; Atkinson, R.; Arey, J. Kinetics and mechanisms of the gas-phase reactions of the NO3 radical with aromatic compounds. Int. J. Chem. Kinet.1994,26(5):511-525.
    75. Brubaker Jr., W.W.; Hites, R.A. OH reaction kinetics of polycyclic aromatic hydrocarbons and polychlorinated dibenzo-p-dioxins and dibenzofuran. J. Phys. Chem. A 1998,102(6): 915-921.
    76. Taylor, P.H.; Yamada, T.; Neuforth A. Kinetics of OH radical reactions with dibenzo-p-dioxin and selected chlorinated dibenzo-p-dioxins. Chemosphere 2005,58(3):243-252.
    77. Suh, I.; Zhang, R.Y.; Molina, L.T.; Molina, M.J. Oxidation mechanism of aromatic peroxy and bicyclic radicals from OH-toluene reactions. J. Am. Chem. Soc.2003,125 (41): 12655-12665.
    78. Zhang, Q.Z.; Qu, X.H.; Wang, W.X. Mechanism of OH initiated atmospheric photooxidation of dichlorvos:A quantum mechanical study. Environ. Sci. Technol.2007,41(17):6109-6116.
    79. Liao, R.Z.; Yub, J.G.; Himo, F. Mechanism of tungsten-dependent acetylene hydratase from quantum chemical calculations. Proc. Natl. Acad. Sci. USA 2010,107(52):22523-22527.
    80. Zhu, R.S.; Lai, K.Y.; Lin, M.C. Ab initio chemical kinetics for the hydrolysis of N2O4 isomers in the gas phase. J. Phys. Chem. A 2012,116(18):4466-4472.
    81. Lee, J.E.; Choi, W.; Mhin, B.J.; Balasubramanian, K. Theoretical study on the reaction of OH radicals with polychlorinated dibenzo-p-dioxin. J. Phys. Chem. A 2004,108(4):607-614.
    82. Wang, L.; Tang, A. Atmospheric oxidation mechanisms of polychlorinated dibenzo-p-dioxins are different from those of benzene and dibenzofuran:A theoretical prediction. Chemosphere 2011,82(5):782-785.
    83. Wang, L.; Tang, A. The oxidation mechanisms of polychlorinated dibenzo-p-dioxins under atmospheric conditions:A theoretical study. Chemosphere 2012,89(8):950-956.
    84. Altarawneh, M.; Kennedy, E.M.; Dlugogorski, B.Z.; Mackie, J.C. Computational study of the oxidation and decomposition of dibenzofuran under atmospheric conditions. J. Phys. Chem. A 2008,112(30):6960-6967.
    85. Wen, Z.; Wang, Z.; Xu, J.; Zhou, J.; Cen, K., Quantum chemistry study on the mechanism of the reaction between ozone and 2,3,7,8-TCDD. Int. J. Quantum Chem.2011,111(5): 1081-1091.
    86. Wang, Z.; Wen, Z.; Xu, J.; Zhou, J.; Cen, K., Theoretical study on destruction mechanism of 2,3,7,8-TCDD by O3 and NO3. Chin. J. Chem. Phys.2010,23(3):303-309.
    87.廖沐真;吴国是;刘洪霖.量子化学从头计算方法.清华大学出版社.1984.
    88.唐敖庆.量子化学现状和展望(下).有机化学1985,5(02):156-162.
    89.理查德W.G.;古柏D.J.分子轨道从头算法.科学出版社.1987.
    90.徐光宪;黎乐尼.量子化学基本原理和从头计算法.科学出版社.1987.
    91. Schaftenaar, G.; Noordik, J.H. Molden:a pre-and post-processing program for molecular and electronic structures. J. Comput-Aided Mol Des.2000,14(2):123-134.
    92. Becke, A.D. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys.1993,98(2):1372-1377.
    93. Slater, J. C. Quantum theory of molecular and solids. Vol.4:The Self-Consistent Field for Molecular and Solids McGraw-Hill:New York,1974.
    94. Salahub, D.R., Zerner, M.C. The Challenge of d and f Electrons ACS:Washington, D.C., 1989.
    95. Parr, R.G, Yang, W. Density-functional theory of atoms and molecules Oxford Univ. Press: Oxford,1989.
    96. Pople, J.A., Gill, P.M.W.; Johnson, B.G Kohn-Sham density-functional theory within a finite basis set. Chem. Phys. Lett.1992,199(6):557-561.
    97. Johnson, B.G, Frisch, M.J. An implementation of analytic second derivatives of the gradient-corrected density functional energy. J. Chem. Phys.1994,100(10):7429-7432.
    98. Labanowski, J.K., Andzelm, J.W. Density functional methods in chemistry, Springer-Verlag: New York,1991.
    99. Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev.1964,136(3):B864-B871.
    100. Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev.1965,140(4):A1133-A1138.
    101. Bor, M.; Oppenheimer, R. Zur Quantentheorie der Molekeln. Ann. Physik.1927,389(20): 457-484.
    102. Fukui, K. Variational principles in a chemical reaction. Int. J. Quantum. Chem.1981,20(15): 633-638.
    103. Fukui, K., Tachibana, A., Yamashita, K. Toward chemodynamics. Int. J. Quantum. Chem. 1981,20(15):621-632.
    104. Comes, F.J.; Gericke, K.H.; Manz, J. Energy partitioning in the reaction 16O(1D)+H218O→ 16OH+18OH. IV. Microscopic probabilities for 16OH+18OH coincident pairs. J. Chem. Phys. 1981,75(6):2853-2863.
    105. Brouard, M.; Lambert, H.; Short, J.; Simons, J., Product state-resolved stereodynamics of the reaction O (1D)+CH4→ OH+CH3. J. Phys. Chem.1995,99(37):13571-13581.
    106. Lin, J.J.; Lee, Y.T.; Yang, X. Crossed molecular beam studies of the O(]D)+CH4 reaction: Evidences for the CH2OH+H channel. J. Chem. Phys.1998,109(8),2975-2978.
    107. Kubinyi, H. From narcosis to hyperspace:The history of QSAR. Quant. Sruct. Act. Relat. 2002,21(4):348-356.
    108. Cros, A.F.A. New QSAR Techniques eyed for environmental assessments. Chem. Eng. News. 1990,68(8):20-23.
    109. Meyer, H.H. Theorie der alkoholnarkose. Arch. Exptl. Pathol. Pharmakol.1899,42(2-4): 109-118.
    110. Overton, E. Studien uber die Narkose, zugleich ein beitrag zur allgemeinen pharmakologie. Jena, Germany, Gustav Fischer,1901:1-195.
    111.Hansch, G.; Maloney, P.P.; Fujita, T.; Muir, R.M. Correlation of biological activity of phenoxyacetic acids with hammer substituent constants and partition coefficients. Nature 1962,194:178-180.
    112. Hansch, C.; Fujita, T. A method for the correlation of biological activity and chemical structure. J. Am. Chem. Soc.1964,86(8):1616-1626.
    113. Fujita, T.; Iwasa, J.; Hansch, C. A new substituent constant, π, derived from partition coefficients. J. Am. Chem. Soc.1964,86(23):5175-5180.
    114. Free, S.M.; Wilson, J.W. A mathematical contribution to structure. Activity Studies. J. Med. Chem.1964,7(4):395-399.
    115. Rogers, D.; Hopfinger, A.J. Application of genetic function approximation to quantitative structure-activity relationships and structure-property relationship. J. Chem. Inf. Comput. Sci. 1994,34:854-966.
    116. Cavasotto, C.N.; Orry, A.J.W. Ligand docking and structure-based virtual screening in drug discovery. Curr Opin. Chem. Biol.2007,7(10):1006-1014.
    117. Eitzer, B.D.; Hites, R.A. Polychlorinated dibenzo-p-dioxins and dibenzofurans in the ambient air of Bloomington Indiana, Environ. Sci. Technol.1989,23(11):1389-1395.
    118. Li, Y.M.; Jiang, G.B.; Wang, Y.W.; Wang, P.; Zhang, Q.H. Concentrations, profiles and gas-particle partitioning of PCDD/Fs, PCBs and PBDEs in the ambient air of an E-waste dismantling area, southeast China. Chinese Sci. Bull.2008,53(4):521-528.
    119. Atkinson, R. Atmospheric lifetimes of dibenzo-p-dioxins and dibenzofurans.Sci. Total Environ.1991,104(1-2):17-33.
    120. Xu, X.; Goddard, W.A. Peroxone chemistry:Formation of H2O3 and ring-(HO2)(HO3) from O3/H2O2. Proc. Natl. Acad. Sci. USA 2002,99(24):15308-15312.
    121. Friesner, R.A. Ab initio quantum chemistry:Methodology and applications. Proc. Natl. Acad. Sci. USA 2005,102(19):6648-6653.
    122. Zhao, J.; Zhang, R.Y. A theoretical investigation of nitrooxyalkyl peroxy radicals from NO3-initiated oxidation of isoprene. Atmos. Environ.2008,42(23):5849-5858.
    123. Qu, X.H.; Wang, H.; Zhang, Q.Z.; Shi, X.Y.; Xu, R; Wang, W.X. Mechanistic and kinetic studies on the homogeneous gas-phase formation of PCDD/Fs from 2,4,5-trichlorophenol. Environ. Sci. Technol.2009,43(11):4068-4075.
    124. Xu, F.; Yu, W.N.; Gao, R.; Zhou, Q.; Zhang, Q.Z.; Wang, W.X. Dioxin Formations from the radical/radical cross-condensation of phenoxy radicals with 2-chlorophenoxy radicals and 2,4,6-trichlorophenoxy radicals. Environ. Sci. Technol.2010,44(17):6745-6751.
    125. Xu, F.; Zhang, Q.Z.; Zhang, R.X.; Qu, X.; Wang, W.X. Kinetic Properties for the Complete Series Reactions of Chlorophenols with OH Radicals-Relevance for Dioxin Formation. Environ. Sci. Technol.2010,44(4):1399-1406.
    126. Yang, X.; Liu, H.; Hou, H.F.; Flamm, A.; Zhang, X.S.; Wang, Z.Y. Studies of thermodynamic properties and relative stability of a series of polyfluorinated dibenzo-p-dioxins by density functional theory. J. Hazard. Mater.2010,181(1):969-974.
    127. Zhao, Y.; Truhlar, D.G. Hybrid meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions:the MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der waals interactions. J. Phys. Chem. A 2004,108(33):6908-6918.
    128. Zheng, J.J.; Zhao, Y.; Truhlar, D.G. The DBH24/08 database and its use to assess eectronic structure model chemistries for chemical reaction barrier heights. J. Chem. Theory. Comput. 2009,5(4):808-821.
    129. Fukui, K. The path of chemical reactions-the IRC approach. Acc. Chem. Res.1981,14(12): 363-368.
    130.Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Pople, J.A. Gaussian 03, Revision B.03, Gaussian, Inc., Pittsburgh PA,2003.
    131. Gonzalez-Lafont, A.; Truong, T.N.; Truhlar, D.G. Interpolated variational transition-state theory:Practical methods for estimating variational transition-state properties and tunneling contributions to chemical reaction rates from electronic structure calculations. J. Chem. Phys. 1991,95(12):8875-8894.
    132. Corchado, J.C.; Chuang, Y.Y.; Fast, P.L.; Villa, J.; Hu, W.P.; Liu, Y.P.; Lynch, G.C.; Nguyen, K.A.; Jackels, C.F.; Melissas, V.S.; Lynch, B.J.; Rossi, I.; Coitino, E.L.; Ramos, A.F.; Pu, J.; Albu, T.V.; Garrett, R.B.C.; Truhlar, D.G. POLYRATE version 9.7,2007.
    133. Heard, D.E.; Pilling, M.J. Measurement of OH and HO2 in the troposphere. Chem. Rev.2003, 103(12):5163-5198.
    134. Archibald, A.T.; Cooke, M.C.; Utembe, S.R.; Shallcross, D.E.; Derwent, R.G.; Jenkin, M.E. Impacts of mechanistic changes on HOx formation and recycling in the oxidation of isoprene. Atmos. Chem. Phys.2010,10(17):8097-8118.
    135. Monks, P.S. Gas-phase radical chemistry in the troposphere. Chem. Soc. Rev.2005,34(5): 376-395.
    136. Hein, R.; Crutzen, P.J.; Heimann, M. An inverse modeling approach to investigate the global atmospheric methane cycle. Global. Biogeochem. Cycles 1997,11(1):43-76.
    137. Creasey, D.J.; Evans, G.E.; Heard, D.E.; Lee, J.D. Measurements of OH and HO2 concentrations in the Southern Ocean marine boundary layer. J. Geophys. Res.2003,108(15): 4475-4486.
    138. Horzumahaus, A.; Rohrer, F.; Lu, K.; Bohn, B.; Brauers, T.; Chang, C.; Fuchs, H.; Holland, F.; Kita, K.; Kondo, Y.; Li, X.; Lou, S.; Shao, M.; Zeng, L.; Wahner, A.; Zhang, Y. Amplified trace gas removal in the troposphere. Science 2009,324(5935):1702-1704.
    139. Logan, J.A. Tropospheric ozone:seasonal behavior, trends, and anthropogenic influence. J. Geophys. Res.1985,90(6):10463-10482.
    140. Roelofs, GJ.; Lelieveld, J. Model study of the influence of cross-tropopause O3 transports on tropospheric O3 levels. Tellus. B 1997,49(1):38-55.
    141.Marenco, A.; Gouget, H.; Nedelec, P.; Pages, P.J.P. Evidence of a long-term increase in tropospheric ozone from Pic du Midi data series. Consequences:positive radiative forcing. J. Geophy. Res.1994,99(8):16617-16632.
    142. Volz, A.; Kley, D. Evaluation of the Montsouris series of ozone measurements made in the nineteenth century. Nature 1988,332(6161):240-242.
    143. Oltmans, S.J.; Levy, Ⅱ.H. Surface ozone measurements from a global network. Atmos. Environ.1994,28(1):9-24.
    144. Atkinson, R. Atmospheric chemistry of PCBs, PCDDs and PCDFs. Environ. Sci. Technol. 1996,33(6):53-72.
    145. Atkinson, R. Atmospheric reactions of alkoxy and b-hydroxyalkoxy radicals. Int. J. Chem. Kinet.1997,29(2):99-111.
    146. Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ.2000,34(12): 2063-2101.
    147. Finlayson-Pitts, B.J. Chlorine atoms as a potential tropospheric oxidant in the marine boundary layer. Res. Chem. Inter.1993,19(3):235-249.
    148. Galan, E.; Gonzalez, I.; Fabbri, B. Estimation of fluorine and chlorine emissions from Spanish structural ceramic industries. The case study of the Bailen area, Southern Spain. Atmos. Environ.2002,36(34):5289-5298.
    149. Spicer, C.W.; Chapman, E.G.; Finlayson-Pitts, B.J.; Plastridge, R.A.; Hubbe, J.M.; Fast, J.D.; Berkowitz, C.M. Unexpectedly high concentrations of molecular chlorine in coastal air. Nature 1998,394(6691):353-356.
    150. Thornton, J.A.; Kercher, J.P.; Riedel, T.P.; Wagner, N.L.; Cozic, J.; Holloway, J.S.; Dube, W.P.; Wolfe, G.M.; Quinn, P.K.; Middlebrook, A.M.; Alexander, B.; Brown, S.S. A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry. Nature 2010,464(7286):271-274.
    151. Singh, H.B.; Thakur, A.N.; Chen, Y.E.; Kanakidou, M. Tetrachloroethylene as an indicator of low Cl atom concentrations in the troposphere. Geophys. Res. Lett.1996,23(12):1529-1532.
    152. Platz, J.; Nielsen, O.J.; Wallington, T.J.; Ball, J.C.; Hurley, M.D.; Straccia, A.M.; Schneider, W.F.; Sehested, J. Atmospheric chemistry of the phenoxy radical, C6H5O:UV spectrum and kinetics of its reaction with NO, NO2, and O2. J. Phys. Chem. A 1998,102(41):7964-7974.
    153. Altarawneh, M.; Dlugogorski, B.Z.; Kennedy, E.M.; Mackie, J.C. Quantum chemical and kinetic study of formation of 2-Chlorophenoxy radical from 2-Chlorophenol:unimolecular decomposition and bimolecular reactions with H, OH, Cl, and O2. J. Phys. Chem. A 1998, 112(16):3680-3692.
    154. Prinn, R.G.; Huang, J.; Weiss, R.F.; Cunnold, D.M.; Fraser, P.J.; Simmonds, P.G.; McCulloch, A.; Harth, C.; Salameh, P.; O'Doherty, S.; Wang, R.H.J.; Porter, L.; Miller, B.R. Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades. Science 2001,292(5523):1882-1888.
    155. Vrekoussis, M.; Kanakidou, M.; Mihalopoulos, N.; Crutzen, P.J.; Lelieveld, J.; Perner, D.; Berresheim, H.; Baboukas, E. Role of the NO3 radicals in oxidation processes in the eastern Mediterranean troposphere during the MINOS campaign. Atmos. Chem. Phys.2004,4(1): 169-182.
    156. Wingenter, O.W.; Blake, D.R.; Blake, N.J.; Sive, B.C.; Rowland, F.S.; Atlas, E.; Flocke, F. Tropospheric hydroxyl and atomic chlorine concentrations, and mixing timescales determined from hydrocarbon and halocarbon measurements made over the Southern Ocean. J. Geophys. Res.1999,104(17):21819-21828.
    157. Shu, Y.; Atkinson, R. Atmospheric lifetimes and fates of a series of sesquiterpenes. J. Geophys. Res.1995,100(4):7275-7282.
    158. Stalling, D.L.; Norstrom, R.J.; Smith, L.M.; Simon, M. Patterns of PCDD, PCDF, and PCB components analysis. Chemosphere 1985,14(6-7):627-643.
    159. Kearney, K.C.; Wollson, E.A.; Ellington, C.P. Persistence and metabolism of chlorodioxins in soils. Environ. Sci. Technol 1972,6(12):1017-1019.
    160. Leon, L.A; Notario, R.; Quijano, J.; Claudia, S. Structures and Enthalpies of Formation in the Gas Phase of the Most Toxic Polychlorinated Dibenzo-p-dioxins. A DFT Study. J. Phys. Chem. A.2002,106(28):6618-6627.
    161.Khachatryan, L.; Burcat, A.; Dellinger, B. An elementary reaction-kinetic model for the gas-phase formation of 1,3,6,8-and 1,3,7,9-tetrachlorinated dibenzop-dioxins from 2,4,6-trichlorophenol. Comb. Flame.2003,132(3):406-421.
    162. Altarawneh. M.; Dlugogorski, B. Z.; Kennedy, E. M.; Mackie, J. C. Quantum chemical investigation of formation of polychlorodibenzo-p-dioxins and dibenzofurans from oxidation and pyrolysis of 2-chlorophenol. J. Phys. Chem. A.2007,111(13):2563-2573.
    163. Zhang, Q.Z.; Li, S.Q.; Qu, X.H.; Shi, X.Y.; Wang, W.X. A quantum mechanical study on the formation of PCDD/Fs from 2-chlorophenol as precursor. Environ. Sci. Technol.2008,42(19): 7301-7308.
    164. Zhang, Q.Z.; Qu, X.H.; Wang, H.; Xu, F.; Shi, X.Y; Wang, W.X. Mechanism and thermal rate constants for the complete series reactions of chlorophenols with H. Environ. Sci. Technol. 2009,43(11):4105-4112.
    165. Mulholland, J.A.; Akki, U.; Yang, Y.; Ryu, J.Y. Temperature dependence of DCDD/F isomer distributions from chlorophenol precursors. Chemosphere 2001,42(5-7):719-727.
    166. Shaub, W.M.; Tsang, W. Dioxin formation in incinerators. Environ. Sci. Technol 1983, 17(12):721-730.
    167. Karasek, F.W.; Dickson, L.C. Model studies of polychlorinated dibenzo-p-dioxin formation during municipal refuse incineration. Science 1987,237(4816):754-756.
    168. Altwicker, E.R. Relative rates of formation of polychlorinated dioxins and furans from precursor and de novo reactions. Chemosphere 1996,33(10):1897-1904.
    169. Hung, P.C.; Chang, S.H.; Chi, K.H.; Chang, M.B. Degradation of gaseous dioxin-like compounds with dielectric barrier discharges. J. Hazard. Mater.2010,182(1-3):246-251.
    170. Chen, C.K.; Lin, C.; Lin, Y.C.; Wang L.C.; Chang-Chien, G.P. Polychlorinated dibenzo-p-dioxins/dibenzofuran mass distribution in both start-up and normal condition in the whole municipal solid waste incinerator. J. Hazard. Mater.2008,160(1):37-44.
    171. Hoyos, A.; Cobo, M.; Aristizabal, B.; Cordoba, F.; Montes de Correa, C. Total suspended particulate (TSP), polychlorinated dibenzodioxin (PCDD) and polychlorinated dibenzofuran (PCDF) emissions from medical waste incinerators in Antioquia, Colombia. Chemosphere 2008,73(1):S137-S142.
    172. Hjelmar, O. Disposal strategies for municipal solid waste incineration residues. J. Hazard. Mater.1996,47(1-3):345-368.
    173. Lee, C.C.; Huffman, G. L. Medical waste management/incineration. J. Hazard. Mater.1996, 35(1-3):3495-3501.
    174. Rivera-Austrui, J.; Borrajo, M.A.; Martinez, K.; Adrados, M.A.; Abalos, M.; Van Bavel, B.; Rivera, J.; Abad, E. Assessment of polychlorinated dibenzo-p-dioxin and dibenzofuran emissions from a hazardous waste incineration plant using long-term sampling equipment. Chemosphere 2011,82(9):1343-1349.
    175. Addink, R.; Antonioli, M.; Olie, K.; Govers, H. A. J. Reactions of dibenzofuran and 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin on municipal waste incinerator fly ash. Environ. Sci. Technol.1996,30(3):833-836.
    176. Ryu, J.Y.; Choi, K. C.; Mulholland, J. A. Polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofurna (PCDF) isomer patterns from municipal waste combustion:Formation mechanism fingerprints. Chemosphere 2006,65(9):1526-1536.
    177. Lawlerl, M. J.; Sander, R.; Carpenter, L. J.; Lee, J. D.; Glasow, R.; Sommariva, R.; Saltzman, E. S. HOCl and Cl2 observations in marine air. Atmos. Chem. Phys.2011,11(15):7617-7628.
    178. Knipping, E. M.; Dabdub, D. Impact of chlorine emissions from sea-salt aerosol on coastal urban ozone. Environ. Sci. Technol.2003,37(2):275-284.
    179. Chu, S.; Zheng, M.; Xu, X. Characterization of the combustion products of polyethylene. Chemosphere 1999,39(6):1497-1512.
    180. Yasuhara, A.; Katami, T.; Okuda, T.; Ohno, N.; Adriaens, P. Formation of dioxins during the combustion of newspapers in the presence of sodium chloride and poly(vinyl chloride). Environ. Sci. Technol.2001,35(7):1373-1378.
    181. Brubaker, W.W.; Hites, R.A. Polychlorinated dibenzo-p-dioxins and dibenzo-furans: gas-phase hydroxyl radical reactions and related atmospheric removal. Environ Sci Technol. 1997,31(6):1805-1810.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700