ZSM-12分子筛的化学修饰及其催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文用水热法合成了HZSM-12沸石分子筛,分别用化学液相沉积法(CLD)和脱铝方法对HZSM-12分子筛进行了改性,并采用XRD、FT-IR、SEM、N2吸附、27Al NMR、29Si NMR、NH3-TPD、Py-IR等分析手段对其改性前后的结构和酸性进行了表征,以萘和甲醇的烷基化合成2,6-二甲基萘(2,6-DMN)为探针反应,在固定床微型反应器中评价了改性HZSM-12沸石的催化反应性能,考察了不同改性方法对HZSM-12分子筛的结构、酸性和催化性能的影响规律。
     对HZSM-12分子筛进行MgO和SiO2的表面化学液相沉积改性。当MgO的沉积量小于0.4 %时,MgO主要沉积在分子筛孔道的内表面,MgO的沉积量超过0.4 %以后,MgO主要在分子筛的外表面沉积,而且高度分散。MgO与HZSM-12分子筛的表面羟基发生作用,分子筛的Br?nsted酸中心减少,产生了新的Lewis酸中心。MgO沉积改性后HZSM-12分子筛的弱酸中心数增加,而强酸中心数减少,积炭程度明显减轻,抗失活能力提高。反应6 h后萘的转化率下降的幅度由使用未改性分子筛催化剂的26.1%降低至9.1%。TEOS的沉积改性主要发生在HZSM-12分子筛的外表面,由于SiO2沉积改性后HZSM-12分子筛外表面非选择性的酸性位减少,有效地抑制了异构化、歧化等副反应,提高了目标产物2,6-DMN的选择性。
     分别用无机酸、有机酸和高温水蒸气对HZSM-12分子筛进行了脱铝改性。研究结果发现,脱铝改性对该分子筛的孔结构、酸性及其催化反应性能有不同的影响。采用盐酸脱铝改性对分子筛的骨架结构没有显著影响,同时减少了分子筛的强酸和弱酸中心,有效地提高了催化反应的稳定性。当采用10 mol/L的HCl处理后,分子筛脱铝的同时还伴随有脱硅现象的发生。柠檬酸则优先脱除分子筛中的强酸位,并导致二次介孔结构的产生。水蒸气脱铝改性后,HZSM-12分子筛的酸性位减少,萘的转化率有所降低,但明显提高了2,6-/2,7-DMN比。
ZSM-12 molecular sieve was prepared by hydrothermal method, and the chemical liquid deposition (CLD) and dealumination have been imposed in the HZSM-12. The structure and acidity for modified HZSM-12 were analyzed and characterized by means of XRD, FT-IR, SEM, N2 adsorption, 27Al NMR, NH3-TPD, Py-IR . The methylation of methylnaphthalene with methanol to synthesis 2,6-DMN as a probe reaction been investigated in a fixed bed reactor. The effects of modification method for HZSM-12 zeolite on their structure, acidity and catalytic properties were investigated .
     The surface chemical liquid deposition technique for HZSM-12 by MgO and SiO2 was studied. The results show that MgO deposition mainly occurred on the internal surface of HZSM-12, but when the amount deposition more than 0.4% MgO high dispersion on the external surface of HZSM-12 .The interaction of MgO and bridging hydroxyl groups decrease Br?nsted acid sites of HZSM-12 and formed new Lewis acid sites. MgO deposition increase the weak acidic sites ,but significantly decrease the strong acidic sites , leading to the improvement of catalytic stability .After reaction 6h , the conversion decrease 9.1% over modified HZSM-12 compared to 26.1% over untreated HZSM-12. In the contrast, SiO2 deposition mainly on the external surface of HZSM-12. Own to the decrease of the non-selective acidic sites, the probability of side reaction including disproportionation , isomerization of 2,6-DMN decreased and the 2,6-/2,7-DMN increase.
     Dealumination of HZSM-12 with inorganic acid ,organic acid, steam has studied. The results show that the different dealumination methods have different effects on the pore structure, acidic properties and catalyst preference of modified HZSM-12. Hydrochloric acid eliminates the strong and weak acid sites simultaneously, without destroying the skeleton structure of the zeolite and improving the catalytic activity and stability. 10 mol/L hydrochloric acid treatment induces severe dealumination associated with desilication. In contrast, the citric acid preferred to remove the strongly acid sites and also formed secondary mesopores in the sample, resulting in improved reaction performance. After dealumination the amount of acid sites are markedly reduced, resulting in a lower conversion of naphthalene, but a significantly improved 2,6-/2,7-DMN ratio.
引文
[1]徐如人,高滋.分子筛与多孔材料.科学出版社,2004,1-11.
    [2]上海试剂五厂编.分子筛制备及应用.上海人民出版社,1976,72-101.
    [3]高滋,何鸣元,戴逸云.沸石催化与分离技术.中国石化出版社,1999,6-9.
    [4] J. K. Chao, Sheu S P, Lin L H. Characterization of incorporated gallium in beta zeolite[J]. Zeolites, 1997, 18: 18-24 .
    [5] Mohamed M M, Gomaa N S, Moselhy M E. Comparison of the structural properties of isomorphously substituted Fe in mordenite zeolites prepared by different methods[J]. J Coll Interface Science, 2003, 259: 331- 337 .
    [6] Emiis C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J catal, 1993, 141: 347-354 .
    [7] Rosinski E J, Rubin M K. Crystalline Zeolite ZSM-12 [P]. US 3,832,449, 1974-08-27.
    [8] Ernst S.Synthesis of zeolite ZSM-12 in the system (MTEA)2-Na2O- SiO2 -Al2O3 -H2O[J]. Zeolite, 1987, 7: 458-462.
    [9]Zhang Wen min, Burckle E C, Smirniotis P G. Characterization of the acidity of ultrastableY, mordenite, and ZSM-12 via NH3-stepwise temperature programmed desorption and Fourier transform infrared spectroscopy[J]. Micropor Mesopor Mater, 1999, 33: 173-185.
    [10]Zhang Wen min, Smirniotis P G, Gangoda M et al. Bronsted and Lewis Acid Sites in Dealuminated ZSM-12 andβZeolites Characterized by NH3-STPD, FT-IR, and MAS NMR Spectroscopy[J]. J Phys Chem B. 2000, 104: 4122-4129.
    [11]吴伟,吴丹,郑文涛等.三氯化铝负载HY沸石催化β-甲基萘转移烷基化反应[J].现代化工2004, 12: 30-32.
    [12] G. P. Hagen, D. T. Hung. Selective Production of 2,6-dimethylnaphthalene [P]. US5670704, 1997-09-23.
    [13] Wei Wu, Guang Wu, Minlin Zhang. High selective synthesis of 2,6- dimethylnaphthanlene by green catalysts– N-alkyl-pyridinium halides-aluminum chloride ionic liquids[J]. Appl Catal A:Gen, 2007, 326: 189-193.
    [14]阿部正澍,清水俊夫. 2,6-二甲基萘的制造方法.日本公开特许公报. JP6-287152,1994-10-11.
    [15]阿部正澍,清水俊夫.2,6-二甲基萘的制造方法.日本公开特许公报. JP7-126194,1995-05-25.
    [16] M.Motoyuki,K.Yamamoto,V. Ajit.Process for preparing dialkylnaphthalene [P]. US 6011190,2000-01-04.
    [17] Cutrufello M G , Ferino I., Monaci R, et al. Liquid-phase alkylation of naphthalene by isopropanol over zeolites Part III. Mordenites[J]. Appl Catal A: Gen, 2003, 241: 91–111 .
    [18] D. Fraenkel, M. Cherniavsky, B.Ittah. Shape-Selective Alkylation of Naphthalene and Methylnaphthalene with Methanol over H-ZSM-5 Zeolite Catalysts[J]. J. Catal. 1986, 101: 273-283.
    [19]Povava.Z, Yankov.H , Fimituou.L.[J]. Stud.surf..Sci.Catal., 1994,84,1829-1835.
    [20] Shiao-jung Chu, Yu-wen Chen. Shape-selective Alkylation of naphthalene with isopropanol over large pore zeolites[J]. Appl. Catal, 1995, 123: 51-58.
    [21]Loktev A.S ,Chekriy P.S. [J]. Stud.Surf.Sci. Catal., 1994,84,1845-1851.
    [22]G.Pazzuconi,R.Millini,C. Perego.Process for the preparation of 2,6-dimethyl- naphthalene using a MTW zeolite catalyst [P].US 6147270,2000-11-14.
    [23]G.Pazzuconi, R.Millini ,C.Perego .Process for the preparation of 2,6-dimethyl- naphthalene[P].US 6232517,2001-5-15.
    [24]G.Pazzuconi, C.Perego. Process for the preparation of 2,6-dimethylnaphthalene[P]. US Pat Appl.US 7019186,2006-3-28.
    [25] R. Millini. A priori selection of shape-selective zeolite catalysts for the synthesis of 2,6-dimethylnaphthalene[J]. J. Catal. 2003, 217: 298-309.
    [26]Pu S B, Tanaka Y, Inui T.Adsorption and separation ofβ,β-dimethylnaphthalene isomers on various large-pore zeolites having 12-oxygen-member-ring structure[J].Separations Technology,1996,6:189- 195.
    [27]Zhao X S, Lu G Q.Modification of MCM-41 by surface silylation with trimethylchlorosilane and adsorption study[J]. J.Phys.Chem.B,1998 ,102:1556-1561.
    [28]Weber R W, M?ller K P, O’Connor C T.The chemical vapour and liquid deposition of tetraethoxysilane on ZSM-5, mordenite and beta[J]. Microporous and Mesoporous Materials ,2000 ,35-36 :533-543.
    [29]Zheng S, Heydenrych H R, Roger H Pl.On the enhanced selectivity of HZSM-5 modified by chemical liquid deposition[J].Topics in Catalysis, 2003, 22:101-106.
    [30]Kim J H, Sugi Y, Matsuzaki T.Cerium impregnated H-mordenite as a catalyst for shape-selective isopropylation of naphthalene.Selective deactivation of acid sites on the external surface[J].Applied Catalysis A: General ,1995 ,131 :15-32.
    [31]Zhang Ming-Jin, Zheng an-Min, Deng Feng .Surface chemical modification of zeolites and their catalytic performance for naphthalene alkylation[J].Science in China (Series B) ,2003 ,46 :216-223.
    [32]Ze-Shan H, Wei Li-Hui, Song-Ying Chen.External modification of zeolite by metal surfactant for methanol amination.Microporous and Mesoporous Materials[J],1998 ,21 :7-12.
    [33] Anand R, Khaire S S , R. Maheswari. N-Alkylation of aniline with ethanol over HY and dealuminated HY zeolites[J]. Appl Catal A: Gen, 2003, 242: 171–177 .
    [34] Masuda T, Fujikata Y, Mukai S R. Changes in catalytic activity of MFI-type zeolites caused by dealumination in a steam atmosphere[J]. Appl Catal A: Gen,1998, 172 : 73-83 .
    [35] Rachwalik R, Olejniczak M, Sulikowski B. Dealumination of ferrierite type zeolite: Physicochemical and catalytic properties[J]. Catal Today, 2005, 101: 147–154 .
    [36] Boveri M C, Alvarez M, Laborde M A. Steam and acid dealumination of mordenite Characterization and influence on the catalytic performance in linear alkylbenzene synthesis[J]. Catal Today, 2006,114: 217–225.
    [37] Viswanadham N, Gupta J, Dhar K G M. Effect of synthesis methods and modification treatments of ZSM-5 on light alkane aromatization[J]. Energy Fuels, 2006, 20: 1806-1814 .
    [38] Wang J, Park J N, Park Y K. Supported Acid On the isopropylation of naphthalene over zeolite catalysts in the high-pressure fixed-bed flow reactor[J]. Catal Today, 2004, 97: 283–289.
    [39]刘艳红,罗国华,靳海波等.水蒸汽处理丝光沸石上萘择形异丙基化反应[J]..石油化工高等学校学报,2003,16(1):5-8 .
    [40]刘琪英,王军,武文良,王延儒.改性丝光沸石催化剂上合成2,6-二异丙基萘[J].南京工业大学学报,2004,26(2):8-13.
    [41] Zhang W M ,Burckle E C, Smirniotis P G. Characterization of the acidity of ultrastable Y, mordenite, and ZSM-12 via NH3-stepwise temperature programmed desorption and Fourier transform infrared spectroscopy[J]. Micropor Mesopor Mater, 1999, 33: 173-185 .
    [42] Zhang W M, Smirniotis P G, Gangoda M. Bronsted and Lewis acid sited in dealuminated ZSM-12 andβzeolites characterized by NH3-STPD, FT-IR, and MAS NMR spectroscopy[J]. J Phys Chem B, 2000, 104: 4122-4129 .
    [43] SchmitA D, Song C.S. Shape-selective isopropylation of naphthalene. Reactivity of 2,6-diisopropylnaphthalene on dealuminated mordenites[J]. Catal Today, 1996, 31: 19-25.
    [44] Song C S. Shape-selective isopropylation of naphthalene over H–mordenite catalysts for environmentally friendly synthesis of 2,6-dialkylnaphthalene[J].Surface chem catal, 2000, 17(3): 477-496 .
    [45] Andrew D,Schmit,Chunshan Song. Shape-selective isopropylation of naphthalene.Reactivity of 2,6-diisopropylnaphthalene on dealuminated mordenites[J]. Catalsis Today,1996,31:19-25.
    [46] Xie Z K, Chen Q L. Zhang C F . Influence of Citric Acid Treatment on the Surface Acid Properties of Zeolite Beta[J]. J Phys Chem B. 2000, 104: 2853-2859.
    [47] Kouwenhoven H, Prins R. Comparison of nitric and oxalic acid in the dealumination of mordenite[J]. Appl Catal A: Gen, 2000, 203: 101-110 .
    [48]Gola A, Rebours B, Milazzo E. Effect of leaching agent in the dealumination of stabilized Y zeolites [J]. Micropor Mesopor Mater, 2000, 40: 73-83 .
    [49] Wang J, Park J N, Park Y K, et al. Isopropylation of naphthanlene by isopropyl alcohol over USY catalyst: an investigation in the high-pressure fixed-bed flow reactor[J]. J catal, 2003, 220: 265-272 .
    [50]Jung-Nam Park a, Jun Wang b, Suk-In Hong , Chul Wee Lee. Effect of dealumination of zeolite catalysts on methylation of 2-methylnaphthalene in a high-pressure fixed-bed flow reactor. Applied Catalysis A: General 292 (2005) 68–75.
    [51] C. A. Fyfe, H. Gies, G. T. Kokotailo. Crystal Structure of Silica-ZSM-12 by the Combined Use of High-Resolution Solid-state MAS NMR Spectroscopy and Synchrotron X-ray Powder Diffraction [J]. J Phys Chem, 1990, 94:3718-3721.
    [52]王珏,赵璧英,谢有畅. MgO/HZSM-5中MgO分散状态和催化性能的关系[J].物理化学学报,2001,11:966-971.
    [53] Dongsen Mao, Weimin Yang. Highly effective hybrid catalystfor the direct synthesis of dimethyl ether from syngas withmagnesiumoxide-modified HZSM- 5 as a dehydration component[J] . Journal of Catalysis,230 (2005) :140–149.
    [54]宋月芹,徐龙伢,谢素娟. ZSM-5分子筛催化剂上液化石油气低温制取高辛烷值汽油[J].催化学报,2004,25:199-204.
    [55] Fang, Y, Hu, H. Shape-Selectivity in 2,6-Dimethylnaphthalene Synthesis over ZSM-5: Computational Analysis Using Density Functional Theory[J]. Catal. Commun. 2006, 7, 264-267.
    [56] Chen Zhang, Xin Wen Guo. Methylation of 2-methylnaphthalene with methanol to 2,6-dimethylnaphthalene over HZSM-5 modified by NH4F and SrO[J] . Chinese Chemical Letters,2007,18,1281-1284.
    [57]郭文珪,辛勤,梁娟. ZSM-5型沸石的红外光谱结构分析[J].催化学报. 1981, 3: 36-41.
    [58] E. M. Flanigen. Zeolite Chemistry and Catalysis. Rabo JA, ACS Monograph, 171. Washington, 1976: 80-84.
    [59] Wenmin Zhang, P. G. Smirniotis, M. Gangoda. Br?nsted and Lewis Acid Sites in Dealuminated ZSM-12 andβZeolites Characterized by NH3-STPD, FT-IR, and MAS NMR Spectroscopy[J]. J. Phys. Chem. B 2000, 104: 4122-4129.
    [60]徐青,乐英红.化学液相沉积与沸石择形催化性能[J].催化学报, 1998, 19(4): 349-353.
    [61]戴跃玲,陈连璋.硅烷化改性[B]ZSM-5沸石表面酸性及催化性能的研究[J].抚顺石油学院学报,1994,14(3):1-7.
    [62] WeberRW, MllerKP, UngerM. The chemical lvapor and liquid deposition of tetraethoxysilane on the external surface of ZSM-5[J]. Micro Meso Mater, 1998,23:179-187.
    [63] KimJH, IshidaA, OkajimaM. Modification of HZSM-5 by CVD of various silicon compounds and generation of para-selectivity [J]. J Catal, 1996, 161: 387-392.
    [64]王建伟,刘杰,桂寿喜. SiO2改性对HZSM-5沸石物性的影响[J].应用化学.2006,24,601-60.
    [65]Chiche BH, Dutartre R, Renzo F D,et al. Study of the sorption and acidic properties of MTW-type zeolite[J]. Catal Lett, 1995, 31: 359-366.
    [66] Katovic A, Giordano G. Synthesis of Porous Materials[J]. Zeolites Clays and Microstructures. 1997, 127-137 .
    [67] Xie Z K, Chen Q L. Zhang C F , et al. Influence of Citric Acid Treatment on the Surface Acid Properties of Zeolite Beta[J]. J Phys Chem B. 2000, 104: 2853-2859.
    [68] Kouwenhoven H, Prins R. Comparison of nitric and oxalic acid in the dealumination of mordenite[J]. Appl Catal A: Gen, 2000, 203: 101-110 .
    [69]H. Ajot, J.F. Joly, J. Lynch, F. Raatz, P. Caullet, in: F.Rodr′?guez-Reinoso, J. Rouquerol, K.S.W. Sing, K.K. Unger (Eds.), Characterization of Porous Solids II, Stud. Surf. Sci.Catal., Vol. 62, Elsevier, Amsterdam, 1991, p. 583.
    [70]Jianchao Xia, Dongsen Mao , Weichuan Tao;Dealumination of HMCM-22 by various methods and its application in one-step synthesis of dimethyl ether from syngas[J]. Microporous and Mesoporous Materials,91 (2006): 33–39.
    [71]Ma D,Lu Y, Su L L. Remarkable Improvement on the Methane Aromatization Reaction: A Highly Selective and Coking-Resistant Catalyst[J].J Phys Chem B, 2002, 106(34): 8524-8530.
    [72]王莅,余少兵,李永红,陈洪钫,.水蒸气处理条件对β沸石合成MTBE催化性能的影响化学反应工程与工艺[J]. 2001,17(1):35-38.
    [73] Yu Fan, Xiaojun Bao, Xiuying Lin. Acidity Adjustment of HZSM-5 Zeolites by Dealumination and Realumination with Steaming and Citric Acid Treatments[J]. J. Phys. Chem. B 2006, 110, 15411-15416.
    [74] Haag, W. O. Lago, R. M. Weisz, P. B. The active site of acidic aluminosilicate catalysts[J]. Nature,1984, 309, 589-591.
    [75] D. P. B. Peixoto, S. M. Cabral de Menezes ,M. I. Pais da Silva. Influence of different processes of dealumination on acid properties of an H-ferrierite zeolite[J].Materials Letters,2003,57: 3933-3942.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700