LD侧面泵浦高功率绿光激光器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高功率半导体激光二极管技术的发展和成熟,采用LD泵浦的全固态激光器已经成为国际上激光技术的研发热点之一。非线性频率变换技术的进步更是极大地拓展了激光器的应用范围,其中采用激光二极管泵浦的全固态绿光激光以其体积小、重量轻、效率高、寿命长和光束质量好等优点在激光显示、工业加工、科学研究以及医学方面得到了广泛的应用。本文正是在这种背景下,针对LD侧面泵浦Nd:YAG腔内倍频高功率准连续绿光激光器进行了系统的理论和实验研究。本文主要完成了以下几个方面的工作:
     1.对激光二极管泵浦全固态激光器发展历史进行了综述,总结了全固态激光器的特性和优点。对全固态绿光激光器在医学、工业加工、科学研究等方面的应用进行了论述并针对国内外全固态绿光激光器的研究进展分别进行了总结。
     2.分析了Nd:YAG晶体的物理和激光特性,对激光二极光阵列侧面泵浦棒状Nd:YAG晶体内部的温度分布进行了理论计算,数值模拟了总的热透镜焦距随泵浦功率的变化关系,并对热透镜效应的补偿方法进行了总结。结合谐振腔的稳定性条件对包含热透镜的激光谐振腔进行了分析和研究。
     3.分析了四能级系统的特性和速率方程,对全固态激光器的连续运转特性进行了理论研究,在理论分析的基础上,采用激光二极管阵列七向侧面泵浦结构,分别用凹面激光棒和螺纹棒进行了1064nm红外激光的实验研究,得出了螺纹棒对于热效应的改善明显优于凹面棒的结论,为后面采用螺纹棒进行倍频实验研究打下了良好的基础。
     4.从非线性介质中的耦合波方程出发,对光学二次谐波的产生理论和倍频效率的影响因素进行了详细的分析。对比分析了KTP和LBO晶体的特性并对产生二次谐波的倍频方式进行了详细研究。
     5.对声光调Q腔内倍频绿光激光器进行了理论分析,在此基础上对声光调Q腔内倍频高功率准连续绿光激光器进行了实验研究,在平平腔内采用单声光Q开关获得了173.5W的高功率532nm绿光输出。通过在腔内正交放置同步驱动的两声光Q开关,在泵浦电流14A,重复频率38.7kHz时,获得了平均输出功率达197.5W的532nm绿光,倍频转换效率42%。
With the development and maturity of high power laser diode, LD pumped all-solid-state laser has become an international hot research topic in laser technology. Nonlinear optical frequency conversion technique has further expanded the applications of DPL(Diode pumped laser). LD pumped green laser, with its compactness, high efficiency, long lifetime and good beam quality, has been widely used in laser display, industrial process, scientific research and medical treatment. Under this background, theoretical and experimental research has been made on high power LD side-pumped intra-cavity frequency-doubled green laser in the dissertation. The main points can be summarized as follows:
     1. The development and characteristics of LD-pumped all-solid-state laser are introduced at the beginning. Then the broad applications of all-solid-state green laser are presented and the progresses of high-power LD-pumped green laser are summarized.
     2. After detailed analysis of the characteristics of Nd:YAG crystal, the temperature distribution within the Nd:YAG rod side-pumped by LD arrays and the resulting thermal lensing are calculated. Then methods for reducing and compensating thermal focal length are summarized. Based on ABCD matrix, the stability condition and beam feature in the resonator are simulated and analyzed.
     3. Rate equation of four-level laser system are analyzed and the continuous operation characteristics of all-solid-state laser are investigated. Then experimental study by using concave end and grooved rod is made respectively and has laid solid ground for the frequency-doubled 532nm green laser experiments.
     4. Starting with nonlinear coupled-wave equation, the theory of second harmonic generation is given detailed analysis. Two commonly used frequency doubling cystal, KTP and LBO are comparatively studied. Then two different ways of obtaining second harmonic generation by placing the frequency doubling cystal either in or outside the resonator are discussed.
     5. Based on theoretical analysis of the acoustic Q-switched intra-cavity frequency doubled green laser system, experimental study on high power qusi-cw all-solid-state green laser are made with single Q switch and dual Q switches. Finally, with single grooved Nd:YAG rod, dual orthogonal placed Q switches, typeⅡcritical phase matched KTP in a plano-plano resonator, a maximum of 197.5W average power 532nm laser ouput was achieved at pumping current of 14A, repetition rate of 38.7kHz, corresponding to a frequency doubling efficiency of 42%.
引文
[1]Newman R. Excitation of Nd Fluorescence in CaW04 by recombination radiation in GaAs[J], Appl Phys,1963,34:437
    [2]Keyes R J, Quist T M. Injection Luminescent Pumping of CaF2:U3+with GaAs Diode Lasers[J]. Appl Phys Lett,1964,4(3):50-52
    [3]Ross M, YAG Laser Operation by Semiconductor Laser Pumping[C]. Proc IEEE,1968,56: 196
    [4]Ostermayer F W, Allen R B, Dierschke F G. Room-temperature CW Operation of a GaAsl-xPx Diode Pumped Nd:YAG laser[J]. Appl Phys Lett,1971,19:289-292
    [5]Dnielmeyer H G, Ostermayer F W. Diode-pump-modulated Nd:YAG laser[J]. J Appl Phys, 1972,43:2911-2913
    [6]Allen L B, Rice R R, Koenig H G, Mayer D D. Linear Array Configuration and Applications of The Double-sided Heat Sink Diode[G]. Proc SPIE,1980,247:100-105
    [7]Smith R J, Rice R, Allen L B. 100mW Laser Diode pumped Nd:YAG laser.[G] Proc SPIE, 1980,247:144-148
    [8]姚建铨,徐德刚.全固态激光及非线性光学频率变换技术[M].北京:科学出版社,2007:12
    [9]Brand T H, et al. Laser Physics.1998,8:222
    [10]Kiriyama H, et al. Laser Diode-pumped eight pass Nd:YAG slab amplifier[C]. SPIE 3264, 1998:30-36
    [11]Akiyama Y, Sasaki M, Yuasa H, Nishida N. Efficient High-power Diode-pumped Nd:YAG Rod Laser[C]. OSA Technical Digest Series,2001:558-559
    [12]姚建铨,徐德刚.全固态激光及非线性光学频率变换技术[M].北京:科学出版社,2007:273-274
    [13]赵欣.LD端面泵浦Nd:YAG激光器的研究[D].天津:天津大学,2006
    [14]贾森.全固态V形双腔组合腔内倍频单向输出准连续206W绿光激光器试验研究[D].西安:西北大学,2008
    [15]杜建新.全固态连续波Nd:YAG 473nm激光器[D].山东:山东师范大学,2003
    [16]Akiyama Y, Takada H, Sasaki M, Yuasa H, et al. Efficient 10kW Diode-pumped Nd:YAG Rod Laser[C]. The 1st International Symposium on High Power Laser Macro-processing, 2002:273
    [17]Stewen C, Contag K, Larionov M, et al. 1kWthin Disc Laser[J]. IEEE J Sel Top Quantum Electron,2000,6(4):650-657
    [18]刘春利,苑凯华,张颖州等.倍频Nd:YAG 532nm波长激光治疗皮肤血管异常性疾病的临床应用研究[J].实用美容整形外科杂志,1998,9(5):230-232
    [19]魏彪,盛新志.激光原理及应用[M].重庆:重庆大学出版社,2007,12:225-229
    [20]吴贺志.用于前列腺选择性汽化术的全固态大功率绿色激光器的研究[D].天津:天津大学,2006
    [21]何艳艳.高功率532nm激光及其在泌尿外科中的应用研究[D].武汉:华中科技大学,2009
    [22]Schmidlin F, Qswald M, Iselin C, et al. Vaporization of the urethral stenosis using the KTP 532 laser[J]. AnnUrol,1997,31(1):38-42
    [23]Beisland H O, Sander S, Fossberg E. Neodymium:YAG laser irradiation of urinary bladder tumors:Follow up study of 100 consecutively treated patients[J]. Urology,1985, 25(6):559-563
    [24]张玉萍.高功率全固态绿光激光的研究[D].天津:天津大学,2006
    [25]Geusic. J E, Levinstein, H J, Singh, S, et al. Continuous 0.532-mu solid-state source using Ba2NaNbsO15 (Barium-sodium niobate as nonlinear solid state source for secondary harmonic generation of green laser output from YAIG/Nd laser IR radiation)[J]. Applied Physics Letters,1968,12:306-308
    [26]Kuratev Ⅱ. Solid-state lasers with semiconductor pumping[J]. Bull Acad Sci USSR Phys Ser,1984,48(8):104-112
    [27]P. E. Perkins, T. S. Fahlen. A 20 Watt average power KTP intracavity-doubled Nd:YAG Laser[J].Opt Soc Amer B 1987,4:1066-1071
    [28]Hanson F. Laser diode side pumping of neodymium laser rods[J]. Applied Optics,1986, 27(1):80-83
    [29]Yochiro MARUMAYA, Masaki OHBA, Masaaki KATO. Characteristics of LD-pumped Nd:YAG Green Laser System[J]. Advanced Solid-State Lasers,1996,1:369-372
    [30]Konno Susumu, Fujikawa Shuichi, Koji Yasui. Highly Efficient 68W green-beam generation by use of an intracavity frequency-doubled diode side-pumped Q-switched Nd:YAG laser[J]. Applied Optics,1998,37(27):6401-6404
    [31]Susumu Konno, Tetsuo Kojimi, Shuichi Fujikawa, Koji Yasui. High-brightness 138W green laser based on an intracavity-frequency-doubled diode-side-pumped Q-swtiched Nd:YAG laser[J]. Optics Letters,2000,25(2):105-107
    [32]Jonghoon Yi, Hee-Jong Moon, Jongmin Lee. Diode-pumped 100-W Green Nd:YAG rod laser[J]. Applied Optics,1998,2004,43(18):3732-3737
    [33]David R Dudley, Oliver Mehl, Gary Y Wang, et al. Q-switched Diode pumped Nd:YAG Rod Laser with Output Power of 420W at 532nm and 160W at 355nm[J]. Proc. SPIE,2009, 7193:71930Z1-71930Z8
    [34]Kazuyoku Tei, Masaaki Kato, Yoshito Niwa,et al. LD-pumped 0.62-J 105-W Nd:YAG green laser[J]. Proc. SPIE,1998,212(3265):212-218
    [35]J. Q. Yao, Y. Li, Bi Xue, et al. High power intracavity frequency doubled YAG laser using KTP[J].ICL 1983,9
    [36]Yung S. Liu, D. Dentz, R. Belt. High-average-power intracavity second-harmonic generation using KTiOPO4 in an acousto-optically Q-switched Nd:YAG laser oscillator at 5 kHz[J]. Optics Letters,1984,9(3):76-78
    [37]Qiang Liu, Xingpeng Yan, Mali Gong, et al.103W high beam quality green laser with an extra-cavity second harmonic generation[J]. Optics Express,2008,16(9):14335-14340
    [38]Aicong Geng, Yong Bo, Yong Bi, et al. One hundred and twenty one W green laser generation from a diode-side-pumped Nd:YAG laser by use of a dual-V-shaped configuration[J]. Optics and Lasers in Engineering,2006,44:589-596
    [39]Zhaoyu Ren, Zhimeng Huang, Sen Jia, et al.532nm laser based on V-type doubly resonant intra-cavity frequency-doubling[J]. Optics Communications,2009,282:263-266
    [40]Haowei Chen, Xiuyan Chen, Xiu Li, et al. High average power Q-switched green beam generation by intracavity frequency doubling of diode-side-pumped Nd:YAG/HGTR-KTP laser[J]. Optics and Laser Technology,2009,41:1-4
    [41]Degang Xu, Jianquan Yao, Baigang Zhang, et al. Influence of the KTP crystal boundary temperature on conversion efficiency in high power green laser[J]. Chinese Optics Letters, 2005,3(2):85-88
    [42]徐德刚,姚建铨,陈进等.85W高稳定全固态绿光激光器的研究[J].中国激光,2004,31(4):385-389
    [43]姜东升,赵鸿,王建军等.120W的二极管泵浦Nd:YAG绿光激光器[J].强激光与粒子束,2005,17(S0):7-10
    [44]苑利钢,姜东升,王建军等.输出功率达230W的绿光固体激光器[J].红外与激光工程,2008,37(6):980-983
    [45]冯衍,毕勇,张鸿博等.20W腔外倍频全固态Nd:YAG绿光激光器[J].光学学报,2003,23(4):105-108
    [46]李健,卢兴强,侯玮等.大功率LD抽运Nd:YVO4/KTP声光调Q绿光激光器[J].中国激光,2000,27(12):83-88
    [47]姚震宇,蒋建锋,涂波等.162W激光二极管抽运腔内倍频激光器[J].中国激光,2005,32(11):125-128
    [48]Burrus C A, Stone J, Dentai A G. Room-temperature 1.3 μm CW operation of a glass-clad Nd:YAG single-crystal fiber laser end pumped by a single LED[J]. Eletron Lett, 1976,12:600-601
    [49]Chinn S R, Zwicker W K. FM mode-locked Nd0.5La0.5P5O14 laser[J]. Appl Phys Lett, 1979,34:847-849
    [50]Danielmeyer H G, Ostermayer F W. Diode-pumped-ulated Nd:YAG laser[J]. J Appl Phys, 1972,43:2911-2913
    [1]Newman R. Excitation of Nd Fluorescence in CaWO4 by recombination radiation in GaAs[J]. Appl Phys,1963,34:437
    [2]Yin Y S, Chen P L, Donskoy D. High power laser:United States,6,366,596 B1[P]. 2002-04-02
    [3]Lu J R, Lua J, Muraia, et al. Development of Nd:YAG Ceramic lasers[C]. USA:SPIE 2002
    [4]张玉龙,唐磊.人工晶体:生长技术、性能与应用[M].北京:化学工业出版社,2005:96-98
    [5]魏彪,盛新志.激光原理及应用[M].重庆:重庆大学出版社,2007:177-178
    [6]Neeland J K, Evtuhov V. Measurement of the laser transition cross section for Nd3+in yttrium aluminum garnet[J]. Phys Rev,1976,156:244
    [7]陈浩伟.高功率LD侧泵准连续腔内倍频全固态绿光激光器研究[D].西安:西北大学,2008
    [8]吕百达.固体激光器件[M].北京:北京邮电大学出版社,2002:93-94
    [9]Lee Sungman, Sun Kook Kim, Yun Mijeong, et al. Design and fabrication of a diode-side-pumped Nd:YAG laser with a diffusive optical cavity for 500W output power[J]. Appl Opt,2002,41(6):1089-1094
    [10]奥奇西客MN著,俞昌铭译.热传导[M].北京:高等教育出版社,1983:1-12
    [11]姚建铨,徐德刚.全固态激光及非线性光学频率变换技术[M].北京:科学出版社,2007:185-188
    [12]S. Timoshenko, J. N. Goodier. Theory of Elasticity,3rd Edition[M]. Singapore: McGraw-Hill,1982
    [13]克希耐尔著;孙文,江译文,程国祥译.固体激光工程[M].北京:科学出版社,2002:360-361
    [14]马养武,陈玉清.激光器件[M].杭州:浙江大学出版社,1994:165-167
    [15]李适民等.激光器件原理与设计[M].北京:国防工业出版社,1998:180-182[16]张腊花,王晓敏,吗明俊等.LD泵浦固体激光器热透镜效应及其优化设计的分析[J].量子电子学报,2005,22(6):855-858
    [17]张镇西.修有凹面的掺Nd3+:YAG激光棒的实验研究[J].西北大学学报,1982,1(34):51-59
    [18]翟华金,李宝其,陈聪.激光棒位置对热不灵敏凹凸腔运转特性的影响[J].光学学报,1994,10(14):1026-1030
    [19]吕百达,魏光辉.动态热稳定望远镜的充分必要条件[J].中国激光,1988,15(6):326-331
    [20]吕百达.基模动态稳定望远镜谐振腔[J].光子学报,1987,7(2):105-111
    [21]Weber R, Graf T, Weber H P. Self-adjusting Compensating Thermal Lens to Balance the Thermally Induced Lens in Solid-state Lasers[J]. IEEE J of Quantum Eletron,2000,36(6): 757-764
    [22]William T. Silfvast. Laser Fundamentals[M]. Cambridge:Cambridge University Press, 1996:425-430
    [23]陈钰清,王静环.激光原理[M].浙江,浙江大学出版社,1992:56-58
    [1]克希耐尔著;孙文,江译文,程国祥译.固体激光工程[M].北京:科学出版社,2002:14-21
    [2]田来科,白晋涛,田东涛.激光原理[M].西安:陕西科技出版社,2004:80-81
    [3]Li Zong-Cheng. A Rate Equation of The Laser That Reflects The Coherence of Light. Optics & Laser Technology,1995,27(6):399-401
    [4]罗毅.关于《激光物理》中“速率方程理论”教学的浅见[J].西北大学学报,1986,16(2):99-102
    [5]兰信锯等.激光技术[M].北京:科学出版社,2005:88-90
    [6]克希耐尔著;孙文,江译文,程国祥译.固体激光工程[M].北京:科学出版社,2002:385-388
    [7]吕百达.固体激光器件[M].北京:北京邮电大学出版社,2002:108-109
    [8]马养武,陈玉清.激光器件[M].杭州:浙江大学出版社,1994:165-167
    [1]Franken P A, et al. Generation of second harmonic[J]. Phys Rev Lett,1961,7(4):118~120
    [2]Masse R, Grenier J C, Bull. Soc Franc Mineral Crystallogr,1971,94:437-439
    [3]Zumsteg F C, Bierlein J C, Gier T E. KxRbl-xTiOPO4:a new nonlinear optical material[J]. Applied Physics,1976,47(11):4980-4985
    [4]阎吉祥,崔小虹,高春清等.激光原理与技术[M].北京:高等教育出版社,2004:304-305
    [5]克希耐尔著;孙文,江译文,程国祥译.固体激光工程[M].北京:科学出版社,2002:521-522
    [6]Anthon D W, Crowder C D. Wavelength-dependent phase matching in KTP[J]. Appl Opt, 1988,27(13):2650-2652
    [7]Vanherzeele H, Bierlein J D, Zumsteg F C. Index of refraction measurement and parametric generation in hydrothermally grown KTiOPO4[J]. Appl Opt,1988,27(16): 3314-3315
    [8]Fan T Y, Huang C E, Hu B Q, et al. Second-harmonic generation and accurate index of refraction measurement in flux-grown KTiOPO4[J]. Appl Opt,1987,26(12):2390-2394
    [9]阎吉祥,崔小虹,高春清等.激光原理与技术[M].北京:高等教育出版社,2004:286-292
    [10]兰信锯等.激光技术[M].北京:科学出版社,2005:286-289
    [11]宗妍.LD侧面泵浦电光调Q绿光及紫外脉冲激光器的研究[D].西安:西北大学,2008
    [1]张玉萍.高功率全固态绿光激光器的研究[D].天津:天津大学,2006
    [2]姚建铨.非线性光学频率变换及激光调谐技术[M].北京:科学出版社,1995:109-114
    [3]赵鸿.二极管侧面泵浦倍频固体激光技术研究[D].西安:中国科学院西安光学精密机械研究所,2001
    [4]姚震宇,蒋建锋,涂波等.162W激光二极管抽运腔内倍频激光器[J].中国激光,2005,32(11):125-128
    [5]Chang J J, Dragon E P, Bass I L, Cochran C.1998 Advanced Solid-state lasers ed bosenberg W R and Fejer M M OSA Trends in Optics Photonics Series(Washington, DC) vol 19 postdeadline paper PDP-1
    [6]Zhaoyu Ren, Zhimeng Huang, Sen Jia, et al.532nm laser based on V-type doubly resonant intra-cavity frequency-doubling[J]. Optics Communications,2009,282:263-266
    [7]David R Dudley, Oliver Mehl, Gary Y Wang, et al. Q-switched Diode pumped Nd:YAG Rod Laser with Output Power of 420W at 532nm and 160W at 355nm[J]. Proc. SPIE,2009, 7193:71930Z1-71930Z8
    [8]阎吉祥.激光原理与技术[M].北京:高等教育出版社,2004:254-255
    [9]克希耐尔著;孙文,江译文,程国祥译.固体激光工程[M].北京:科学出版社,2002:439-440
    [10]王宝华,李强,惠勇凌等.双声光二维Q开关提高连续Nd:YAG激光关断损耗的研究[J].光电子激光,2004,15(3):259-262
    [11]李修.全固态高功率Nd:YAG激光器及其二次与四次谐波产生的研究[D].西安:西北大学,2009
    [12]陈进.高功率LD泵浦的内腔倍频Nd:YAG激光器研究[D].天津:天津大学,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700