钙钛矿型透氧材料的制备与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钙钛矿型透氧膜在氧气分离、固体燃料电池和甲烷部分氧化制合成气等方面有着良好的应用前景,受到了人们的广泛关注,但其大规模的工业化应用受到了两个因素的限制:一是透氧率不能满足要求,二是膜材料在高温还原性气氛下的稳定性较差。
     本文针对目前研究工作中存在的两个偏向:重材料组成而忽视微观结构对膜性能的影响以及重表面修饰而忽视掺杂对膜表面交换的影响,从制备工艺-微观结构-性能的关系出发,研究了膜微观结构的调控方法及其对膜透氧性能的影响规律,并从掺杂-结构-性能的关系出发,对掺杂了不同离子的透氧膜的性能进行了研究。
     1.粉料制备方法对Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)透氧膜性能的影响
     采用固相反应法、改进柠檬酸法和柠檬酸-EDTA络合法制备了Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)粉料,并在相同的烧结条件下制备了透氧膜。
     首先对粉料的晶型结构进行了表征,结果表明用柠檬酸-EDTA络合法制备的粉料完全转变为钙钛矿晶型所需要的灼烧温度最低,其原因是有机物的存在促进了钙钛矿相的形成。尽管改进柠檬酸法也使用了有机物,但其中的有机物在粉料的干燥过程中已经完全燃烧掉。
     从扫描电镜照片可以看出固相反应法制得的粉料存在明显的孤立颗粒,而改进柠檬酸法制备的粉料表现为珊瑚状结构,用柠檬酸-EDTA法制得的粉料也存在颗粒边界,但其晶粒发生了一定的融合,不同的粉料制备方法造成了晶粒形貌上的差异。
     膜片的收缩率、微观结构的致密程度和透氧速率的大小顺序相同,即固相反应法>改进柠檬酸法>柠檬酸-EDTA络合法。晶界阻碍了氧离子在膜内部的传导,因而膜越致密,晶界越少,从而膜的透氧率越高。不同的粉料制备方法是导致不同透氧速率的原因。实验结果进一步表明了膜的透氧活化能是材料的本征特性,与膜的微观结构没有必然的联系。
     2.烧结条件对Ba_(0.8)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3-δ)透氧膜性能的影响
     采用固相反应法制备了Ba(0.8)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3-δ)粉料,在不同烧结温度(1273、1323、1373和1423 K,保温时间保持为300 min)和不同保温时间(5、150、300
    
     南京工业大学博士学位论文
     和 450 min,烧结温度为 1373 K)下制备了透氧膜,表征了粉料的晶型结构、膜
     的微观结构及膜的透氧率。
     制得的粉料以BaFeOu和BO.仔。Coo.sFeo、。O林的固溶体形式存在,烧结温
     度的提高促进了两相之间的共溶,而保温时间对两相的共溶没有明显的影响。
     晶型结构的分析结果还表明,提高烧结温度和延长保温时间均有利于钙钛矿相
     的形成。
     在相同保温时间下烧结得到的膜,烧结温度越高其微观结构越致密,在同
     一烧结温度下制备的膜,致密程度随保温时间没有明显的变化。二次再结晶
     致了在 1423 K烧结、保温300 min的膜片呈现出致密的烧结体。由于晶粒的大
     小在烧结过程中发生了变化,在 1373 K烧结、保温 150 min的膜片呈现出最大
     的收缩率。膜的透氧率没有随相对密度的增加而增大,其原因是膜的微观结构
     和晶型结构对氧渗透性能共同施加影响。
     3.掺杂Ag的SrCo。。Fe。。O。a透氧膜的研究
     用固相反应法制备了不同Ag掺杂量的SrCoosFeo.ZOs6粉料,并制备了相应
     的透氧膜,与未掺杂的SrCoo。Feo。O。。粉料及膜从晶型结构、稳定性及氧渗透性
     能方面进行了比较。
     晶型结构的表征结果表明Ag。O相存在于掺杂Ag的SrCoo.沪.ZO)。中,其
     对钙钛矿结构的影响很小。SfCOO.8F80刃34晶胞参数随着Ag掺杂量的增加而减
     小,表明了Ag对SrCo。沪emO。。中A位S/”的部分取代程度很小。从粉料的热
     重表征结果可以看出,Ag的掺杂促进了SrCoo。Feo。O的钙钛矿相的形成,并且
     温度的升高促进了Ag。O相固溶到SrCoosFeo。Os.8的晶格内部。
     对在He中活化后的粉料的晶型结构进行了表征,结果表明掺杂Ag对
     SfCOO.SFC。。O3.8的稳定性没有明显的影响,热重结果也表明了SfCOO二SFCO,2O3_8从
     有序到无序的相转变温度没有因为掺杂Ag而发生明显的变化。
     通过对膜的透氧率的分析,得出掺杂Ag增大了SrCoo.sFeo。O。8膜的表面交
     换速率,其效果随着Ag掺杂量的不同和膜操作温度的不同而变化。当Ag掺杂
     量为2.5%和5%时,表面交换速率的增大占了主导地位,透氧率变大,当用过
     多的ag掺杂时,氧缺陷浓度的减小则起了决定性作用,膜的透氧率减小。实验
     中理想的 Ag掺杂量为 5%。通过比较膜在不同温度下的透氧率,可以得出在较
     低的温度时,掺杂Ag对SrCOO沪CMO3.8膜表面交换速率的改善更加显著。
     4.掺杂离子大小对SrCoo.sEe。ics.a透氧膜性能的影响
     工互
    —-M—一.二——一M---’----------------ai--u----ffe*****一
    
     南京工?
Perovskite-type membranes have been widely studied due to their potential applications in oxygen separation, solid oxide fuel cells, and partial oxidation of methane to syngas, etc. However, the commercialization of this kind of membranes is limited by two factors: one is the lower oxygen permeation flux than that is practically needed, and the other is the poor stability of the membrane materials at high temperature and reducing atmosphere.
    In current researches, the influence of the composition on the properties of the membrane is highlighted while the influence of the microstructure is neglected, and the influence of the surface modification on the surface exchange of the membranes is highlighted while the influence of doping is neglected. Aiming at these two aspects, the controlling means of the microstructure and its influence on the oxygen permeation performance of the membranes is studied in light of the relationship of preparation technology-microstructure-properties, and the oxygen permeation performance of the membranes doped with different ions is studied in terms of the relationship of doping-structure-properties.
    1. Influence of powders synthesis method on the properties of Ba0.5Sr0.5Co0.8Fe0.2O3-δ membrane
    Ba0.5Sr0.5Co0.8Fe0.2O3-δ powders are synthesized by solid-state reaction method, modified citrate method and citrate-EDTA complexing method, and the corresponding membranes are sintered under the same conditions.
    The crystal structure of the powders synthesized by citrate-EDTA method completely transforms to perovskite structure at the lowest temperature, for which the reason is that the existence of the organic components promotes the formation of the perovskite phase.
    From the scanning electron micrographs, it could be seen that the powders synthesized by solid-state reaction method have distinct grains, while those synthesized by modified citrate method show coralline structure. Grain boundaries also exist for the powders synthesized by the citrate-EDTA method, although the grains merge for certain degree.
    
    
    
    The shrinkage rates, the relative densities of the microstructures and the oxygen permeation fluxes are in the same orders as solid-state reaction method > modified citrate method > citrate-EDTA method. The grain boundary hinders the transfer of the oxygen ion in the membrane bulk. Therefore, the denser the membrane, the few the grain boundaries, and the higher the oxygen permeation flux. The different powders synthesis method is the reason that leads to the different oxygen permeation flux. A further conclusion is that the activation energy of the membrane for oxygen permeation is the essential character of the material, while is independent of the microstructure of the membrane.
    2. Influence of sintering conditions on the properties of Bao.5Sro.sCoo.8Feo.2O3-8 membranes
    Ba0.5Sr0.5Co0.8Fe0.2O3-δ powders are synthesized by solid-state reaction methods. The membranes are sintered at different temperatures (1273, 1323, 1373 and 1423 K, the dwell time is 300 min) and are dwelled for different times (5,150,300 and 450 min, the sintering temperature is 1373 K). The crystal structure, the microstructure and the oxygen permeation flux are characterized.
    The calcined powders consist of BaFeO2.9 phase and Ba0.8Sr0.2Co0.8Fe0.2O3-δ phase. Increasing sintering temperature could promote the solid dissolution of the above two phases, while there is no obvious relationship between the degree of the solid dissolution and the prolongation of the dwell time. It also can be found that the increase of the sintering temperature and the prolongation of the dwell time are beneficial to the formation of the perovskite phase.
    The relative density increases directly with the sintering temperature for the membrane dwelled for different times, while does not change obviously with the dwell time for the membrane sintered at different temperatures. The membrane sintered at 1423 K for 300 min shows a dense sintering body, which is thought to be caused by the secondary recrystallization. The grain
引文
[1] E. C. Subbarao and H. S. Maiti, Solid electrolytes with oxygen ion conduction, Solid State Ionics, 1984,11, 317-338.
    [2] S. Dou, C. R. Masson and P. D. Pacey, Mechanism of oxygen permeation through lime-stabilized zirconia, J. Electrochem. Soc., 1985,132, 1843-1849.
    [3] H. J. M. Bouwmeester; H. Kruidhof, A. J. Burggraaf and P. J. Geilings, Oxygen semipermeability of erbia-stabilized bismuth oxide, Solid State Ionics, 1992, 53-56 (1) , 460-468.
    [4] G. J. K. Acres, Recent advances in fuel cell technology and its applications, J. Power Sources, 2001,100 (1-2) , 60-66.
    [5] M. Mogensen, K. V. Jensen, M. J. Jorgensen and S. Primdahl, Progress in understanding SOFC electrodes, Solid State Ionics, 2002,150 (1-2) , 123-129.
    
    
    [6] E. L. Brosha, B. W. Chung, D. R. Brown, I. D. Raistrick and F. H. Garzon, Amperometric oxygen sensors based on dense Tb-Y-Zr-O electrodes, Solid State Ionics, 1998, 109 (1-2) , 73-80.
    [7] W. C. Maskell, Progress in the development of zirconia gas sensors, Solid State Ionics, 2000, 134 (1-2) , 43-50.
    [8] S. C. Singhal, Advances in solid oxide fuel cell technology, Solid State Ionics, 2000, 135 (1-4) , 305-313.
    [9] T.-L. Wen, D. Wang, M. Chen, H. Tu, Z. Lu, Z. Zhang, H. Nie and W. Huang, Materials research for planar SOFC stack, Solid State Ionics, 2002,148 (3-4) , 513-519.
    [10] Y. Teraoka, H. M. Zhang, S. Furukawa and N. Yamazoe, Oxygen permeation through perovskite-type oxides, Chem. Lett., 1985, 1743-1746.
    [11] Y. Teraoka, T. Nobunaga and N. Yamazoe, Effect of cation substitution on the oxygen semipermeability of perovksite oxides, Chem. Lett., 1988, 503-506.
    [12] Y. Teraoka, T. Nobunaga, K. Okamoto, N. Miura and N. Yamazoe, Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability, Solid State Ionics, 1991,48, 207-212.
    [13] C. H. Chen, H. Kruidhof, H. J. M. Bouwmeester and A. J. Burggraaf, Ionic conductivity of perovskite LaCoO3 measured by oxygen permeation technique, J. Appl. Electrochem., 1997, 27(1) , 71-75.
    [14] V. V. Kharton, F. M. Figueiredo, A. V. Kovalevsky, A. P. Viskup, E. N. Naumovich, A. A. Yaremchenko, I. A. Bashmakov and F. M. B. Marques, Processing, microstructure and properties of LaCoO3-δceramics, J. Eur. Ceram. Soc., 2001, 21 (13) , 2301-2309.
    [15] L. M. van der Haar, M. W. den Otter, M. Morskate, H. J. M. Bouwmeester and H. Verweij, Chemical diffusion and oxygen surface transfer of La1-xSrxCoO3-δ studied with electrical conductivity relaxation, J. Electrochem. Soc., 2002,149 (3) , J41-J46.
    [16] A. Mineshige, M. Inaba, T. Yao and Z. Ogumi, Crystal structure and metal-insulator transition of La1-xSrxCoO3-δ,J. Solid State Chem., 1996,121 (2) , 423-429.
    [17] R. H. E. van Doom, I. C. Fullarton, R. A. de Souza, J. A. Kilner, H. J. M. Bouwmeester and A. J. Burggraaf, Surface oxygen exchange of La0. 3Sr0. 7CoO3-δ, Solid State Ionics, 1997, 96 (1-2) , 1-7.
    [18] F. M. Figueiredo, F. M. B. Marques and J. R. Frade, Electrochemical permeability of La1-xSrxCoO3-δ materials, Solid State Ionics, 1998, 111 (3-4) , 273-281.
    [19] S. Wang, A. Verma, Y. L. Yang, A. J. Jacobson and B. Abeles, The effect of the magnitude of
    
    the oxygen partial pressure change in electrical conductivity relaxation measurements: oxygen transport kinetics in La0. 5Sr0. 5CoO3-δ, Solid State Ionics, 2001,140 (1-2) , 125-133.
    [20] I. A. Leonidov, V. L. Kozhevnikov, M. V. Patrakeev, E. B. Mitberg and K. R. Poeppelmeier, High-temperature electrical conductivity of Sr0. 7La0. 3FeO3-δ, Solid State Ionics, 2001, 144 (3-4) , 361-369.
    [21] K. Suresh, T. S. Panchapagesan and K. C. Patil, Synthesis and properties of La1-xSrxFeO3-δ, Solid State Ionics, 1999,126 (3-4) , 299-305.
    [22] S. Li, W. Jin, P. Huang, N. Xu, J. Shi, Y. S. Lin, M. Z.-C. Hu and E. A. Payzant, Comparison of oxygen permeability and stability of perovskite type La0. 2A0. 8Co0. 2Fe0. 8O3-δ (A = Sr, Ba, Ca) membranes, Ind. Eng. Chem. Res., 1999, 38 (8) , 2963-2972.
    [23] C.-Y. Tsai, A. G Dixon, Y. H. Ma, W. R. Roser and M. R. Pascucci, Dense perovskite, La1-xA'xFe1-yCoyO3-δ (A' = Ba, Sr, Ca) membranes synthesis, application, and characterization, J. Am. Ceram. Soc., 1998, 81 (6) , 1437-1444.
    [24] K. Huang and J. B. Goodenough, Oxygen permeation through cobalt-containing perovskites. Surface oxygen exchange vs. lattice oxygen diffusion, J. Electrochem. Soc., 2001,148 (5) , E203-E214.
    [25] T. H. Lee, Y. L. Yang, A. J. Jacobson, B. Abeles and M. Zhou, Oxygen permeation in dense SrCo0. 8Fe0. 2O3-δ membranes: Surface exchange kinetics versus bulk diffusion, Solid State Ionics, 1997,100 (1-2) , 77-85.
    [26] S. Aasland, I. L. Tangen, K. Wiik and R. Odegard, Oxygen permeation of SrFe0. 67Co0. 33O3-d, Solid State Ionics, 2000,135 (1-4) , 713-717.
    [27] B. J. Mitchell, R.C. Rogan, J. W. Richardson Jr., B. Ma and U. Balachandran, Stability of the cubic perovskite SrFe0. 8Co0. 2O3-δ, Solid State Ionics, 2002,146 (3-4) , 313-321.
    [28] Y. P. Lu, A. G. Dixon, W. R. Moser, Y. H. Ma, U. Balachandran, Oxygen-permeable dense membrane reactor for the oxidative coupling of methane, J. Membr. Sci., 2000, 170 (1) , 27-34.
    [29] D. Klvana, J. Kirchnerova, J. Chaouki, J. Delval and W. Yaici, Fiber-supported perovskites for catalytic combustion of natural gas, Catal. Today, 1999, 47 (1-4) , 115-121.
    [30] S. J. Xu and W. J. Thomson, Perovskite-type oxides membranes for the oxidative coupling of methane, AIChE J., 1997,43 (11A), 2731-2739.
    [31] U. Balachandran, J. T. Dusek, R. L. Mieville, R. B. Poeppel, M. S. Kleefisch, S. Pei, T. P. Kobylinski, C. A. Udovich and A.C. Bose, Dense ceramic membranes for partial oxidation of methane to syngas, Appl. Catal. A: Gen., 1995,133 (1) , 19-29.
    
    
    [32] A. Hartley, M. Sahibzada, M. Weston, I. S. Metcalfe and D. Mantzavinos, La0. 6Sr0. 4Co0. 2Fe0. 8O3 as the anode and cathode for intermediate temperature solid oxide fuel cells, Catal. Today, 2000, 55 (1) , 197-204.
    [33] H. Y. Tu, Y. Takeda, N. Imanishi and O. Yamaoto, Ln0. 4Sr0. 6Co0. 8Fe0. 2O3-δ (Ln = La, Pr, Nd, Sm, Gd) for the electrode in solid oxide fuel cells, Solid State Ionics, 1999, 117 (3-4) , 277-281.
    [34] A. Petric, P. Huang and F. Tietz, Evaluation of La-Sr-Co-Fe-O perovskites for solid oxide fuel cells and gas separatin membranes, Solid State Ionic, 2000,135 (1-4) , 719-725.
    [35] S. Tao, F. W. Poulsen, G. Meng and O. T. Sorensen, High-temperature stability study of the oxygen-ion conductor La0. 9Sr0. 1Ga0. 8Mg0. 2O3-x, J. Mater. Chent., 2000,10, 1829-1833.
    [36] W. Menesklou, H.-J. Schreiner, K. H. Hardtl and E. Ivers-Tiffee, High temperature oxygen sensors based on doped SrTiO3, Sensor Actual B: Chem., 1999, 59 (2-3) , 184-189.
    [37] Y. L. Chai, D. T. Ray, H. S. Liu, C. F. Dai and Y. H. Chang, Characteristics of La0. 8Sr0. 2Co1-xCuxO3-δ film and its sensing properties for CO gas, Mater. Sci. Eng. A, 2000, 293 (1-2) , 39-45.
    [38] T. Fukui, S. Ohara and S. Kawatsu, Conductivity of BaPrO3 based perovskite oxides, J. Power Sources, 1998, 71 (1-2) , 164-168.
    [39] T. Schober and J. Friedrich, The mixed perovskite BaCa(1+x)/3Nb(2-x)/3O3-x/2(x = 0. ..0. 18) : proton uptake, Solid State Ionics, 2000,136-137, 161-165.
    [40] D. J. D. Corcoran and J. T. S. Irvine, Investigations into Sr3CaZr0. 5Ta1. 5O8. 75, a novel proton conducting perovskite oxide, Solid State Ionics, 2001,145 (1-4) , 307-313.
    [41] S. Kim, K. H. Lee and H. L. Lee, Proton conduction in La0. 6Ba0. 4ScO2. 8 cubic perovskite, Solid State Ionics, 2001,144 (1-2) , 109-115.
    [42] N. Hamada, H. Sawada, I. Solovyev and K. Terakura, Electronic band structure and lattice distortion in perovskite transition-metal oxides, Physica B, 1997,237-238, 11-13.
    [43] J. A. Alonso, M. J. Martinez-Lope, M. T. Casais and M. T. Fernandez-Diaz, Evolution of the Jahn-Teller distortion of MnO6 octahedra in RMnO3 perovskites (R = Pr, Nd, Dy, Tb, Ho, Er, Y): A neutron diffraction study, Inorg. Chem., 2000,39, 917-923.
    [44] Z. Shao, G. Xiong, J. Tong, H. Dong and W. Yang, Ba effect in doped Sr(Co0. 8Fe0. 2) O3-δ on the phase structure and oxygen permeation properties of the dense ceramic membranes, Sep. Purif. Technol., 2001, 25 (1-3) , 419-429.
    [45] J. P. Attfield, Structure-property relations in doped perovskite oxides, Int. J. Inorg. Mater., 2001,3(8) , 1147-1152.
    
    
    [46] R. H. E. van Doom, H. Kruidhof, A. Nijmeijer, L. Winnubst and A. J. Burggraaf, Preparation of La0. 3Sr0. 7CoO3-δ perovskite by thermal decomposition of metal-EDTA complexes, J. Mater. Chem., 1998, 8, 2109-2112.
    [47] G. Garcia-Belmonte, J. Bisquert, F. Fabregat, V. Kozhukharov and J. B. Carda, Grain boundary role in the electrical properties of Lal-xSrxCo0. 8Fe0. 2O3-δperovskites, Solid State Ionics, 1998,107 (3-4) , 203-211.
    [48] K. Zhang, Y. L. Yang, D. Ponnusamy, A. J. Jacobson and K. Salama, Effect of microstructure on oxygen permeation in SrCo0. 8Fe0. 2O3-δ, J. Mater. Sci., 1999, 34 (6) , 1367-1372.
    [49] V. V. Kharton, E. N. Naumovich, A. V. Kovalevsky, A. P. Viskup, F. M. Figueiredo, I. A. Bashmakov and F. M. B. Marques, Mixed electronic and ionic conductivity of LaCo(M)O3 (M = Ga, Cr, Fe or Ni). IV. Effect of preparation method on oxygen transport in LaCoO3-δ, Solid State Ionics, 2000,138 (1-2) , 135-148.
    [50] M. Cherry, M. S. Islam and C. R. A. Catlow, Oxygen ion migrationin perovskite-type oxides, J. Solid State Chem., 1995, 118 (1) , 125-132.
    [51] R. L. Cook and A. F. Sammells, On the systematic selection of perovskite solid electrolytes for intermediate temperature fuel cells, Solid Sate Ionics, 1991,45, 311-321.
    [52] A. F. Sammells, R. L. Cook, J. H. White, J. J. Osborne and R. C. MacDuff, Rational selection of advanced solid electrolytes for intermediate temperature fuel cells, Solid State Ionics, 1992,52, 111-123.
    [53] K. Kinoshita, H. Kusaba, G. Sakai, K. Shimanoe, N. Miura and N. Yamazoe, Influence of A-site partial substitution for BaCo0. 7Fe0. 3O3 oxide on perovskite structure and oxygen permeability, Chem. Lett., 2002, 344-345.
    [54] H. Inaba, H. Hayashi and M. Suzuki, Structural phase transition of perovskite oxides LaMO3 and La0. 9Sr0. 1MO3 with different size of B-site ions, Solid State Ionics, 2001, 144 (1-2) , 99-108.
    [55] T. Nakamura, G. Petzow and L. J. Gauckler, Stability of the perovskite phase LaBO3 (B = V, Cr, Mn, Fe, Co, Ni) in reducing atmosphere. I. Experimental results, Mater. Res. Bull., 1979, 14, 649-659.
    [56] T. Katsura, T. Sekine, K. Kitayama, T. Sugihara and N. Kimizuka, Thermodynamic properties of Fe-lanthanoid-O compounds at high temperatures, J. Solid State Chem., 1978, 23, 43-57.
    [57] K. Kamata, T. Nakajima, T. Hayashi and T. Nakamura, Nonstoichiometric behavior and phase stability of rare earth manganites at 1200 ℃. (1) LaMnO3, Mater. Res. Bull., 1978,13,
    
    49-54.
    [58] L. Yang, X. Gu, L. Tan, W. Jin, L. Zhang and N. Xu, Oxygen transport properties and stability of mixed-conducting ZrO2-promoted SrCo0. 4Fe0. 6O3-δ oxides, Ind. Eng. Chem. Res., 2002, 41 (17) , 4273-4280.
    [59] J. Tong, W. Yang, B. Zhu and R. Cai, Investigation of ideal zirconium-doped perovskite-type ceramic membrane materials for oxygen separation, J. Membr. Sci., 2002, 203 (1-2) , 175-189.
    [60] L. G. Tejuca, J. L. G Fierro and J. M. D. Tascon, Structure and reactivity of perovskite-type oxides, Adv. Catal., 1989,36, 237-248.
    [61] H. Yokokawa, N. Sakai, T. Kawada and M. Dokya, Thermodynamic stabilities of perovskite-type oxides for electrodes and other electrochemical materials, Solid State Ionics, 1992, 52, 42-56.
    [62] H. Kruidhof, H. J. M. Bouwmeester, R. H. E. van Doom and A. J. Burggraaf, Influence of order-disorder transitions on oxygen permeability through selected nonstoichiometric perovskite-type oxides, Solid State Ionics, 1993, 63-65 (1) , 816-822.
    [63] L. Qiu, T. H. Lee, L.-M. Liu, Y. L. Yang and A.J. Jacobson, Oxygen permeation studies of SrCo0. 8Fe0. 2O3-δ, Solid State Ionics, 1995, 76 (3-4) , 321-329.
    [64] X. P. Wang and Q. F. Fang, Effects of Ca doping on the oxygen ion diffusion and phase transition in oxide ion conductor La2Mo2O9, Solid State Ionics, 2002,146 (1-2) , 185-193.
    [65] S. Hui and A. Petric, Conductivity and stability of SrVO3 and mixed perovskite at low oxygen partial pressures, Solid State Ionics, 2001,143 (3-4) , 275-283.
    [66] V. P. Gorelove, D. I. Bronin, Ju. V. Sokolova, H. Nafe and F. Aldinger, The effect of doping and processing conditions on properties of La1-xSrxGa1-yMgyO3-a, J. Eur. Ceram. Soc., 2001, 21(13) , 2311-2317.
    [67] J. Luyten, A. Buekenhoudt, W. Adriansens, J. Cooyymans, H. Weyten, F. Servaes and R. Leysen, Preparation of LaSrCoFeO3-x membranes, Solid State Ionics, 2000, 135 (1-4) , 637-642.
    [68] C. R. Gautam, R. K. Dwivedi, D. Kumar and O. Parkash, Synthesis and electrical conduction behaviour of strontium yttrium titanium cobalt oxide (Sr1-xYxTi1-xCoxO3,0. 01 < x < 0. 10) , Mater. Lett., 2001, 50 (4) , 254-258.
    [69] R. J. Bell, G. J. Millar and J. Drennan, Influence of synthesis route on the catalytic properties of La1-xSrxMnO3, Solid State Ionics, 2000,131 (3-4) , 211-220.
    [70] W. Jin, S. Li, P. Huang, N. Xu and J. Shi, Preparation of an asymmetric perovskite-type
    
    membrane and its oxygen permeability, J. Membr. Sci., 2001,185 (2) , 237-243.
    [71] A. K. M. Akther Hossain, L. F. Cohen, F. Damay, A. Berenov, J. MacManus-Driscoll, N. McN. Alford, N. D. Mathur, M. G. Blamire and L E. Everts, Influence of grain size on magnetoresistance properties of bulk La0. 67Ca0. 33MnO3-δ, J. Magn. Magn. Mater., 1999,192 (2) , 263-270.
    [72] Z. Jin, J. Zhang, W. Tang and Y. Du, New synthesis of polycrystalline La0. 7(SrxCa1-x)0. 3MnO3 by mechanical alloying, Solid State Commun., 1998, 108 (11) , 867-871.
    [73] W.-F. A. Su, Effects of additives on perovskite formation in sol-gel derived lead magnesium niobate, Mater. Chem. Phys., 2000, 62 (1) , 18-22.
    [74] H. Gu, C. Dong, P. Chen, D. Bao, A. Kuang and X. Li, Growth of layered perovskite Bi4Ti3O12 thin films by sol-gel process, J. Cryst. Growth, 1998,186 (3) , 403-408.
    [75] J.-G. Cheng, J. Tang, X.-J. Meng, S.-L. Guo, J.-H. Chu, M. Wang, H. Wang and Z. Wang, Fabrication and characterization of pyroelectric Ba0. 8Sr0. 2TiO3 thin films by a sol-gel process, J. Am. Ceram. Soc., 2001, 84 (7) , 1421-1424.
    [76] Y. T. Kwon, I.-M. Lee, W. I. Lee, C. J. Kim and I. K. Yoo, Effect of sol-gel precursors on the grain structure of PZT thin films, Mater. Res. Bull., 1999,34 (5) , 749-760.
    [77] S. Kim, Y. L. Yang, A. J. Jacobson and B. Abeles, Diffusion and surface exchange coefficients in mixed ionic electronic conducting oxides from the pressure dependence of oxygen permeation, Solid State Ionics, 1998,106 (3-4) , 189-195.
    [78] S. Li, W. Jin, N. Xu and J. Shi, Synthesis and oxygen permeation properties of La0. 2Sro.gCo0. 2Fe0. 8O3-δ membranes, Solid State Ionics, 1999,124(1-2) , 161-170.
    [79] S. Li and N. Xu, Synthesis of dense oxygen-selective perovskite membranes on porous stainless steel tubes, J. Mater. Sci. Lett., 2002,21 (3) , 245-246.
    [80] Z. Shao, W. Yang, Y. Cong, H. Dong, J. Tong and G. Xiong, Investigation of the permeation behavior and stability of a Ba0. 5Sr0. 4Co0. 8Fe0. 2O3-δ oxygen membrane, J. Membr. Sci., 2000, 172(1-2) , 177-188.
    [81] J. Tong, W. Yang, R. Cai, B. Zhu and L. Lin, Novel and ideal zirconium-based dense membrane reactors for partial oxidation of methane to syngas, Catal. Lett., 2002, 78 (1-4) , 129-137.
    [82] R. S. Tichy and J. B. Goodenough, Oxygen permeation in cubic SrMnO3-δ, Solid State Sci., 2002, 4(5) , 661-664.
    [83] W. Jin, S. Li, P. Huang, N. Xu and J. Shi, Fabrication of La0. 2Sr0. 8Co0. 8Fe0. 2O3-δ mesoporous membranes on porous supports from polymeric precursors, J. Membr. Sci., 2000, 170 (1) ,
    
    9-17.
    [84] A. S. Mukasyan, C. Costello, K. P. Sherlock, D. Lafarga and A. Varma, Perovskite membranes by aqueous combustion synthesis: synthesis and properties, Sep. Purif. Technol, 2001,25(1-3) , 117-126.
    [85] Y.-J. Yang, T.-L. Wen, H. Y. Tu, D.-Q. Wang and J. H. Yang, Characteristic of lanthanum strontium chromite prepared by glycine nitrate process, Solid State Ionics, 2000,135 (1-4) , 475-479.
    [86] M. Hackenberger, K. Stephan, D. Kieβling, W. Schmitz and G Wendt, Influence of the preparation conditions on the properties of perovskite-type oxide catalysts, Solid State Ionics, 1997,101-103 (Part 2) , 1195-1200.
    [87] M. Mori, N. M. Sammes and G.A. Tompsett, Fabrication processing condition for dense sintered La0. 6AE0. 4MnO3 perovskite synthesized by the coprecipitation method (AE = Ca and Sr), J. Power Sources, 2000, 86 (1-2) , 395-400.
    [88] X. Qi, Y. S. Lin and S. L. Swartz, Electric transport and oxygen properties of lanthanum cobaltite membranes synthesized by different methods, Ind. Eng. Chem. Res., 2000, 39 (3) , 646-653.
    [89] J. Philip and T. R. N. Kutty, Preparation of manganite perovskites by a wet-chemical method involving a redox reaction and their characterization, Mater. Chem. Phys., 2000, 63 (3) , 218-225.
    [90] O. A. Shlyakhtin, Y.-J. Oh and Yu. D. Tretyakov, Preparation of dense La0. 7Ga0. 3MnO3 ceramics from freeze-dried precursors, J. Eur. Ceram. Soc., 2000,20 (12) , 2047-2054.
    [91] X. Cui and Y. Liu, New methods to prepare ultrafine particles of some perovskite-type oxides, Chem. Eng. J., 2000, 78 (2-3) , 205-209.
    [92] A. Dias, V. T. L. Buono, V. S. T. Ciminelli and R. L. Moreira, Hydrothermal synthesis and sintering of electroceramics, J. Eur. Ceram. Soc., 1999,19(6-7) , 1027-1031.
    [93] S. Urek and M. Drofenik, The hydrothermal synthesis of BaTiO3 fine particles from hydroxide-alkoxide precursors, J. Eur. Ceram. Soc., 1998,18 (4) , 279-286.
    [94] D. A. Fumo, J. R. Jurado, A. M. Segadaes and J. R. Frade, Combustion synthesis of iron-substituted strontium titanate perovskites, Mater. Res. Bull., 1997,32 (10) , 1459-1470.
    [95] J. Poth, R. Haberkorn and H. P. Beck, Combustion-synthesis of SrTiO3. Part Ⅱ. Sintering behaviour and surface characterization, J. Eur. Ceram. Soc., 2000,20 (6) , 715-723.
    [96] D. Huo, J. Zhang, Z. Xu, Y. Yang and H. Yang, Synthesis of mixed conducting ceramic oxides SrFeCo0. 5Oy powders by hybrid microwave heating, J. Am. Ceram. Soc., 2002,85 (2) ,
    
    510-512.
    [97] R. E. Schaak and T. E. Mallouk, Topochemical synthesis of three-dimensional perovskite from lamellar precursors, J. Am. Chem. Soc., 2000,122, 2798-2803.
    [98] S. Li, H. Qi, N. Xu and J. Shi, Tubular dense perovskite type membranes. Preparation, sealing, and oxygen permeation properties, Ind. Eng. Chem. Res., 1999,38 (12) , 5028-5033.
    [99] S. Li, W. Jin, P. Huang, N. Xu, J.Shi and Y. S. Lin, Tubular lanthanum cobaltite perovskite type membrane for oxygen permeation, J. Membr. Sci., 2000,166 (1) , 51-61.
    [100] K. Kleveland, M.-A. Einarsrud and T. Grande, Sintering behavior, microstructure, and phase composition of Sr(Fe,Co)O3-δ ceramics, J. Am. Ceram. Soc., 2000, 83 (12) , 3158-3164.
    [101] N. Orlovskaya, K. Kleveland, T. Grande and M.-A. Einarsrud, Mechanical properties of LaCoO3 based ceramics, J. Eur. Ceram. Soc., 2000,20 (1) , 51-56.
    [102] Y. S. Chou, J. W. Stevenson, T. R. Armstrong and L. R. Pederson, Mechanical properties of La1-xSrxCo0. 2Fe0. 8O3 mixed-conducting perovskite made by the combustion synthesis technique,J. Am. Ceram. Soc., 2000, 83 (6) , 1457-1464.
    [103] Y. Teraoka, T. Fukuda, N. Miura and N. Yamazoe, Development of oxygen semipermeable membrane using mixed conductive perovskite-type oxides (part 2) , J. Ceram. Soc. Jpn. Int. Ed., 1989,97,523.
    [104] M. Liu and D. S. Wang, Preparation of La1-xSrxCo1-yFeyO3-δ thin film, membranes, and coatings on dense and porous substrates, J. Mater. Res., 1995,10, 3210-3221.
    [105] C. H. Chen, H. J. M. Bouwneester, H. Kruidhof, J. E. ten Elshof and A. J. Burggraaf, Fabrication of La1-xSrxCoO3-δ thin layers on porous supports by a polymeric sol-gel process, J. Mater. Chem., 1996, 6, 815-819.
    [106] P. Charpentier, P. Fragnaud, D. M. Schleich and E. Gehain, Preparation of thin film SOFCs working at reduced temperature, Solid State Ionics, 2000,135 (1-4) , 373-380.
    [107] C. Xia, T. L. Ward, P. Atanasova and R. W. Schwartz, Metal-organic chemcal vapor deposition of Sr-Co-Fe-O films on porous supports, J. Mater. Res., 1998,13 (1) , 173-179.
    [108] Z. G. Zhang, F. Yan, J. S. Zhu, C. H. Song, X. B. Chen and Y. N. Wang, Preparation and electric properties of SrBi2Ta2O9 thin films by MOD method, Thin Solid Films, 2000, 375 (1-2) , 176-179.
    [109] J.-M. Liu, S. Y. Xu, W. Z. Zhou, X. H. Jiang, C. K. Ong and L. C. Lim, Preparation of (001) -oriented PZT thick films on silicon wafer by pulsed laser deposition, Mater. Sci. Eng. A, 1999, 269 (1-2) , 67-72.
    [110] L. Hong, X. Chen and Z. Cao, Preparation of a perovskite La0. 2Sr0. 8CoO3-x membrane on a
    
    porous MgO substrate, J. Eur. Ceram. Soc., 2001, 21 (12) , 2207-2215.
    [111] R. A. Zarate, A. L. Cabrera, U. G Volkmann and V. Fuenzalida, Growth studies of thin films of BaTiO3 using flash evaporation, J. Phys. Chem. Solids, 1998, 59 (9) , 1639-1645.
    [112] D. Voltzke, S. Gablenz, H.-P. Abicht, R. Schneider, E. Pippel and J. Woltersdorf, Surface modification of barium titanate powder particles, Mater. Chem. Phys., 1999,61 (2) , 110-116.
    [113] V. V. Kharton, A. V. Kovalevsky, A. A. Yaremchenko, F. M. Figueiredo, E. N. Naumovich, A. L. Shaulo and F. M. B. Marques, Surface modification of La0. 3Sr0. 7CoO3-δceramic membranes, J. Membr. Sci., 2002,195 (2) , 277-287.
    [114] R. Bredesen and J. Sogge, Paper presented at: The United Nations Economic Commission for Europe Seminar on Ecological Applications of Innovative Membrane Technology in Chemical Industry, Chem/Sem. 21/R.12,1-4 May 1996, Cetaro, Calabria, Italy.
    [115] H. J. M. Bouwmeester, H. Kruidhof and A. J. Burggraaf, Importance of the surface exchange kinetics as rate limiting step in oxygen permeation through mixed-conducting oxides, Solid State Ionics, 1994, 72 (2) , 185-194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700