CD14~+单核细胞增强人脐带间充质干细胞的免疫抑制作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:间充质干细胞(mesenchymal stem cells, MSC)是存在于多种组织中的一种具有自我更新和多向分化潜能的多能干细胞。因其具有易于分离扩增、多向分化、造血支持、低免疫原性和免疫调节等特性,而成为组织工程和再生医学中理想的种子细胞。目前,试验研究和治疗性临床应用均以成体骨髓来源的间充质干细胞(bone marrow mesenchymal stem cell, BM-MSC)作为研究对象。但成人骨髓间充质干细胞(hBM-MSC)存在来源有限、取样时要进行侵袭性操作以及间充质干细胞的绝对数量和增殖分化能力会随着供者年龄增加而下降等不足,急需科研人员寻找一种新的更具优势的替代细胞。大量的实验研究表明,人脐带间充质干细胞(human umbilical cord matrix stem cell, hUC-MSC)具有以下不可比拟的优势:第一,利用胎儿分娩后的废弃物,组织来源广泛,无伦理学限制;第二,具有更强的增殖能力,易于长期培养,经体外扩增可获得丰富的细胞;第三,具有成体干细胞和胚胎干细胞(embryonic stem cell, ESC)的双重表面标记;第四,连续多次传代后仍然维持干细胞特性。因此,人脐带间充质干细胞作为细胞治疗中一种非常有希望的干细胞替代来源,具有无限的潜力和广泛的临床应用前景,而其免疫学特性正是细胞治疗成功与否的决定性因素。
     目的:淋巴细胞(lymphocyte)和单核细胞(monocyte)是外周血单个核细胞(Peripheral blood mononuclear cells, PBMC)重要的组成部分。本研究旨在揭示人脐带间充质干细胞、T淋巴细胞以及单核细胞三者之间的相互作用关系及其机制,为人脐带间充质干细胞的临床应用提供必要的理论基础。
     方法:(1)应用流式细胞技术检测成人骨髓间充质干细胞和人脐带间充质干细胞的免疫表型以及胚胎干细胞的全能标志物。(2)在诱导体系中,定向诱导人脐带间充质干细胞向脂肪细胞、成骨细胞和软骨细胞分化,用油红0染色、Von Kossa染色、茜素红染色以及二型胶原组化染色观测脂滴形成、钙盐沉积和二型胶原合成情况以鉴定人脐带间充质干细胞的多向分化潜能。(3)体外建立人脐带间充质干细胞和CD4+/CD8+T淋巴细胞的共培养体系以及人脐带间充质干细胞、CD4+/CD8+T淋巴细胞和CD14+单核细胞的三者共培养体系。利用流式细胞技术(Brdu掺入试验)检测T淋巴细胞的增殖情况,并且用酶联免疫吸附试验试剂盒检测其IFN-γ(interfern-γ)的分泌水平,从而反映人脐带间充质干细胞对活化后的T淋巴细胞的免疫抑制作用以及CD14+单核细胞对于这一作用的影响。(4)用transwell培养板培养人脐带间充质干细胞和CD4+/CD8+T淋巴细胞以研究人脐带间充质干细胞发挥免疫抑制作用是否需要细胞直接接触。(5)外源添加TGF-β(transforming growth factor-β)单克隆中和抗体、吲哚胺2,3-双加氧酶(indoleamine 2,3-dioxygenase, IDO)特异性抑制剂1-M-Trp、一氧化氮(N0)合酶竞争性抑制剂L-NMA和前列腺素E2(prostaglandin E2, PGE2)合成抑制剂NS-398(环氧化酶-2选择性抑制剂)和吲哚美辛(环氧化酶非选择性抑制剂),以IFN-γ的分泌水平作为评价指标,鉴定介导人脐带间充质干细胞免疫抑制作用的可溶性因子。(6)通过添加外源性PGE2并且应用ELISA试剂盒检测人脐带间充质干细胞和CD4+/CD8+T淋巴细胞共培养体系中PGE2的水平佐证PGE2是否中介人脐带间充质干细胞的免疫抑制作用。(7)制备CD3/CD28抗体交联磁珠(anti-CD3/CD28 Dynabeads)活化的CD4+T淋巴细胞、CD8+T淋巴细胞和外周血单个核细胞三种条件培养基,用ELISA试剂盒检测条件培养基中IFN-γ、TNF-α(tumor necrosis factor-a)、IL-1β(interleukin-1β)和IL-6(inter-leukin-6)的水平。同时应用ELISA方法对以上三种条件培养基以及四种因子的重组蛋白刺激前后,人脐带间充质干细胞分泌PGE2的水平进行定量检测,以明确人脐带间充质干细胞产生PGE2的驱动因子。(8)外源重组IL-1β刺激人脐带间充质干细胞,应用Real-time PCR方法检测环氧化酶-2(cyclooxygenase, COX-2)的表达并用ELISA试剂盒检测PGE2的分泌水平。(9)利用几种特异性的信号通路蛋白抑制剂:PD98059为细胞外信号调节激酶(extra-cellular signal-regulated kinase, ERK)特异性抑制剂、SB203580为p38丝裂原活化蛋白激酶(p38mitogen-activated protein kinase, p38 MAPK)特异性抑制剂、SP600125为c-Jun氨基末端激酶(c-jun-N-terminal kinase, JNK)特异性抑制剂、H89为蛋白激酶A(protein kinase A, PKA)特异性抑制剂、Wortmannin为磷脂酰肌醇3-激酶(phosphatidylnsitol 3-kinase, PI3K)特异性抑制剂、IKK-NBD肽为NF-κB特异性抑制剂、Go6983和Go6976为蛋白激酶C(protein kinase C, PKC)特异性抑制剂来初步确定IL-1β激发人脐带间充质干细胞产生PGE2的信号通路相关蛋白。(10)应用ELISA试剂盒检测CD14+单核细胞加入人脐带间充质干细胞与CD4+/CD8+T淋巴细胞共培养体系前后,上清中IL-1β和PGE2的含量。(11)利用流式细胞技术(Brdu掺入试验)和ELISA试剂盒检测IL-1受体拮抗剂(IL-1 receptor antagonist,IL-1RA)加入人脐带间充质干细胞、CD4+/CD8+T淋巴细胞和CD14+单核细胞的三者共培养体系前后,T淋巴细胞的增殖情况、IFN-γ的分泌水平以及PGE2的含量,以进一步研究单核细胞是否通过分泌IL-1β促进人脐带间充质干细胞产生PGE2,从而增强人脐带间充质干细胞的免疫抑制作用。
     结果:(1)人脐带间充质干细胞与成人骨髓间充质干细胞免疫表型相似,但人脐带间充质干细胞高表达胚胎干细胞标志物OCT4和SSEA-4。(2)在特定的诱导条件下,人脐带间充质干细胞具有向脂肪细胞、骨细胞和软骨细胞三系分化的能力。(3)人脐带间充质干细胞能够抑制CD3/CD28抗体交联磁珠活化的CD4+/CD8+T淋巴细胞的增殖以及IFN-γ的分泌,而且CD14+单核细胞能够增强人脐带间充质干细胞的这一抑制作用。(4)人脐带间充质干细胞发挥免疫抑制作用并不依赖于细胞间的直接接触。PGE2合成抑制剂能够显著反转人脐带间充质干细胞的免疫抑制作用;而外源性PGE2能够模拟人脐带间充质干细胞的免疫抑制作用。(5)炎症因子IFN-γ和IL-1β均能驱动人脐带间充质干细胞产生PGE2。ERK、p38-MAPK和JNK的特异性抑制剂能够显著下调IL-1β诱导的PGE2的分泌。(6)CD14+单核细胞能够显著上调人脐带间充质干细胞与CD4+/CD8+T淋巴细胞共培养上清中IL-1β以及PGE2的水平,并且上调的幅度与单核细胞的数量呈正相关。(7)IL-1RA能够下调人脐带间充质干细胞、CD4+/CD8+T淋巴细胞和CD14+单核细胞三者共培养上清中PGE2的水平,同时显著逆转T淋巴细胞的增殖活力以及IFN-γ的分泌水平。
     结论:CD14+单核细胞通过分泌炎症因子IL-1β,经由MAPK信号通路显著上调人脐带间充质干细胞中PGE2的表达,从而增强人脐带间充质干细胞对活化CD4+/CD8+T淋巴细胞的免疫抑制作用。
     背景:间充质干细胞(mesenchymal stem cells, MSC)以其卓越的免疫调节能力,日益成为广大科研人员关注的热点。经体内外大量研究证实,间充质干细胞能够调控T淋巴细胞、B淋巴细胞、NK细胞、树突状细胞、巨噬细胞等多种免疫细胞的功能,为治疗免疫相关疾病以及自身免疫性疾病带来了曙光。人胎儿脐带基质来源的间充质干细胞(human umbilical cord matrix stem cell, hUC-MSC)不仅具有许多独特的优势,而且像骨髓间充质干细胞(bone marrow mesenchymal stem cell, BM-MSC)一样,能够高效调节T淋巴细胞的活性和功能。
     目的:人脐带间充质干细胞能够分泌多种生长因子和细胞因子。本研究旨在揭示人脐带间充质干细胞产生IL-6的机制,以及IL-6在人脐带间充质干细胞影响肿瘤细胞增殖过程中的作用。
     方法:建立人外周血单个核细胞(hPBMC)和人脐带间充质干细胞的共培养体系以观察两种细胞之间的相互作用。制备多种条件培养基并建立人脐带间充质干细胞的单独培养体系,以研究可溶性因子对IL-6分泌的影响。用ELISA定量检测培养上清中IL-6、IL-1β和PGE2的水平。应用工L-1受体抑制剂和多种信号通路抑制剂确定CD14+单核细胞是否通过分泌IL-1β而上调IL-6的表达以及相关的信号通路。Western blot用以检测NF-KB的活化。用流式细胞仪检测肿瘤细胞Brdu的掺入情况,以证实人脐带间充质干细胞是否能够影响肿瘤细胞的增殖,同时评估IL-6在这一过程中的作用。
     结果:(1)共培养体系中IL-6的浓度与人脐带间充质干细胞的数量呈正相关,并随着共培养时间的延长而呈进行性富集。(2)IL-6主要由人脐带间充质干细胞分泌。(3)CD14+单核细胞通过释放IL-1β诱导人脐带间充质干细胞产生IL-6。(4)PGE2并不参与诱导人脐带间充质干细胞分泌IL-6。(5)c-Jun氨基末端激酶(JNK)信号通路及转录因子NF-κB均与IL-1β诱导人脐带间充质干细胞表达IL-6紧密相关。(6)由IL-1β刺激人脐带间充质干细胞所制备的条件培养基能够促进MCF-7细胞的增殖,但IL-6中和抗体部分逆转了这一促进效应。(7)木犀草素以剂量依赖性的方式显著抑制人脐带间充质干细胞IL-6的分泌。
     结论:(1)CD14+单核细胞释放的IL-1β经由c-Jun氨基末端激酶(JNK)信号通路活化转录因子NF-κB,从而诱导人脐带间充质干细胞产生IL-6。(2)IL-6中介人脐带间充质干细胞对MCF-7细胞增殖的促进作用。(3)木犀草素以剂量依赖性方式显著抑制人脐带间充质干细胞IL-6的分泌。
Background:Mesenchymal stem cells (MSC), isolated from many tissues, are multipotent stem cells with the capacity for self-renewal and multilineage differentiation. They can be isolated with ease and expanded in large quantities, their multipotency, supporting hematopoiesis. Their low immunogenicity and immunoregulation properties present them as a promising stem cell candidate for tissue engineering and regenerative medicine. Up to date, most experimental research and therapeutic applications are based on MSC derived from adult bone marrow (ABM-MSC). But human bone marrow MSC (hBM-MSC) have many drawbacks, including the limited volume, the invasive procedures of their harvest and the age-dependent decline in the absolute number, differentiation and proliferation capacity, which has prompted researchers to look for alternative sources of MSC. Increasing evidence confirms that MSC derived from human fetal umbilical cord matrix (hUC-MSC) have the incomparable advantages:(1) Take full advantage of discarded materials from the new born baby, which are easily accessible and less troublesome in ethical controversy. (2) hUC-MSC are readily long-time preparation and can be scaled up in large numbers because of short doubling time. (3) hUC-MSC contain both human embryonic stem cells and human mesenchymal stem cells markers. (4) hUC-MSC maintain "stemness " for several serial passages. Above all, hUC-MSC offer tremendous promise in cellular therapeutics, while the key to the success is the immunological properties of hUC-MSC.
     Objective:Lymphocyte and monocyte are the important subsets of human peripheral blood mononuclear cells (PBMC). This study was designed to illustrate the interaction among hUC-MSC, T lymphocyte and CD14+monocyte, which will offer us new strategy for the clinical application of hUC-MSC. Methods:(1) To compare hUC-MSC phenotypic markers with hBM-MSC, specific cell-surface and intracellular marker were examined by flow cytometry. (2) hUC-MSC were induced for adipocytes, osteoblasts and chondrocytes in the specific-induction medium. Oil red 0 staining, Von Kossa staining, alizarin red staining and collagen II histochemistry assays were performed to examine lipid droplet, mineralization and the production of collagen II. (3) hUC-MSC and CD4+/CD8+T lymphocyte or hUC-MSC, CD4+/CD8+T lymphocyte and CD14+monocyte were cocultured in vitro. T lymphocyte proliferation was assessed by flow cytometry(Brdu incorporation assay).And IFN-γsecretion was detected by ELISA kits. (4)Transwell plates were used to block the direct contact between hUC-MSC and T lymphocyte. (5) Coculture experiments were performed in the presence or absence of specific inhibitors for the possible soluble mediators, including a neutralizing anti-TGF-βmonoclonal antibody; 1-M-Trp, an inhibitor of IDO enzymatic activity; L-NMA, a competitive inhibitor of NO synthases; NS-398, selective cyclooxygenase (COX)-2 inhibitor and indomethacin, non-selective COX inhibitor. (6) hUC-MSC were cocultured with activated T lymphocyte, and cell-free supernatants were detected by Prostaglandin E2 (PGE2) ELISA kits. Additionally, exogenous PGE2 was added to T lymphocyte culture system in some experiment. (7) Cell-free condition medium (CM) from CD4+T lymphocyte, CD8+T lymphocyte or hPBMC stimulated by anti-CD3/CD28 Dynabeads were prepared. IFN-γ、TNF-α、IL-1βand IL-6 were quantified in the CM by ELISA kit. These three CM and the recombinant protein of the four inflammatory cytokines were added individually to the hUC-MSC culture system to test their effect on PGE2 production. (8) Exogenous IL-1βwas added in the culture of hUC-MSC, then COX-2 mRNA expression was detected by Real-time PCR and PGE2 production was assessed by ELISA kit. (9) To define the signaling pathway involved in IL-1β-induced up-regulation of PGE2, hUC-MSC were pre-treated with some specific inhibitors of different signaling proteins:PD98059(a specific inhibitor of ERK), SB203580(a specific inhibitor of p38MAPK), SP600125(a specific inhibitor of JNK), H89 (a specific inhibitor of PKA),Wortmannin (a specific inhibitor of PI3K),IKK-NBD(a specific inhibitor of NF-κB), Go6983 and Go6976 (a specific inhibitor of PKC). (10) IL-1βand PGE2 were quantified by ELISA kit in the coculture of hUC-MSC and CD4+/CD8+T lymphocyte in the presence or absence of CD14+monocyte. (11) IL-1RA was added in the coculture of CD4+/CD8+T lymphocyte, CD14+monocyte and hUC-MSC, then T lymphocyte proliferation was assessed by flow cytometry (Brdu incorporation assay). Meanwhile, IFN-γand PGE2 were quantified by ELISA kit.
     Result:(1) The expression profile of phenotypic markers for hUC-MSC was similar to that of hBM-MSC. Moreover, hUC-MSC expressed the embryonic stem cell specific markers, including 0CT4 and SSEA-4. (2) hUC-MSC were able to differentiate toward adipogenic, osteogenic and chondrogenic lineages in lineage-specific inductive condition, indicating that hUC-MSC possess multilineage differentiation potential. (3) hUC-MSC exhibited a dose-dependent inhibition on both cell proliferation and IFN-γproduction when either CD4+T lymphocyte or CD8+T lymphocyte activated with anti-CD3/CD28 Dynabeads. Inclusion of CD14+monocyte in the coculture enhanced this inhibition. (4)Transwell experiments, inhibition of PGE2 synthesis experiments, exogenous PGE2 experiments and quantification of PGE2 revealed that PGE2 was an important soluble factor for hUC-MSC-mediated immuno-inhibition. (5)Proinflammatory cytokines IFN-γand IL-1βsignificantly induced the production of PGE2 in hUC-MSC. ERK, p38 kinase, and JNK specific inhibitor significantly decreased IL-1β-induced PGE2 production. (6) Inclusion of CD14+monocyte in the CD4+/CD8+T lymphocyte and hUC-MSC cocultures resulted in simultaneously increased expression of IL-1βand PGE2, and the more monocyte were added the larger amounts of IL-1βand PGE2 were produced. (7) IL-1RA not only down-regulated PGE2 but also significantly reversed the promotional effect of CD14+monocyte on hUC-MSC-mediated inhibition to CD4+/CD8+T lymphocyte proliferation and IFN-γgeneration. Conclusion:Taken together, these results indicate that CD14+monocyte may promote the immunosuppressive effect of hUC-MSC by enhancing PGE2 synthesis through up-regulation of IL-1βexpression. And MAPK signaling pathways involving ERK, p38 kinase and JNK are strongly relevant to IL-1β-induced PGE2 production.
     Background:Mesenchymal stem cells (MSC) possess outstanding immunoregulatory talent. Previous studies have confirmed that MSC can modulate the function of many immune cells, such as T cells, B cells, NK cells, macrophages and dendritic cells. Human umbilical cord matrix stem cells (hUC-MSC) have the incomparable advantages. And they are able to inhibit proliferation and IFN-γsecretion of the activated T cells.
     Objective:hUC-MSC secret a number of growth factor and cytokines. This study was designed to illustrate the mechanism of IL-6 production of hUC-MSC. And the effect of IL-6 secreted by hUC-MSC on the proliferation of tumor cells. Methods:hPBMC and hUC-MSC were cocultured in vitro to study the interaction of these cells. The condition mediums (CM) from the culture system of CD14+ monocyte, CD14 cells and hPBMC were used to stimulate hUC-MSC. IL-6, IL-1 3 and PGE2 were quantified by ELISA kit. IL-1RA and the specific inhibitors of signal proteins were used to identify the signal pathway of IL-6 production. Western blot was used to confirm the degradation of IκB. Brdu incorporation assay of flow cytometry was used to detect the effect of hUC-MSC on the proliferation of tumor cells.
     Result:(1) IL-6 was upregulated in a number-dependent manner of hUC-MSC and time-dependent way in the coculture supernatant. (2) IL-6 was secreted mainly by hUC-MSC. (3) CD14+monocyte-paracrined IL-1βwas responsible for the induction of IL-6 in hUC-MSC. (4) PGE2 was not involved in the production of IL-6. (5) JNK signal pathway and NF-κB were activated in IL-6 induction by IL-1β. (6) The condition medium from IL-1β-stimulated hUC-MSC was able to increase the proliferation of MCF-7 cells. (7) Luteolin significantly inhibited the production of IL-6 in a dose-dependent manner.
     Conclusion:(1) IL-1β,secreted by CD14+monocyte, can activated the JNK signal pathway and the transcription factor NF-κB, which are highly involved in the production of IL-6 in hUC-MSC. (2) IL-6 mediate the promotion effect of hUC-MSC on the proliferation of MCF-7 cells. (3)Luteolin suppresses IL-6 production in a dose-dependent manner.
引文
[1]Le Blanc K, Ringden 0. Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant.11(2005) 321-334.
    [2]Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood.105 (2005) 1815-1822.
    [3]Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, Fu YS, Lai MC, Chen CC. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells.22 (2004) 1330-1337.
    [4]Friedman R, Betancur M, Boissel L, Tuncer H, Cetrulo C, Klingemann H. Umbilical cord mesenchymal stem cells:adjuvants for human cell transplantation. Biol Blood Marrow Transplant.13 (2007) 1477-1486.
    [5]Campard D, Lysy PA, Najimi M, Sokal EM. Native umbilical cord matrix stem cells express hepatic markers and differentiate into hepatocyte-like cells. Gastroenterology. 134 (2008) 833-848.
    [6]Zhao Q, Ren H, Li X, Chen Z, Zhang X, Gong W, Liu Y, Pang T, Han ZC. Differentiation of human umbilical cord mesenchymal stromal cells into low immunogenic hepatocyte-like cells. Cytotherapy.11 (2009) 414-426.
    [7]Moodley Y, Atienza D, Manuelpillai U, Samuel CS, Tchongue J, Ilancheran S, Boyd R, Trounson A. Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury. Am J Pathol.175 (2009) 303-313.
    [8]Zhang L, Zhang HT, Hong SQ, Ma X, Jiang XD, Xu RX. Cografted Wharton's Jelly Cells-derived Neurospheres and BDNF Promote Functional Recovery After Rat Spinal Cord Transection. Neurochem Res.34 (2009) 2030-9
    [9]Liao W, Xie J, Zhong J, Liu Y, Du L, Zhou B, Xu J, Liu P, Yang S, Wang J, Han Z, Han ZC. Therapeutic effect of human umbilical cord multipotent mesenchymal stromal cells in a rat model of stroke. Transplantation.87 (2009) 350-359.
    [10]Weiss ML, Anderson C, Medicetty S, Seshareddy KB, Weiss RJ, VanderWerff I, Troyer D, McIntosh KR. Immune properties of human umbilical cord Wharton's jelly-derived cells. Stem Cells.26 (2008) 2865-2874.
    [11]Cho PS, Messina DJ, Hirsh EL, Chi N, Goldman SN, Lo DP, Harris IR, Popma SH, Sachs DH, Huang CA. Immunogenicity of umbilical cord tissue derived cells. Blood.111 (2008) 430-438.
    [12]Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood.103 (2004) 4619-4621.
    [13]Zhang B, Liu R, Shi D, Liu X, Chen Y, Dou X, Zhu X, Lu C, Liang W, Liao L, Zenke M, Zhao RC. Mesenchymal stem cells induce mature dendritic cells into a novel Jagged-2 dependent regulatory dendritic cell population. Blood.113 (2008) 46-57
    [14]Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, Dazzi F. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood.101 (2003) 3722-3729.
    [15]Beyth S, Borovsky Z, Mevorach D, Liebergall M, Gazit Z, Aslan H, Galun E, Rachmilewitz J. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood.105 (2005) 2214-2219.
    [16]Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood.99 (2002) 3838-3843.
    [17]Sato K, Ozaki K, Oh I, Meguro A, Hatanaka K, Nagai T, Muroi K, Ozawa K. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood.109 (2007) 228-234.
    [18]Tiemessen MM, Jagger AL, Evans HG, van Herwijnen MJ, John S, Taams LS. CD4+CD25+Foxp3+regulatory T cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci U S A.104 (2007) 19446-19451.
    [19]Lu LL, Liu YJ, Yang SG, Zhao QJ, Wang X, Gong W, Han ZB, Xu ZS, Lu YX, Liu D, Chen ZZ, Han ZC. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica.91 (2006) 1017-1026.
    [20]Jarvinen L, Badri L, Wettlaufer S, Ohtsuka T, Standiford TJ, Toews GB, Pinsky DJ, Peters-Golden M, Lama VN. Lung resident mesenchymal stem cells isolated from human lung allografts inhibit T cell proliferation via a soluble mediator. J Immunol.181 (2008) 4389-4396.
    [21]English K, Barry FP, Field-Corbett CP, Mahon BP. IFN-gamma and TNF-alpha differentially regulate immunomodulation by murine mesenchymal stem cells. Immunol Lett.110 (2007) 91-100.
    [22]Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, Lanino E, Sundberg B, Bernardo ME, Remberger M, Dini G, Egeler RM, Bacigalupo A, Fibbe W, Ringden 0. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease:a phase II study. Lancet.371 (2008) 1579-1586.
    [23]Porada CD, Zanjani ED, Almeida-Porad G. Adult mesenchymal stem cells: a pluripotent population with multiple applications. Curr Stem Cell Res Ther.1 (2006) 365-369.
    [24]Noel D, Djouad F, Bouffi C, Mrugala D, Jorgensen C. Multipotent mesenchymal stromal cells and immune tolerance. Leuk Lymphoma.48 (2007) 1283-1289.
    [25]Rasmusson I, Ringden 0, Sundberg B, Le Blanc K. Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms.Exp Cell Res.305(2005) 33-41.
    [26]Anastassiou ED, Paliogianni F, Balow JP, Yamada H, Boumpas DT. Prostaglandin E2 and other cyclic AMP-elevating agents modulate IL-2 and IL-2R alpha gene expression at multiple levels. J Immunol.148 (1992) 2845-2852.
    [27]Minakuchi R, Wacholtz MC, Davis LS, Lipsky PE. Delineation of the mechanism of inhibition of human T cell activation by PGE2. J Immunol.145 (1990) 2616-2625.
    [28]Nataraj C, Thomas DW, Tilley SL, Nguyen MT, Mannon R, Koller BH, Coffman TM. Receptors for prostaglandin E(2) that regulate cellular immune responses in the mouse. J Clin Invest.108 (2001) 1229-1235.
    [29]Kvirkvelia N, Vojnovic I, Warner TD, Athie-Morales V, Free P, Rayment N, Chain BM, Rademacher TW, Lund T, Roitt IM, Delves PJ. Placentally derived prostaglandin E2 acts via the EP4 receptor to inhibit IL-2-dependent proliferation of CTLL-2 T cells. Clin Exp Immunol.127 (2002) 263-269.
    [30]Porter B0, Malek TR. Prostaglandin E2 inhibits T cell activation-induced apoptosis and Fas-mediated cellular cytotoxicity by blockade of Fas-ligand induction. Eur J Immunol.29 (1999) 2360-2365.
    [31]George RJ, Sturmoski MA, Anant S, Houchen CW. EP4 mediates PGE2 dependent cell survival through the PI3 kinase/AKT pathway. Prostaglandins Other Lipid Mediat.83 (2007) 12-120.
    [32]Jana B, Koszykowska M, Andronowska A. The effect of tumor necrosis factor-alpha (TNF-alpha, interleukin (IL)-lbeta and IL-6 on prostaglandins (PG) F2 alpha and E2 secretion from maternal placenta in pigs. Pol J Vet Sci.11 (2008) 315-322.
    [33]Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, Zhao RC, Shi Y. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell.2 (2008) 141-150.
    [34]Lazarus HM, Koc ON, Devine SM, Curtin P, Maziarz RT, Holland HK, Shpall EJ, McCarthy P, Atkinson K, Cooper BW, Gerson SL, Laughlin MJ, Loberiza FR Jr, Moseley AB, Bacigalupo A.Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant.11 (2005) 389-398.
    [35]Polchert D, Sobinsky J, Douglas G, Kidd M, Moadsiri A, Reina E, Genrich K, Mehrotra S, Setty S, Smith B, Bartholomew A. IFN-gamma activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. Eur J Immunol.38 (2008) 1745-1755.
    [36]Groh ME, Maitra B, Szekely E, Koc ON. Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Exp Hematol.33 (2005) 928-934.
    [37]Gonzalez-Rey E, Anderson P, Gonzalez MA, Rico L, Buscher D, Delgado M. Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut.58 (2009) 929-939.
    [38]Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD, Mao N. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood.105 (2005) 4120-4126.
    [39]Zhang B, Liu R, Shi D, Liu X, Chen Y, Dou X, Zhu X, Lu C, Liang W, Liao L, Zenke M, Zhao RC. Mesenchymal stem cells induce mature dendritic cells into a novel Jagged-2-dependent regulatory dendritic cell population. Blood.113 (2009) 46-57.
    [40]Liang J, Zhang H, Hua B, Wand H, Wang J, Han Z, Sun L.Allogeneic mesenchymal stem cells transplantation in treatment of multiple sclerosis. Mult Scler.15 (2009) 644-6
    [41]Sun L, Zhang H, Gu F, Fang X, Zhao H, Han Z. Treatment of refractory systemic sclerosis with human umbilical cord derived mesenchymal stem cell transplantation. Cell Res.18 (2008) s71
    [42]Chen K, Wang D, Du WT, Han ZB, Ren H, Chi Y, Yang SG, Zhu D, Bayard F, Han ZC. Human umbilical cord mesenchymal stem cells hUC-MSCs exert immunosuppressive activities through a PGE2-dependent mechanism. Clin Immunol. (2010) Mar 4. [Epub ahead of print]
    [43]Yanez R, Lamana ML, Garcia-Castro J, Colmenero I, Ramirez M, Bueren JA. Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the Control of theGraft-versus-host disease. Stem Cells.24 (2006) 2582-91.
    [44]Danielle Burger and Jean-Michel Dayer. The role of human T lymphocyte-monocyte contact in inflammation and tissue destruction. Arthritis Res.4 (2002)(suppl 3):S169-S176
    [45]Guan Z, Buckman SY, Miller BW, Springer LD, Morrison AR. Interleukin-lbeta-induced cyclooxygenase-2 expression requires activation of both c-Jun NH2-terminal kinase and p38 MAPK signal pathways in rat renal mesangial cells. J Biol Chem.273 (1998) 28670-28676.
    [46]Whiteman M, Spencer JP, Zhu YZ, Armstrong JS, Schantz JT. Peroxynitrite-modif ied collagen-Ⅱ induces p38/ERK and NF-kappaB-dependent synthesis of prostaglandin E2 and nitric oxide in chondrogenically differentiated mesenchymal progenitor cells. Osteoarthritis Cartilage.14 (2006)460-470.
    [47]Kuno K, Matsushima K. The IL-1 receptor signaling pathway. J Leukoc Biol.56 (1994) 542-547.
    [48]Melino M, Hii CS, McColl SR, Ferrante A. The effect of the JNK inhibitor, JIP peptide, on human T lymphocyte proliferation and cytokine production. J Immunol.181 (2008) 7300-7306.
    [49]Subbaramaiah K, Cole PA, Dannenberg AJ. Retinoids and carnosol suppress cyclooxygenase-2 transcription by CREB-binding protein/p300-dependent and independent mechanisms. Cancer Res.62 (2002) 2522-2530.
    [50]Qiutang Li and Inder M. Verma. NF-κB regulation in the immune system. Nature review.2 (2002) 725-734.
    [1]Le Blanc K, Ringden 0. Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant.11 (2005) 321-334.
    [2]Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood.105 (2005) 1815-1822.
    [3]Farida Djouad, Pascale Plence, Claire Bony, Philippe Tropel, Florence Apparailly, Jacques Sany, Daniele Noel and Christian Jorgensen. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood.102 (2003) 3837-3844.
    [4]Studeny, M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-b delivery into tumors. Cancer Res.62 (2002) 3603-3608.
    [5]Kogler G, Radke TF, Lefort A, Sensken S, Fischer J, Sorg RV, Wernet P. G. Cytokine production and hematopoiesis supporting activity of cord blood-derived unrestricted somatic stem cells. Exp. Hematol.33 (2005) 573-583.
    [6]Ries C, Egea V, Karow M, Kolb H, Jochum M, Neth P. MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells:differential regulation by inflammatory cytokines. Blood.109(9) (2007) 4055-63.
    [7]Antonio Uccellil, Vito Pistoia and Lorenzo Moretta. Mesenchymal stem cells:a new strategy for immunosuppression? TRENDS in Immunology.28 (2007)219-226.
    [8]Khakoo AY, Pati S, Anderson SA, Reid W, Elshal MF, Rovira II, Nguyen AT, Malide D, Combs CA, Hall G, Zhang J, Raff eld M, Rogers TB, Stetler-Stevenson W, Frank JA, Reitz M, Finkel T. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma. J. Exp. Med.203 (2006) 1235-1247.
    [9]Ame-Thomas P, Maby-El Hajjami H, Monvoisin C, Jean R, Monnier D, Caulet-Maugendre S, Guillaudeux T, Lamy T, Fest T, Tarte K. Human mesenchymal stem cells isolated from bone marrow and lymphoid organs support tumor B-cell growth:role of stromal cells in follicular lymphoma pathogenesis. Blood. 109 (2007) 693-702.
    [10]Zhu W, Xu W, Jiang R, Qian H, Chen M, Hu J, Cao W, Han C, Chen Y. Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Exp. Mol. Pathol.80 (2006) 267-274
    [11]Djouad F, Charbonnier LM, Bouffi C, Louis-Plence P, Bony C, Apparailly F, Cantos C, Jorgensen C, Noel D.Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells.25 (2007) 2025-32.
    [12]Sironi M, Breviario F, Proserpio P, Biondi A, Vecchi A, Van Damme J, Dejana E, Mantovani A. IL-1 stimulates IL-6 production in endothelial cell. J Immunol.142(2) (1989) 549-53.
    [13]Le May LG, Otterness IG, Vander AJ, Kluger MJ. In vivo evidence that the rise in plasma IL-6 following injection of a fever-inducing dose of LPS is mediated by IL-1 β. Cytokine.2(3) (1990) 199-204.
    [14]Kostura MJ, Tocci MJ, Limjuco G, Chin J, Cameron P, Hillman AG, Chartrain NA, Schmidt JA. Identification of a monocyte specific pre-interleukin 1β convertase activity. Proc Natl Acad Sci USA.86(14)(1989) 5227-31.
    [15]Bayne EK, Rupp EA, Limjuco G, Chin J, Schmidt JA. Immu-nocytochemical detection of interleukin 1 within stimulated human monocytes. J Exp Med. 163(5) (1986) 1267-80.
    [16]Saebyeol Jang, Keith W. Kelley, and Rodney W. Johnson. Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1.PNAS.105 (2008) 7534-7539.
    [17]Gunn WG, Conley A, Deininger L, Olson SD, Prockop DJ, Gregory CA. A crosstalk between myeloma cells and marrow stromal cells stimulates production of DKK1 and interleukin-6:a potential role in the development of lytic bone disease and tumor progression in multiple myeloma. Stem Cells. 2006 24 (2006) 986-91
    [18]Yasuyoshi Sohara,5 Hiroyuki Shimada, Cedric Minkin, Anat Erdreich-Epstein, Jan A. Nolta and Yves A. DeClerck. Bone marrow mesenchymal stem cells provide an alternate pathway of osteoclast activation and bone destruction by cancer cells. Cancer Res.65 (2005) 1129-1135.
    [19]A. KateSasser, NicholasJ. Sullivan, AdamW. Studebaker, Lindsay F. Hendey, AmyE. Axel, and BrettM. Hall. Interleukin-6 is a potent growth factor forER-α-positivehuman breast cancer. The FASEB Journa.21 (2007)3763-3770
    [20]Dendorfer U, Oettgen P, Libeimann TA. Multiple regulatory elements in the interleukin-6 gene mediate induction by prostaglandins, cyclic AMP, and lipopolysaccharide. Mol Cell Biol.14 (1994)4443-4454.
    [21]Commenges D, Scotet V, Renaud S, Jacqmin-Gadda H, Barberger-Gateau P, Dartigues JF. Intake of flavonoids and risk of dementia. Eur J Epidemiol.16 (2000) 357-363.
    [22]Sampson L, Rimm E, Hollman PC, de Vries JH, Katan MB. Flavonoid intake and risk of chronic diseases. Am J Clin Nutr.76 (2002) 560-568.
    [23]Ross JA, Kasum CM. Dietary flavonoids:Bioavailability, metabolic effects, and safety. Annu Rev Nutr.22 (2002) 19-34.
    [24]Hendriks JJ, Alblas J, van der Pol SM, van Tol EA, Di jkstra CD, de Vries HE. Flavonoids influence monocytic GTPase activity and are protective in experimental allergic ence-phalitis. J Exp Med.200 (2004)1667-1672.
    [25]Rotelli AE, Guardia T, Juarez A0, de la Rocha NE, Pelzer LE. Comparative study of flavonoids in experimental models of inflammation. Pharmacol Res. 48 (2003) 601-606
    [1]Friedenstein, A. J., K. V. Petrakova, A.I. Kurolesova & G. P. Frolova.1968. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6:230-247.
    [2]Dennis JE, AIC. Stem Cells Handbook. Totowa, NJ, Human Press,2004
    [3]Wang, L., Y. Li, X. Chen, et al.2002. MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture. Hematology 7:113-117.
    [4]Parekkadan, B., D. van Poll, K. Suganuma, et al.2007. Mesenhymal stem cell-drived molecules reverse fulminant hepatic failure. PLos ONE 2:e941.
    [5]Ringden,0., M. Uzunel, B. Sundberg, et al.2007. Tissue repair using mesenchymal stem cells for hemorrhagic cystitis, pneumomediastinum and perforated colon. Leukemia 21:2271-2276.
    [6]Caplan, A. I.2007. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J. Cell Physiol.213:341-347.
    [7]Le Blanc, K. & 0. Ringden.2007. Immunomodulation by mesenchymal stem cells and clinical experience.J. Intern. Med.262:509-525.
    [8]Nauta, A. J. & W. E. Fibbe.2007. Immunomodulatory properties of mesenchymal stromal cells. Blood.110:3499-3506.
    [9]Locatelli, F., R. Maccario & F. Frassoni.2007. Mesenchymal stromal cells, from indifferent spectators to principal actors. Are we going to witness a revolution in the scenario of allograft and immunemediated disorders? Haematologica.92:872-877.
    [10]Uccelli, A., V. Pistoia & L. Moretta.2007. Mesenchymal stem cells: a new strategy for immunesuppression? Trends Immunol.28:219-226.
    [11]Le Blanc, K., L. Tammik, B. Sundberg, et al.2003. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand. J. Immunol.57:11-20.
    [12]Di Nicola, M., C. Carlo-Stella, M. Magni, et al.2002. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or non specific mitogenic stimuli. Blood.99:3838-3843.
    [13]Tse, W.T., J.D. Pendleton, W. M. Beyer, et al.2003. Suppression of allogeneic T-cell proliferation by human marrow stromal cells:implications in transplantation. Transplantation.75:389-397.
    [14]Krampera, M., S. Glennic, J. Dyson, et al.2003. Bone marrow mesenchymal stem cells inhibit the response of na " (?)ve and memory antigen-specific T cells to their cognate peptide. Blood.101:3722-3729.
    [15]R asmusson, I.,0. Ringden, B. Sundberg & K. Le Blanc.2003. Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation. 76:1208-1213.
    [16]Aggarwal, S. & M. F. Pittinger.2005. Human mesenchymal stem cells modulate alloantigen immune cell responses. Blood.105:1815-1822.
    [17]Le Blanc, K. & 0. Ringden.2005. Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant.11:321-334.
    [18]Le Blanc, K. & 0. Ringden.2006. Mesenchymal stem cells:properties and role in clinical bone marrow transplantation. Curr. Opin. Immunol.18: 586-591.
    [19]Le Blanc, K., C. Tammik, K. Rosendahl, et al.2003. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stemcells. Exp. Hematol.10:890-896.
    [20]Meisel, R., A. Zibert, M. Laryea, et al.2004. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indolamine 2,3-dioxygenase-mediated tryptophan degradation. Blood.103:4619-4621.
    [21]Maccario, R., A. Moretta, A. Cometa, et al.2005. Human mesenchymal stem cells and Cyclosporin-A exert a synergistic suppressive effect on in vitro activation of alloantigen-specif ic cytotoxic lymphocytes. Biol. Blood Marrow Transplant.11:1031-1032.
    [22]Glennie, S., I. Soeiro, P. J. Dyson, et al.2005. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood.105: 2821-2827.
    [23]Maccario, R., M. Podest a, A. Moretta, et al.2005. Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favours the differentiation of CD4+T-cell subsets expressing regulatory/suppressive phenotype. Haematologica.90:516-525.
    [24]Jiang, X. X., Y. Zhang, B. Liu, et al.2005. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood.105:4120-4126.
    [25]Nauta, A. J., A. B. Kruisselbrink, E. Lurvink, et al.2006. Mesenchymal stem.cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. J. Immunol.177:2080-2087.
    [26]Corcione, A., F. Benvenuto, E. Ferretti, et al.2006. Human mesenchymal stem cells modulate B cell functions. Blood.107:367-372.
    [27]Krampera, M., L. Cosmi, R. Angeli, et al.2006. Role of interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymalstem cells. Stem Cells.24:386-398.
    [28]Traggiai, E., S. Volpi, F. Schena, et al.2008. Bone marrow-derived mesenchymal stem cells induce both polyclonal expansion and differentiation of B cells isolated from healthy donors and systemic lupus erythematosus patients. Stem Cells.26:562-569.
    [29]Sotiropoulou, P. A., S. A. Perez, A. D. Gritzapis, et al.2006. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells.24:74-85.
    [30]Spaggiari, G. M., A. Capobianco, S. Becchetti, et al.2006. Mesenchymal stem cell-natural killer cell interactions:evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood.107:1484-1490.
    [31]Barry, F. P. & J.M. Murphy.2004. Mesenchymal stem cells:clinical applications and biological characterization. Int. J. Bioch. & Cell Biol.36: 568-584.
    [32]Nauta, A. J., G. Westerhuis, A. B. Kruisselbrink, et al.2006. Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a non-myeloablative setting. Blood.108:2114-2120.
    [33]Almeida-Porada, G., A.W. Flake, H.A. Glimp & E. D. Zanjani.1999. Cotransplantation of stroma results in enhancement of engraftment and early expression of donor hematopoietic stem cells in utero. Exp. Hematol.27: 1569-1575.
    [34]Devine, S. M., C. Cobbs, M. Jenning, et al.2003. Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into non-human primates. Blood.101:2999-3001.
    [35]Stute, N., B. Fehse, J. Schroder, et al.2002. Human mesenchymal stem cells are not of donor origin in patients with severe aplastic anemia who underwent sex-mismatched allogeneic bone marrow transplant. J. Hematother Stem Cell Res.11:977-984.
    [36]Awaya, N., K. Rupert, E. Bryant & B. Torok-Storb.2002. Failure of adult marrow-derived stemcells to generate marrow stroma after successful hematopoietic stem cell trans-plantation. Exp. Hematol.30:937-942.
    [37]Rieger, K.,0. Marinets, T. Fietz, et al.2005. Mesenchymal stem cells remain of host origin even a long time after allogeneic peripheral blood stem cell or bone marrow transplantation. Exp. Hematol.33:605-611.
    [38]Dickhut, A., R. Schwerdtfeger, L. Kuklick, et al.2005. Mesenchymal stem cells obtained after bone marrow transplantation or peripheral blood stem cell transplantation originate from host tissue. Ann. Hematol.84:722-727.
    [39]Koc,0. N., C. Peters, P. Aubourg, et al.1999. Bone marrow-derived mesenchymal stem cells remain host-derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal storage diseases. Exp. Hematol.27:1675-1681.
    [40]Cilloni, D., C. Carlo-Stella, F. Falzetti, et al.2000. Limited engraftment capacity of bone marrow derived mesenchymal cells following T-cell-depleted hematopoietic stem cell transplantation. Blood.96:3637-3643.
    [41]Horwitz, E. M., D. J. Prockop, L.A. Fitzpatrick, et al.1999. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat. Med.5: 309-313.
    [42]Horwitz, E. M., D. J. Prockop, P. L. Gordon, et al.2001. Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood.97:1227-1231.
    [43]Pozzi, S., D. Lisini, M. Podesta, et al.2006. Donor multipotent mesenchymal stromal cells may engraft in pediatric patients given either cord blood or bone marrow transplantation. Exp. Hematol.34:934-942.
    [44]Bartholomew, A., C. Sturgeon, M. Siatskas, et al.2002. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol.30:42-48.
    [45]Noort, W.A., A. B. Kruisselbrink, P. S. in't Anker, et al.2002. Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34+cells in NOD/SCID mice. Exp. Hematol.30:870-878.
    [46]In't Anker, P. S., W. A. Noort, A. B.. Kruisselbrink, et al.2003. Nonexpanded primary lung and bone marrow-derived mesenchymal cells promote the engraftment of umbilical cord blood-derived CD34+cells in NOD/SCID mice. Exp. Hematol.31:881-889.
    [47]Yanez, R., M. L. Lamana, J. Garcia-Castro, et al.2006. Adipose tissue-derived mesenchymal stem cells (AD-MSCs) have in vivo immunosuppressive properties applicable for the control of graft versus-host-disease (GVHD). Stem Cells 24:2582-2591.
    [48]Sudres, M., F. Norol, A. Trenado, et al.2006. Bone marrow mesenchymal stem cells suppress lymphocyte proliferation in vitro but fail to prevent graft versus-host-disease in mice. J. Immunol.176:7761-7767.
    [49]Tisato, V., K. Naresh, J. Girdlestone, et al.2007. Mesenchymal stem cells of cord blood origin are effective at preventing but not treating graft-versushost-disease. Leukemia.21:1992-1999.
    [50]Zappia, E., S. Casazza, E. Pedemonte, et al.2005. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood.106:1755-1761.
    [51]Zhang, J., Y. Li, J. Chen, et al.2005. Human bone marrow stromal cell treatment improves neurological functional recovery in EAE mice. Exp. Neurol.195:16-26.
    [52]Djouad, F., V. Fritz, F. Apparailly, et al.2005. Reversal of the immunesuppressive properties of mesenchymal stem cells by tumor necrosis factor alpha in collagen-induced arthritis. Arthritis Rheum.52:1595-1603.
    [53]Lee, R. H., M. J. Seo, A. A. Pulin, et al.2006. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/SCID mice. Proc. Natl.Acad. Sci. USA.103: 17438-17443.
    [54]Deng, W., Q. Han, L. Liao, et al.2005. Effects of allogeneic bonemarrow-derivedmesenchymal stem cells on T and B lymphocytes from BXSB mice. DN.A. Cell Biol.24:458-463.
    [55]Kunter, U., S. Rong, Z. Djuric, et al.2006. Transplanted mesenchymal stem cells accelerate glomerular healing in experimental glomerulonephritis. J. Am. Soc. Nephrol.17:2202-2212.
    [56]Hofstetter, C. P., E. J. Schwarz, D. Hess, et al.2002. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc. Natl.Acad. Sci. USA.99:2199-2204.
    [57]Chopp, M.&Y. Li.2002. Treatment of neural injury with marrow stromal cells. Lancet Neurol.1:92-100.
    [58]Mazzini, L., K. Mareschi, I. Ferrero, et al.2006. Autologous mesenchymal stem cells:clinical applications in amyotrophic lateral sclerosis. Neurol. Res.28:523-526.
    [59]Hayashi, Y., S. Tsuji, M. Tsujii, et al.2008. Topical implantation of mesenchymal stem cells has beneficial effects on healing of experimental colitis in rats. J. Pharmacol. Exp. Ther.326:523-531.
    [60]Wu, G.D., J. A. Nolta, Y. S. Jin, et al.2003. Migration of mesenchymal stem cells to heart allografts during chronic rejection. Transplantation.75: 679-685.
    [61]Guo, J., G. S. Lin, C. Y. Bao, et al.2007. Anti-inflammation role formesenchymal stem cells transplantationfor myocardial infarction. Inflammation.30:97-104.
    [62]Ortiz, L. A., M. Dutreil, C. Fattman, et al.2007. Interleukin-1 receptor antagonist mediates the anti-inflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc. Natl. Acad. Sci. USA.104: 11002-11007.
    [63]Duffield, J. S., K. M. Park, L. L. Hsiao, et al.2005. Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J. Clin. Invest. 115:1743-1755.
    [64]Parekkadan, B., D. van Poll, K. Suganuma, et al.2007. Mesenhymal stem cell-drived molecules reverse fulminant hepatic failure. PLos ONE 2:e941.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700