大口径激光二极管阵列的高效泵浦耦合技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大口径激光二极管阵列的高效泵浦耦合技术是高功率二极管泵浦固体激光系统急需解决的关键技术之一。它包括两方面的要求:将大口径激光二极管阵列输出的泵浦光高效缩束,从而在增益介质内实现较高的储能密度;改善泵浦光的空间分布,在增益介质内实现较均匀的储能分布。本论文针对适用于大口径激光二极管阵列的高效耦合技术进行了详细的研究。
     首先通过对近年来各种典型耦合方式的分析和对比发现,空心透镜导管耦合是目前最适用于大口径激光二极管阵列的耦合方式。利用自主开发的二极管阵列泵浦固体激光全三维模拟软件,对空心透镜导管进行了全面的研究,特别是各设计参数对耦合效果的影响,从而总结出空心透镜导管耦合系统的设计方法。按照这种方法设计的空心透镜导管耦合系统,能够在对大口径激光二极管阵列输出的泵浦光进行高效缩束的同时,实现良好的泵浦均匀性。在不考虑内壁反射损耗的情况下,即使将泵浦光束缩束100倍,也能够实现70%以上的输出效率,这是现有其他耦合方式难以实现的。作为高功率DPL的关键技术之一,大口径激光二极管阵列的高效耦合问题得到了很好的解决。
     将研究得出的空心透镜导管耦合系统及其设计方法应用于10J级二极管泵浦重复频率固体激光系统的设计中。设计了16kW和48kW端面泵浦片状放大器,将两种阵列输出的平均发光强度不足0.5kW/cm~2的泵浦光分别缩束36倍和27倍。激光介质有效区域内的泵浦强度全面超过10kW/cm~2,调制度小于1.2。激光介质内的有效储能及其均匀性都达到了系统设计要求。简要分析了10J级重复频率DPSSL的系统结构,并利用神光99软件对系统光传输进行模拟,确定了片放级多程放大结构。在充分考虑系统损耗的情况下,模拟得到了系统输出能量和光斑的空间分布。系统片放级光光效率超过15%,与美国利弗莫尔实验室的Mercury系统基本相当。
High-efficient coupling technology is the key technology of the high power diode-pumped solid state laser systems. It includes the requests of two respects: condense the pump radiation of large-scale diode arrays efficiently, thus in gain medium realize the high density of energy storage; improve space distribution of the pump radiation, realize perfect pumping-uniformity in the gain medium. This thesis had carried on detailed research to the high-efficient coupling technology suitable for the large-scale diode arrays.
     Found with the contrast through an analysis of various kinds of coupling ways in recent years at first, hollow lensduct coupling was the most suitable way for the large-scale diode arrays at present. Utilize the three-dimensional DPSSL simulation software of independent development, an overall research of the hollow lensduct had been carried on; especially the impact on coupling result of every parameter, thus the design method of the hollow lensduct coupling system was summarized. Hollow lensduct coupling system, which designed according to the method, could condense the pump radiation efficiently with perfect pumping-uniformity. In the situation that the reflection loss of the duct inwall was not in considering, even condensed the pump beam 100 times, it could realize the output efficiency of more than 70%, this was that the other coupling way hardly to accomplish. As one of the key technology of high power DPSSL, the high-efficient coupling problem of the large-scale diode arrays got a very good settlement.
     The hollow lensduct coupling system was applied to the design of 10J diode pump repeated frequency solid state laser system. 16kW and 48kW end-pump disk amplifier were designed, they condensed the pump radiation of the two diode arrays of 36 times and 27 times separately, which average radiant intensity were lower than 0.5kW/cm~2. The pump intensity on the effective area of the gain medium exceed 10kW/cm~2 with a modulate degree of below 1.2. The effective energy storage and uniformity in the gain medium had all reached the systematic designing requirement. The system scheme of 10J repeats frequency DPSSL system was briefly analyzed, and the transmission of the laser in the system was simulated by SG-99 software. The multi-pass scheme of the disk amplifiers was confirmed. In the situation that the system losses were fully considered, the energy and space distribution of the system output was provided. The optic-to-optic efficiency of the multi-pass disk amplifier system exceeds 15%, which was at the same level with the Mercury system of Lawrence Livermore
引文
[1] R.N.Hall G.E.Fenner, T.J.Scltys, et al., . Coherent light emission from GaAs junction. Phys. Rev. Lett 1962;9:366-370.
    [2] M.I.Nathan W.Dumke, G.Bums, et al.,. Stimulated emission of radiation from GaAs PN junction. Applied Physics Letters 1962;1:62-67.
    [3] N.Holonyak S.F.Bevacqua. Coherent (visible) light emission from Ga(As1-xPx) junction. Applied Physics Letters 1962;1:82-88.
    [4] T.M.Quist R.H.Rediker, R.J.Keyes, et.al. Semiconductor maser of GaAs. Applied Physics Letters 1962;1:91-96.
    [5] I.Hayashi M.B.Panish, W.Foy, S.Sumski. Applied Physics Letters 1970;17:109-115.
    [6] Zh.I.Alferov V.M.Andreev, D.z.Garbuzov, et al. Sov.Phys.Semicond. 1971;4:1573-1578.
    [7] H.Kressel J.K.Butler. Semiconductor laser and heterojunction LEDs, 1997.
    [8] D.R.Scifres C.Lindstrom, R.D.Burnham, et al. Electron. lett 1983;19:169-175.
    [9] D.K.Wagner R.G.Waters, P.L.Tihanyi, et al. IEEE J.Quantum Electron 1988;QE-24:1258-1265.
    [10] J.Braunstein M.Mikulla, R.Kiefer, et al. 267W CW AlGaAs/GaInAs Diode laser Bars. SPIE 2000;3945:17-22.
    [11] H.Kan T, Kanzaki, H.Miyajima, et al. High power 2D laser diode array for pumping solid state laser. SPIE 1998;3264:18-20.
    [12] J.G.Endriz Mitral Vakili, G.S.Browder. High power diode laser arrays. IEEE J.Quantum Electron 1992;28(4):952-965.
    [13] W.F.Krupke. Ytterbium solid-state lasers-the first decade. IEEE J.Quantum Electron 2000;6(6):1287-1296.
    [14] B.L.Freitas J.A.Skidmore, J.Crawford, et al. Laser diode packaging at LLNL. fourteenth annual on solid-state and diode laser technology review 2001: 152-154.
    [15] J.A.Skidmore B.L.Freitas, J.Crawford, et al. Silicon monolithic microchannel-cooled laser diode array. Applied Physics Letters 2000;77:10-12.
    [16] R.J.Beach W.J.Benett, B.L.Freitas, et al. Modular Microchannel cooled heatsinks for high average power laser diode arrays. IEEE J.Quantum Electron 1992;28(4):966-975.
    [17] W.J.Benett B.L.Freitas, D. Ciarlo, et al. Microchannel cooled heatsinks for high average power laser diode arrays. SPIE OE/LASE'93 1993.
    [18] 肖建伟、刘宗顺. 准连续大功率二极管层叠量子阱激光器阵列. 高技术通讯 1998;8(8):1-3.
    [19] R.W.Sclarz M.A.Emanuel, et al. Trends in Packaging of High Power Semiconductor Laser Bars. Laser Physics 1998;8(3):737~740.
    [20] W.D.Fan K.Jagannadham, et al. Bonding Silicon Devices on Diamond Heat Spreader. Mat. Res.soc.symp.Proc 1996;416:211~216.
    [21] Jurgen Jandeleit Nicolas Wieldmann, Andreas Ostlender, et al. Packaging and characterization of high power diode laser. SPIE 2000;3945:270~275.
    [22] zhen Wu Yang Man Fang Huang, Jung Tsung Hsu, et al. Die-bonding study for double-channel ridge waveguide AlGaInP laser diode SPIE 1999;3626:98~102.
    [23] 谢红云 安振锋, 陈国鹰等. 高占空比(20%)大功率激光器阵列. 中国激光 2003;30(11).
    [24] 范品忠. 高功率半导体激光器和二极管抽运固体激光器. 激光与光电子学进展 2000(10):45-53.
    [25] R.newman. Excitation of the Nd3+ fluorescence in CaWO4 by recombination radiation in GaAs. Journal of Applied Physics 1963;34(2):437.
    [26] R.J.Keyes and T.M.Quist, et.al. Injection Iuminescent pumping of CaF2:U3+ with GaAs diode lasers. Applied Physics Letters 1964;4(3).
    [27] D.L.Sipes et.al. Applied Physics Letters 1985;18:93.
    [28] B.Zhou T.J.Kane, G.J.Dixon, R.L.Byer,. Opt. Lett. 1985;10:62.
    [29] F.Hanson. Conf of Lasers Electro-opt,. Amer, Washington, DC: Opt.Soc, 1987.
    [30] M.K.Reed W.J.Kozlovsky, R.L.Byer,. Opt. Lett. 1988;13:204.
    [31] J.J.Kasinski Will Hughes, Don Dibiase, Patrick Bournes, et.al,. IEEE J.Quantum Electron 1992;28(4):977.
    [32] U.J.Greiner H.H.Klingenberg, et.al,. Applied Physics B 1994;58:393.
    [33] R.J.Shine A.J.Alfrey, et.al,. Opt. Lett. 1995;20(5):459.
    [34] D.Golla S.Knoke, W.Schone, et.al,. Opt. Lett. 1995;20(10):1148.
    [35] D.Golla M.Bode, W.Schone, et.al,. Opt. Lett. 1996;21(3):210.
    [36] Susumu Konno Shuichi Fujikawa, Koji Yasui,,. Applied Physics Letters 1997;70:2650.
    [37] Y.Hirano Y.Koyata, S.Yamamoto, et.al,. Opt. Lett. 1999;21(10):679.
    [38] 郑权 赵岭, 钱龙生. 大功率二极管泵浦固体激光器的应用与发展. 光学 精密工程 2001;9(1):6-9.
    [39] Kenichi Mastsuno Toshio Sato. SPIE 2000;3889.
    [40] 戴特力. 半导体二极管泵浦固体激光器: 四川大学出版社, 1993.
    [41] 姜东升. 二极管泵浦脉冲固体激光技术研究: 西安电子科技大学, 1999.
    [42] 刘伟仁. LD 泵浦的 473nm 波长全固体蓝激光器的研究: 中科院长春光机所, 2000.
    [43] 周寿桓 姜东升, 赵鸿. 中国激光 2001;A28(2):98.
    [44] 王建军 姜东升, 赵鸿. 激光与红外 2000;30(5):286.
    [45] 王海林 黄维玲, 周卓尤, 曹红兵. 二极管侧面泵浦连续固体激光器的研究. 激光杂志 2001;22(5):31-32.
    [46] C. D. Orth S. A. Payne, W. F. Krupke. A diode pumped solid state laser driver for inertial fusion energy. Nuc. Fus 1996;36:75-116.
    [47] W.F.Krupke. Solid-state laser driver for an ICF reactor. Fusion technol 1989;15:377-380.
    [48] 丁磊 贾伟, 李明中. 美国 Mercury 系统的最新进展. 激光与光电子学进展 2004;41(8).
    [49] 贾伟 李明中, 张小民. 美国 Mercury 系统发展近况. 激光与光电子学进展 2004;41(5).
    [50] Randall.J.S.Pierre David.W.Mordaunt, Hagop Injeyan, et al. Diode array pumped kilowatt laser. SPIE 1998;3264:2-8.
    [51] Atsushi Takada Y.Akiyama, T.Takase, et al. Diode pumped high power Nd:YAG rod laser. laser & optpelectonics progress 2002;39(12):35-40.
    [52] Mastsuno Kenichi. Advanced photon processing and measurement technology. GCL-HPL 2002:47-48.
    [53] 杜祥琬. 对高平均功率 DPL 的几点认识. DPL'04 会议文集 2004.
    [1] W.Koechner. 固体激光工程. 北京: 科学出版社, 2002.
    [2] 方高瞻. 大功率非相干 808nmAlGaAs/GaAs 激光二极管阵列的研制: 中科院半导体所, 2002.
    [3] A.V.Kudryashov H.Weber. Laser Resonators: Novel Design and Development: SPIE, 1999.
    [4] R.Diehl. High-Power Diode Lasers: Springer-Verlag Berlin Heidelberg, 2000.
    [5] 吕百达. 固体激光器件: 北京邮电大学出版社, 2002.
    [6] 江剑平. 半导体激光器: 清华大学出版社, 2001.
    [7] 陈国鹰 马祖光, 王新桥. 具有线性 GRIN 结构 GaAs/AlGaAs 单量子阱激光器. 固体电子学研究与进展 1999;19(4):1845-1855.
    [8] 陈国鹰 马祖光, 王新桥. 高功率梯度折射率分别限制异质机构 InGaAs/AlGaAs 应变双量子阱激光器. 光学学报 1999;19(9):1084-1088.
    [9] 章其麟 关兴国, 刘英斌,等. MOCVD 生长带有 MQB 的量子阱激光器材料. 半导体情报 1995;4(32).
    [10] M.Sakamoto J.G.Endriz, D.R.Scifres, et al. 129W CW output power from monolithic AlGaAs(800nm) laser diode array mounted on diamond heatsink. IEEE Electronics letters 1992;28(2):197-199.
    [11] J.G.Endriz Mitral Vakili, G.S.Browder. High power diode laser arrays. IEEE J.Quantum Electron 1992;28(4):952-965.
    [12] Y.Hishikawa H.Takigawa. High optical intensity 2D AlGaAs laser arrays. SPIE 1999;3628:71-76.
    [13] H.G.Treusch J.Harrison, B.Morris, et al.,. Compact high brightness and high power diode laser sourse for materials processing. SPIE 2000;3945:23-31.
    [14] H.G.Treusch A.Ovtchinnikov, X.He, et al.,. High brightness semiconductor laser sources for materials processing:stacking, beam shaping, and bars. IEEE J.Quantum Electron 2000;6(4):601-614.
    [15] J.A.Skidmore B.L.Freitas, J.Crawford, et al. Silicon monolithic microchannel-cooled laser diode array. Applied Physics Letters 2000;77:10-12.
    [16] W.J.Benett B.L.Freitas, D. Ciarlo, et al. Microchannel cooled heatsinks for high average power laser diode arrays. SPIE OE/LASE'93 1993.
    [17] 黄德修,刘雪峰. 半导体激光器及其应用: 国防工业出版社, 1995.
    [18] 李宾中 陶向阳, 吕百达. 高功率激光二极管线性阵列光束特性的研究. 江西师范大学学报(自然科学版) 2003;27(2):95-98.
    [19] 赵鸿 姜东升, 周寿桓. 二极管抽运 200HzTEM00模Q开关Nd:YAG激光器. 中国激光 2000;A27(11):965-968.
    [20] Yoshinori Kato Masahiro, Terada, et al,. Laser-diode pumped eight-pass 100W class Nd:YAG zig-zag slab laser amplifier. SPIE 2000;3889.
    [21] 温午麟. 激光二极管阵列端泵浦调 Q Nd:YAG 激光器研究: 南开大学, 2002.
    [22] R.Puchert A.Barwolff, et al. Influence of the mounting configuration on the transient thermal behavior of high power laser diode arrays. Electronic Components and Technology conference 1997: 1254-1259.
    [23] 翟群 吕百达, 蔡邦维, 等. 激光二极管端面泵浦耦合技术研究. 激光杂志 1997;18(6):10-13.
    [24] 胡文涛 周复正, 李传东. 二极管激光侧面泵浦腔内倍频 Nd:YAG 板条激光器研究. 光学学报 1995;15(7):845-850.
    [25] 罗亦鸣 李明中, 秦兴武. 大功率环形 LD 侧面泵浦 Nd:YLF 激光器的特性. 强激光与粒子束 2002;14(3):331-333.
    [26] 陈义红 赵兵, 赵德政. 大功率全固化固体激光器的研制. 光电子激光 2001;12(12):1234-1235.
    [27] 王海林 黄维玲, 周卓尤, 曹红兵. 二极管侧面泵浦连续固体激光器的研究. 激光杂志 2001;22(5):31-32.
    [28] 刘媛媛. 大功率激光二极管泵浦技术的研究: 中国科学院半导体研究所, 2003.
    [29] 赵鸿 姜东升, 王建军等. 二极管侧面抽运条件下工作物质增益分布特性研究. 光学学报 2003;23(1):57-62.
    [30] A.Giesen H. Huegel, A. Voss, et al. Scalable concept for diode-pumped high-power solid-state lasers. Applied Physics B 1994;58:365-372.
    [31] K.Contag S.Erhard, A. Giesen. Calculations of optimum design parameters for Yb:YAG thin-disk lasers. Adv. Solid-State Lasers Meeting Tech 2000: 113-115.
    [32] C.Stewen M.Larionov, A.Giesen, et al. Yb:YAG thin-disk laser with 1kW output power. Adv. Solid-State Lasers Meeting Tech 2000: 13-15.
    [33] 李超 徐震, 李俊林等. 二极管泵浦 Yb:YAG Thin Disk 激光器获得 16W 连续激光输出. 量子电子学报 2002;19(2):104-108.
    [34] Tidwell S C Seamans J F, Bowers M S, et al. Scaling CW diode-end-pumped Nd:YAGlasers to high average powers. IEEE J.Quantum Electron 1992;28:997.
    [35] Kaneda Y Oka M, Masuda H, et al. 7.6W of continuous-wave radiation in a TEM00 mode from a laser-diode end-pumped Nd:YAG lasers. Opt. Lett. 1992;17:1003.
    [36] Clarkson W A Hanna D C. Efficient Nd:YAG laser end-pumped by a 20W diode-laser bar. Opt. Lett. 1996;21:869.
    [37] W.L.Nighan M.Park, M.S.Kehstead, et al. diode pumped laser with strong thermal lens crystals, 1995.
    [38] 刘均海 吕军华, 卢建仁. 高功率半导体激光器端面泵浦Nd:YVO4固体激光器热致损耗的研究. 量子电子学报 2000;17(1):48-53.
    [39] W.Koechner Dennis.K.Rice et al. IEEE J.Quantum Electron 1970;6(9):557.
    [40] W.Koechner. Applied Optics 1970;9(6):1429.
    [41] W.Koechner Dennis.K.Rice et al. Applied Optics 1970;9:2548.
    [42] William.W.Rigrod. IEEE J.Quantum Electron 1978;14(5):377.
    [1] R.J.Beach. Theory and optimization of lens ducts. Applied Optics 1996;35(12):2005~ 2015.
    [2] R.J.Beach W.J.Benett. lensing duct. US patant 5307430, 1994.
    [3] 傅汝廉 王光军, 张凌倩等. 全固化激光器中的耦合系统-透镜导管的简化设计. 光电子激光 1998;9(2):96-99.
    [4] R.J.Beach P.Reichert, W.J.Benett, et al. Scalable diode-end-pumping technology applied to a 100-mJ Q-switched Nd3+:YLF laser oscillator. Opt. Lett. 1993;18(16):1326.
    [5] R.J.Beach E.C.Honea, S.B.Sutton, et al,. High-average-power diode-pumped Yb:YAG lasers. SPIE 2000;3889.
    [6] Gilles Reugnet Jean paul Poocholle. 8-mJ TEM00 diode-end-pumping frequency-quadrupled Nd:YAG laser. Opt. Lett. 1998;23(1):55~57.
    [7] 温午麟. 激光二极管阵列端泵浦调 Q Nd:YAG 激光器研究: 南开大学, 2002.
    [8] 贾伟 胡永明, 李明中, . 空心透镜导管的模拟与设计. 2004;31(8):939-942.
    [9] R.J.Beach E.C.Honea, Camille Bibeau, et al,. Hollow lensing duct. US patant 6160934, 2000.
    [10] 刘媛媛. 大功率激光二极管泵浦技术的研究: 中国科学院半导体研究所, 2003.
    [11] 姚启钧. 光学教程: 高等教育出版社, 1989.
    [1] W.F.Krupke L.L.Chase. Opt. Quantum Electron 1990;22(s1).
    [2] W.Koechner. 固体激光工程. 北京: 科学出版社, 2002.
    
    [1] W.Koechner. 固体激光工程. 北京: 科学出版社, 2002.
    [2] 邵怀宗 吕百达. 激光二极管泵浦晶体的研究进展. 红外与激光工程 1997;26(2):13-17.
    [3] 林宏焕 隋展, 李明中等. 实用的 LD抽运预激光电光调Q单纵模激光器. 中国激光 2004;31(8):915-918.
    [4] 罗亦鸣 李明中, 秦兴武. 大功率环形 LD 侧面泵浦 Nd:YLF 激光器的特性. 强激光与粒子束 2002;14(3):331-333.
    [5] 唐军 贾伟, 李明中. LD 抽运的高增益放大系统研究. 第五届四川省光电技术学术交流会议文集 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700