空间站机械臂转位控制与振动抑制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间站是人类历史上规模最大的航天器,代表着当今航天领域最全面、最复杂、最先进和最综合的科技水平,在空间生命科学、载人深空探索及新材料加工等诸多科技前沿领域发挥着重要的、其它航天器不可替代的作用。多模块空间站在轨组建过程中,需要利用空间机械臂完成舱体从轴向对接口至径向对接口的转位过程。然而柔性机械臂在执行转位任务过程中,容易激起柔性结构振动,这将影响转位对接的定位精度,严重时甚至给空间站的安全运行带来危险。因此,伴随转位过程应运而生的动力学与控制问题便成为了空间站在轨组建过程中需要解决的关键问题之一。本文重点考虑空间站机械臂转位操作这一关键环节,深入研究其相关动力学与控制问题,包括空间站转位系统的建模、机械臂柔性关节控制及振动抑制等。论文的主要研究内容和学术贡献如下:
     空间站在舱体转位过程中系统的姿态、偏心量将发生变化,其动力学特性极其复杂。为分析空间站在应用机械臂转位过程中的动力学特性,采用矢量力学方法推导了考虑偏心量的空间站转位系统动力学模型。使用有限元方法描述柔性臂的弹性变形,应用Newton-Euler法建立空间站机械臂转位系统转动方程,采用Lagrange法建立柔性臂振动方程;应用约束模态展开法对动力学方程进行降阶,并系统地分析了柔性机械臂的振动模态。
     针对机械臂这类柔性机构的主动振动控制问题,提出了负分力合成振动抑制(Negative Component Synthesis Vibration Suppression,NCSVS)方法。该方法设计的合成力同时包含正负分力,与传统分力合成(CSVS)方法相比能更迅速地抑制柔性振动。在此基础上,提出了负分力合成理论的若干定理和推论,对定理进行了严格的数学证明;并推广了分力合成方法抑制多阶模态的原则和实现鲁棒性定理,进一步发展和完善了分力合成理论。
     考虑到分力合成与输入成形主动振动控制方法的区别与联系,提出了改进型负输入成形(Modified Negative Input Shaping,MNIS)振动抑制方法。该方法设计成形器的脉冲序列包含多个正负依次交替的脉冲,通过所选择的脉冲数目和系统振动频率与阻尼比构成封闭形式解来直接确定脉冲作用时间和幅值。根据该方法分别针对无阻尼系统和有阻尼系统提出了改进型单位幅值输入成形器和改进型负输入成形器;所设计的改进型负成形器与相应的正成形器相比有更短的时滞时间,可以有效改善系统的上升时间,提高系统响应速度。与相应的负成形器相比,其最主要的优点是:无需对约束条件进行优化,也无需复杂计算,使得成形器的设计非常简单。在此基础上,为进一步提高控制系统的性能,提出了改进型负输入成形和最优控制相结合的振动抑制方法,并采用柔性机械臂模型验证了所提出方法的有效性。
     研究了空间机械臂柔性关节的高精度轨迹跟踪问题。针对建立的带扰动项和摩擦等非线性因素的柔性关节二阶级联动力学方程,通过设计虚拟控制量对该串级系统引入两个自抗扰控制器进行双闭环控制。控制器通过扩张状态观测器(ESO)实时估计扰动和摩擦等非线性因素并在控制过程中对“总扰动”加以补偿。采用该技术设计的控制器既能满足系统对快速性和稳态精度的要求,同时又有效抑制了电机不确定扰动和摩擦因素对系统的影响。控制器算法简单,适于数字化实现。仿真结果表明所设计的双闭环控制系统具有控制精度高、鲁棒性强等良好的控制品质,具有一定的工程应用价值。
     针对空间站机械臂转位系统的闭环控制问题进行了系统性研究。通过构造降维矩阵对转位系统模型进行了简化处理,分析了其复杂的动力学特性,得出结论:空间站转位过程中构型的改变会导致转动惯量和偏心量的较大变化,偏心量变化范围甚至已超出了空间站核心舱的几何范围。进一步提出了基于分力合成/负分力合成/改进型负输入成形(CSVS/NCSVS/MNIS)方法和反馈解耦控制相结合的闭环控制策略来解决转位控制和柔性机械臂的振动抑制问题。利用动力学系统具有转动惯量大的特点,设计了反馈解耦控制策略。该策略有效地解决了由于动力学模型的强耦合、非线性和时变性带来的闭环系统的振动频率和阻尼比具有时变性导致的难以直接设计CSVS/NCSVS/MNIS控制输入指令的问题。将CSVS/NCSVS/MNIS方法作为前馈控制和PD反馈解耦控制相结合,构成前馈+反馈的控制方案,提高了控制系统的性能指标。所设计的控制策略在提高空间站机械臂转位在轨操作的工作效率及稳定性等方面具有一定的价值。
The space station is the biggest scale spacecraft in human history, which hasbeen representing the most comprehensive, complicated, advanced and integratedlevel of astronautical technology. It plays an irreplaceable role in many technologyareas such as space life science, manned deep space explore, processing of the newmaterials and so on. In the modular structure of space station assembly process, itis highly dependent upon the space manipulator to transfer function module fromthe axial lord docking port of node module to radial berthing port of node module.However, it is known that the structure flexibility of a manipulator may inducevibration during this process. It may influence docking positioning accuracy andeven endanger safe running of space station. The dynamics and control is a criticalproblem during the process of space station assembly. This dissertation focuses onthe dynamics and control problems of space station assembly concerning dynamicmodeling, attitude control, vibration control of flexible manipulator and control offlexible joint. The main themes and contributions of the dissertation include:
     During the process of space station assembly, the attitude of space station andthe total instantaneous center of mass may change with time. The dynamics of thesystem is quite complex. To study the dynamics characteristics for transformationof the space station via manipulator system, a vector mechanics method wasadopted to deduce the dynamic equations. The dynamic modeling withconsideration of the eccentricity was established. The elastic deformation of theflexible manipulator is depicted by using the finite element (FE) method. Thedynamic model representing the attitude motion is established with Newton-Eulermethod. And the vibrations of the flexible manipulator can be obtained by usingthe Lagrange approach. The constrained mode expansion method is used to reducethe dimensions of dynamic equations. Vibration mode of the flexible manipulatoris analyzed systematically by using the dimension reduction model.
     A novel vibration control theorem named negative component synthesisvibration suppression (NCSVS) is presented for active vibration control of theflexible systems such as flexible manipulator. The NCSVS, as the name denotes,contains negative amplitude components and can eliminate unwanted flexiblemodes of vibration more quickly than CSVS. Several negative componentsynthesis vibration suppression theorems are proposed and proved exactiy. Thenew principle for suppression of multiple orders modes vibrations simultaneouslyand new robustness theorem is presented respectively by expanding on traditionalCSVS method. The CSVS theory is enriched and developed extensively in this work.
     The differences and relations between input shaping and component synthesisvibration suppression are considered, and then a new modified negative inputshaping (MNIS) method is presented for active vibration control of flexiblestructure. The present approach allows designing modified negative input shaperby using some negative impulses and positive impulses alternately in the sequenceof impulses. The modified negative input shaper is described by closed-formfunction of the numbers of selecting impulses, the system’s natural frequency anddamping ratio. The modified UM input shaper and modified negative input shapersare proposed for undamped systems and damped systems respectively. The risetime can be improved by comparing positive input shaper. In coparison withnegative input shaper, there is a significant advantage, i.e. in the MNIS method nonumerical optimization subject to time constraints is required and the number ofselecting impulses is free. Furthermore, to improve the performance of controlsystem, a new vibration reduction control strategy is presented, which integratesmodified negative input shaping (MNIS) technique with optimal control for activevibration control of the flexible manipulator systems. Simulation results indicatethe effectiveness of the proposed method.
     The high-precision trajectory tracking control for space manipulator flexiblejoint is researched. The second-order cascade dynamics equations withuncertainties disturbance and friction of flexible joint are established. A controlstrategy of active disturbance rejection control (ADRC) and double closed-loopcontrol are presented by using pseudo control variables based on cascade systems.Both the inner and outer loops are designed by active disturbance rejectioncontroller. In this method the disturbances are estimated using an extended stateobserver (ESO) and compensated during each sampling period. The designedcontroller not only satisfies the quick response speed and steady-state accuracydemands, but also effectively resists to the uncertainties disturbance and friction.Control algorithm is simple and it is easy to digital implement. The simulationresults indicate that the designed of the double closed-loop control system hashigh-precision and stronger robustness and has important engineering significance.
     A closed-loop control for the module transformation process of the spacestation is studied. The model reduction matrix from space to plane of the spacestation transformation via manipulator is proposed. The dynamics characteristicsof the system are analyzed, and the simulation result demonstrates that the overallmoment of inertia relative to the mass center change hugely in the transformationprocess of the space station. The scope of the eccentricity is beyond the scope ofthe geometry of the core module. A closed-loop control strategy based on theCSVS/NCSVS/MNIS method and feedback decoupling control is presented in order to reduce vibration. It is difficult to determine the frequency and dampingratio of the closed-loop control system due to the dynamics model for manipulatortransformation system of the space station with strong-decoupling, nonlinearityand time variation. The designed CSVS/NCSVS/MNIS control command isachieved which utilizes the frequency and damping ratio of the whole closed loopsystem by feedback decoupling control. As mentioned above, both analytical andnumerical results verified the effectiveness for vibration suppression during thetranslocation process of the control strategy. It shows great value in both theoryand practical applications due to the improved efficiency and stability for spacemanipulator working on orbit.
引文
[1]范剑峰.空间站概述[J].中国空间科学技术,1987,(8):36-44.
    [2]田坤黉.空间站支持空间应用分析[C].第三届空间材料及其应用技术学术交流会论文集.2009:16-25.
    [3]武尧尔.“国际空间站”的应用、问题和前景[J].国际太空,2011,(7):17-27.
    [4]吴国兴.空间站的军事应用[J].现代军事,2003,(5):59-60.
    [5]王永志.实施我国载人空间站工程推动载人航天事业科学发展[J].载人航天,2011,(1):1-4.
    [6]于登云,孙京,马兴瑞.空间机械臂技术及发展建议[J].航天器工程,2007,16(4):1865-1870.
    [7]朱毅麟.空间站应用的发展及存在问题[J].航天器工程,2009,18(1):13-20.
    [8]袁建平,罗建军.空间站的发展及我国发展空间站的意义[J].科技前沿与学术评论,1998,20(6):99-101.
    [9] V. S. Syromiatnikov. Manipulator System for Module Redocking on the MirOrbital Complex[C]. Proceedings of the1992IEEE International Conferenceon Robotics and Automation, Nice, France, IEEE,1992:913-918.
    [10] K. A. M. X Cyril Postcapture Dynamics of a Spacecraft-Manipulator-PayloadSystem[J]. Journal of Guidance, Control, and Dynamics,2000,23(1):95-100.
    [11] F. Aghili. Cartesian Control of Space Manipulators for on-Orbit Servicing[C].AIAA Guidance, Navigation, and Control Conference, Toronto, OntarioCanada.2010:1-11.
    [12] Y. Yao, J. Guo, H. Zhao, et al. N-Body Flexible Dynamics of the SpaceStation During Module Redocking Via Manipulator System[C]. AIAAGuidance, Navigation, and Control Conference, Toronto, Canada.2010:1-22.
    [13]潘博,于登云,孙京.大型空间机械臂关节动力学建模与分析研究[J].宇航学报,2010,31(11):2448-2455.
    [14] M Benosman, G. Vey. Control of Flexible Manipulators: A Survey[J].Robotica,2004,22:533-545.
    [15] S. K. Dwivedy, P. Eberhard. Dynamic Analysis of Flexible Manipulators, aLiterature Review[J]. Mechanism and Machine Theory,2006,41:749-777.
    [16]徐文福,杜晓东,王成疆,等.空间机械臂系统总体技术指标确定方法[J].中国空间科学技术,2013,(1):53-60.
    [17]秦文波,陈萌,张崇峰,等.空间站大型机构研究综述[J].上海航天,2010,(4):32-42.
    [18]张凯锋,周晖,温庆平,等.空间站机械臂研究[J].空间科学学报,2010,30(6):612-619.
    [19] J. M. Hydel. Multiple Mode Vibration Suppression in Controlled FlexibleSystems[D]. Massachusetts: Massachusetts Institute of Technology,1991.
    [20] T M Wasfy, A. K. Noor. Computational Strategies for Flexible MultibodySystems[J]. Appl Mech Rev,2003,56(6):553-613.
    [21]王树新,员今天,石菊荣,等.柔性机械臂建模理论与控制方法研究综述[J].机器人,2002,24(1):86-91,96.
    [22]戎保,芮筱亭,王国平,等.多体系统动力学研究进展[J].振动与冲击,2011,30(7):178-187.
    [23] M. O Tokhi, Z. Mohamed. Finite Difference and Finite Element Approachesto Dynamic Modeling of a Flexible Manipulator[J]. Journal of Systems&Control Engineering,1997,211(2):14-146.
    [24]黄厚田.空间站姿态控制特性分析[D].哈尔滨:哈尔滨工业大学,2011.
    [25]孙仲泽.空间站双杆机械臂转位动力学及仿真研究[D].哈尔滨:哈尔滨工业大学,2011.
    [26] S. Hou. Review of Modal Synthesis Techniques and a New Approach[J].Shock and Vibration Bulletin,1969,40(4):25-30.
    [27] R. Guyan. Reduction of Stiffness and Mass Matrices[J]. AIAA Journal,1965,3(2):380.
    [28]瞿祖清.结构动力缩聚技术:理论与应用[D].上海:上海交通大学,1998.
    [29]施高萍.多柔体系统动力学模型的降阶研究[D].杭州:浙江工业大学,2004.
    [30] H. B Hablani. Constrained and Unconstrained Modes: Some ModelingAspects of Flexible Spacecraft[J]. Journal of Guidance, Control, andDynamics,1982,5(2):164-173.
    [31] E. Barbieri, U. Ozguner. Unconstrained and Constrained Mode Expansionsfor a Flexible Slewing Link[J]. Transaction of ASME,1988,110(6):416-421.
    [32]陕晋军,关英姿,王凤鸣,等.挠性结构的约束模态及非约束模态解法[J].上海航天,2000,17(5):19-22.
    [33]陕晋军,刘暾,齐乃明,等.再谈一类挠性结构的约束及非约束模态解法[J].中国空间科学技术,2001,21(6):13-19.
    [34] E. A. Jonekheere, L. M. Silverman. A New Set of Invariants for LinearSystems-Application to Reduced Order Component Design[J]. IEEETransations on Automatic Control,1983,28(10):254-256.
    [35] R. E. Skelton, A. Yousuff. Component Cost Analysis of Large ScaleSystems[J]. International Journal of Control Automation and Systems,1983,37(2):285-304.
    [36]徐小胜,于登云,曲广吉.用于惯性完备性降阶的模态恒等式研究[J].航天器工程,2003,2:23-34.
    [37] B. C. Moore. Principal Component Analysis in Linear System:Controllability, Obverability and Model Reduction[J]. IEEE Transactions onAutomatic Contol,1981,26(1):17-31.
    [38] P. Hughes, R. Skelton. Modal Truncation for Flexible Space Craft[J]. Journalof Guidance and Control,1981,4(3):291-297.
    [39] B. w ie, K. W. Byun, V. W. Warren. New Approach to Attitude/MomentumControl for the Space Station[J]. Journal of Guidance,1989,12(5):714-722.
    [40]倪茂林,湛颍.空间站的鲁棒稳定控制[J].宇航学报,1993,11(2):29-33.
    [41]吴宏鑫,李智斌.空间站智能自主控制[J].航天控制,1997,15(3):28-34.
    [42]赵超,周凤岐,周军.空间站的变结构鲁棒稳定控制[J].航天控制,1999,(1):1-5.
    [43]赵超,周凤岐,周军.变构型空间站的姿态动力学建模与控制[J].北京航空航天大学学报,2002,28(2):161-164.
    [44]周黎妮,李海阳,唐国金.空间站基于动量管理的集成能量与姿态控制系统[J].宇航学报,2009,30(6):2151-2158.
    [45]周黎妮,唐国金,程文科.空间站姿态控制/动量管理的神经网络反馈线性化控制[J].系统仿真学报,2009,21(18):5892-5895.
    [46]周黎妮,黄海兵,唐国金.空间站姿态控制/动量管理一体化控制研究综述[J].航天控制,2010,28(2):93-98.
    [47]马艳红,张军,郭廷荣.空间站组装时的姿态指令优化[J].载人航天,2010,(1):17-25.
    [48]李广兴,肖余之,卜劭华,等.空间站组装过程姿态控制方案研究[J].载人航天,2012,18(1):22-29.
    [49] B. R. Thompson. A Planar, Harmonic Drive Robot for Joint TorqueControl[D]. Massachusetts: Cambridge MIT Artificial IntelligenceLaboratory,1990.
    [50]谢箭,刘国良,颜世佐,等.基于神经网络的不确定性空间机器人自适应控制方法研究[J].宇航学报,2010,31(1):123-129.
    [51] Y. Kang, D. H. Li, D. Z. Lao. Performance Robustness Comparison of ActiveDisturbance Rejection Control and Adaptive Backstepping Sliding ModeControl[J]. Asiasim2012, Pt Ii,2012,324:275-285.
    [52] Y. Xia, P. Shi, G. P. Liu, et al. Active Disturbance Rejection Control forUncertain Multivariable Systems with Time-Delay[J]. Iet Control Theory andApplications,2007,1(1):75-81.
    [53] S. L. Li, X. Yang, D. Yang. Active Disturbance Rejection Control for HighPointing Accuracy and Rotation Speed[J]. Automatica,2009,45(8):1854-1860.
    [54] H. L. Xing, J. H. Jeon, K. C. Park, et al. Active Disturbance RejectionControl for Precise Position Tracking of Ionic Polymer-Metal CompositeActuators[J]. IEEE-ASME Transactions on Mechatronics,2013,18(1):86-95.
    [55]韩京清.自抗扰控制器及其应用[J].控制与决策,1998,13(1):19-23.
    [56]韩京清.从PID技术到“自抗扰控制”技术[J].控制工程,2002,9(3):13-18.
    [57]韩京清.自抗扰控制技术[J].前沿科学,2007,(1):24-31.
    [58] J. Han. From PID to Active Disturbance Rejection Control[J]. IEEETransactions on Industrial Electronics,2009,56(3):900-906.
    [59]黄一,张文革.自抗扰控制器的发展[J].控制理论与应用,2002,19(4):485-492.
    [60]韩京清.线性系统的结构与反馈系统计算[C].控制理论与应用学术年会论文集.1981:43-55.
    [61]韩京清.系统辨识的一种方法-状态反馈法[J].控制与决策,1990,5(1):13-17.
    [62]韩京清.非线性系统的状态观测器[J].控制与决策,1990,5(3):57-60.
    [63]韩京清.非线性控制系统中状态反馈的实现[J].控制与决策,1991,6(3):161-167.
    [64]韩京清.控制理论-模型论还是控制论[J].系统科学与数学,1989,9(4):328-335.
    [65]韩京清.非线性状态误差反馈控制律—NLSEF[J].控制与决策,1995,10(3):221-225.
    [66] X. Q. Liu, L. Tang, L. Zhou. Fuzzy Active Disturbance Rejection Control ofThree-Motor Synchronous System[J]. Control Engineering and AppliedInformatics,2011,13(4):51-57.
    [67]夏长亮,俞卫,李志强.永磁无刷直流电机转矩波动的自抗扰控制[J].中国电机工程学报,2006,(24):137-142.
    [68] M. Pizzocaro, D. Calonico, C. Calosso, et al. Active Disturbance RejectionControl of Temperature for Ultrastable Optical Cavities[J]. IEEETransactions on Ultrasonics Ferroelectrics and Frequency Control,2013,60(2):273-280.
    [69]管志敏,王兵树,林永君,等.自抗扰控制在火电厂主汽温控制中的应用研究[J].系统仿真学报,2009,(01):307-311.
    [70] J. H. Zhang, J. C. Feng, Y. L. Zhou, et al. Linear Active DisturbanceRejection Control of Waste Heat Recovery Systems with Organic RankineCycles[J]. Energies,2012,5(12):5111-5125.
    [71] M. Kordasz, R. Madonski, M. Przybyla, et al. Active Disturbance RejectionControl for a Flexible-Joint Manipulator[J]. Robot Motion and Control2011,2012,422:247-256.
    [72] H. Sira-Ramirez, C. Lopez-Uribe, M. Velasco-Villa. Linear Observer-BasedActive Disturbance Rejection Control of the Omnidirectional MobileRobot[J]. Asian Journal of Control,2013,15(1):51-63.
    [73]马红雨,苏剑波.基于自抗扰控制器的机器人无标定三维手眼协调[J].自动化学报,2004,30(3):400-406.
    [74]赵杰,杨永刚,刘玉斌.高精度轨迹跟踪的6-PRRS并联机器人自抗扰控制研究[J].控制与决策,2007,(07):791-794,799.
    [75]胡天健,黄学祥.空间机器人主从遥操作的自抗扰控制[J].飞行器测控学报,2011,(6):21-25.
    [76]董博.可重构模块机器人构形优化与自抗扰控制方法研究[D].长春:吉林大学,2012.
    [77]苏玉鑫,段宝岩,张永芳,等.大射电望远镜馈源指向系统轨迹跟踪自抗扰控制[J].控制理论与应用,2004,(06):956-960.
    [78]朱承元,杨涤,李顺利.用户卫星天线跟踪指向自抗扰控制方法[J].北京理工大学学报,2006,(1):82-86.
    [79]赖爱芳,郭毓,郑立君.航天器姿态机动及稳定的自抗扰控制[J].控制理论与应用,2012,(3):401-407.
    [80] Y. T. Han, R. G. Geng. Active Disturbance Rejection Control of UnderwaterHigh-Speed Vehicle[C].2012IEEE International Conference on Automationand Logistics (ICAL), IEEE,2012:550-553.
    [81]胡坤,张孝芳,刘常波.基于遗传算法的无人水下航行器深度自抗扰控制[J].兵工学报,2013,(02):217-222.
    [82] B. Fast, R. Miklosovic, A. Radko. Active Disturbance Rejection Control of aMEMS Gyroscope[C].2008American Control Conference, Vols1-12, IEEE,2008:3746-3750.
    [83] Q. Zheng, L. L. Dong, D. H. Lee, et al. Active Disturbance Rejection Controlfor MEMS Gyroscopes[C].2008American Control Conference, Vols1-12,IEEE,2008:4425-4430.
    [84] M. W. Spong. Modeling and Control of Elastic Joint Robots[J]. Journal ofDynamic, Measurement and Control,1997,1(109):310-319.
    [85] L. Lu, B. Yao, Q. F. Wang, et al. Adaptive Robust Control of Linear Motorswith Dynamic Friction Compensation Using Modified Lugre Model[J].Automatica,2009,45:2890-2896.
    [86]孙汉旭,褚明,贾庆轩.柔性关节摩擦和不确定补偿的小波神经——鲁棒复合控制[J].机械工程学报,2010,46(13):68-75.
    [87]彭济根,倪元华,乔红.柔性关节机操手的神经网络控制[J].自动化学报,2007,33(2):175-180.
    [88] Z. Yu. Neuro-Sliding-Mode Control of Flexible-Link Malupulators Based onSingularly Perturbed Model[J]. Tsinghua Science and Technology,2009,14(4):444-451.
    [89] A. C. Huang, Y. C. Chen. Adaptive Sliding Control for Single-LinkFlexible-Joint Robot with Mismatched Uncertainties[J]. IEEE Transactionson Control Systems Technology,2004,12(5):770-775.
    [90] M. C. Chien, A. C. Huang. Adaptive Control for Flexible-Joint ElectricallyDriven Robot with Time-Varying Uncertainties[J]. IEEE Transactions onIndustrial Electronics,2007,54(2):1032-1038.
    [91]张晓东,贾庆轩,孙汉旭,等.空间机器人柔性关节轨迹控制研究[J].宇航学报,2008,29(6):1865-1870.
    [92]刘业超,金明河,刘宏.柔性关节机器人基于柔性补偿的奇异摄动控制[J].机器人,2008,30(5):460-466.
    [93]刘暾.分力合成主动振动抑制方法[R].哈尔滨:哈尔滨工业大学,1991.
    [94]陕晋军,刘暾.挠性结构的输入成形与分力合成主动振动抑制方法研究[J].中国机械工程,2002,13(5):379-383.
    [95]胡庆雷,马广富,姜雪原.分力合成和智能材料相结合的振动控制方法[J].哈尔滨工业大学学报,2006,38(4):510-513.
    [96] N. C. Singer, S. W. P. Preshaping Command Inputs to Reduce SystemVibration[J]. Journal of Dynamics Systems, Measurement and Control,1990,112(1):76-82.
    [97] H. Yavuz, S. Mistikoglu, S. Kapucu. Hybrid Input Shaping to SuppressResidual Vibration of Flexible Systems[J]. Journal of Vibration and Control,2012,18(1):132-140.
    [98] E. Pereira, J. R. Trapero, I. M. Diaz, et al. Adaptive Input Shaping forSingle-Link Flexible Manipulators Using an Algebraic Identification[J].Control Engineering Practice,2012,20(2):138-147.
    [99] M. C. Pai. Robust Input Shaping Control for Multi-Mode Flexible StructuresUsing Neuro-Sliding Mode Output Feedback Control[J]. Journal of theFranklin Institute-Engineering and Applied Mathematics,2012,349(3):1283-1303.
    [100]R. R. Orszulik, J. Shan. Vibration Control Using Input Shaping and AdaptivePositive Position Feedback[J]. Journal of Guidance Control and Dynamics,2011,34(4):1031-1044.
    [101]W. Singhose, R. Eloundou, J. Lawrence. Command Generation for FlexibleSystems by Input Shaping and Command Smoothing[J]. Journal of GuidanceControl and Dynamics,2010,33(6):1697-1707.
    [102]E. Pereira, J. R. Trapero, I. M. Diaz, et al. Adaptive Input Shaping forManoeuvring Flexible Structures Using an Algebraic IdentificationTechnique[J]. Automatica,2009,45(4):1046-1051.
    [103]王晓军,邵惠鹤.基于输入整形的线性二次型调节器及其应用[J].上海交通大学学报,2006,40(5):848-851,855.
    [104]王晓磊,吴宏鑫.挠性航天器振动抑制的自适应方法及实验研究[J].宇航学报,2005,26(3):275-281.
    [105]洪昭斌,陈力.漂浮基柔性空间机械臂基于奇异摄动法的模糊控制和柔性振动主动控制[J].机械工程学报,2010,46(7):35-41.
    [106]黄登峰,陈力.漂浮基柔性空间机械臂关节运动的分块神经网络控制及柔性振动模糊控制[J].工程力学,2012,29(5):230-236.
    [107]胡庆雷,马广富.基于滑模输出反馈与输入成形控制相结合的挠性航天器主动振动抑制方法[J].振动与冲击,2007,26(6):133-138,189.
    [108]M. C. Pai. Closed-Loop Input Shaping Control of Vibration in FlexibleStructures Using Discrete-Time Sliding Mode[J]. International Journal ofRobust and Nonlinear Control,2011,21(7):725-737.
    [109]D. Liu, D. M. Yang, J. XI, et al. An Optimal Maneuver Control Method forthe Spacecraft with Flexible Appendage[J]. AIAA-88-4255-CP,1988:294-300.
    [110]郗杰.考虑挠性及晃动的空间飞行器动力学模型建立及最优机动[D].哈尔滨:哈尔滨工业大学,1989.
    [111]蔡晓雷.空间交会对接动力学与控制初探[D].哈尔滨:哈尔滨工业大学,1991.
    [112]D. Liu, Y. W. Chang, D. M. Yang. The Vibration Suppression Control ofFlexible Spacecraft[C]. The1th Sino-Soviet Symposium on AstronauticalScience and Technology, Harbin.1991:123-128.
    [113]刘暾,常亚武,杨大明.柔性空间飞行器的振动抑制控制[J].航天控制,1992,(2):25-33.
    [114]D. Liu,. G. Y. Wang. An Active Vibration Suppression Method for theFlexible Spacecrafts and Its Application[C]. AIAA/AAS AstrodynamicsConference, Washington.American Institute of Aeronautics and Astronautics,1994:376-381.
    [115]陕晋军.挠性空间飞行器的分力合成主动振动抑制方法研究[D].哈尔滨:哈尔滨工业大学,2002.
    [116]Liu D, S. J. J. Application of Component Synthesis Vibration SuppressionMethod to the Large Angle Slewing of Spacecraft[C]. The5thSino-Russian-Ukrainian Symposium on Space Science and Technology,Harbin.2000:318-325.
    [117]陕晋军,刘暾.应用分力合成主动振动抑制方法的最优飞行器大角度机动控制策略[J].航空学报,2002,23(1):62-65.
    [118]J. Shan, D. Sun, D. Liu. Design for Robust Component Synthesis VibrationSuppression of Flexible Structures with on-Off Actuators[J]. IEEETransactions on Robotics and Automation,2004,20(3):512-525.
    [119]陕晋军,刘暾.挠性结构的分力合成主动振动抑制方法研究[J].上海航天,2001,(6):28-37.
    [120]陕晋军,刘暾.应用分力合成方法改善柔性系统性能的研究[J].系统仿真学报,2002,14(11):1536-1540.
    [121]陕晋军,刘暾,齐乃明,等.应用分力合成方法提高系统性能指标的研究[J].中国空间科学技术,2003,(1):14-20,60.
    [122]J. J. Shan, D. Liu. New Optimal Large Angle Maneuver Strategy for SingleLink[J]. Chinese Journal of Mechanical Engineering,2001,14(3):224-230.
    [123]J. J. Shan, D. Sun. Robust Component Synthesis Vibration SuppressionCommand for Flexible Spacecrafts with on-Off Actuators[C].2003IEEEInternational Conference on Robotics, Intelligent Systems and SignalProcessing, Vols1and2, Proceedings.2003:214-219.
    [124]J. Shan, D. Sun. Robust Component Synthesis Vibration Suppression forMaueuver of Flexible Spacecrafts[C]. Proceedings. ICRA'04.2004IEEEInternational Conference on Robotics and Automation, Vol.3, IEEE,2004:2556-2561.
    [125]王凤鸣,陕晋军,高桦,等.应用分力合成的步进电动机驱动方案研究[J].上海航天,2001,18(3):8-14.
    [126]W. Singhose. Command Shaping for Flexible Systems: A Review of the First50Years[J]. International Journal of Precision Engineering andManufacturing,2009,10(4):153-168.
    [127]Q. L. Hu, Y. Liu. A Hybrid Scheme of Feed-Forward/Feedback Control forVibration Suppression of Flexible Spacecraft with on-Off Actuators DuringAttitude Maneuver[J]. International Journal of Information Technology,2005,11(12):95-107.
    [128]G. M. Qinglei Hu, Yaqiu Liu. Feed-Forward/Feedback Control for ActiveVibration Suppression of Flexible Spacecraft During Attitude Maneuver[C]Proceedings of the16th IFAC World Congress,2005, Progue. CzechRepublic.
    [129]Q. Hu. Attitude Maneuver and Vibration Control of Flexible SpacecraftUsing Computed Feed-Forward Input Commands and Proportional-Derivative Feedback[J]. Journal of Aerospace Engineering,2007,221:785-794.
    [130]张建英,刘暾.分力合成主动振动抑制方法和闭环反馈控制的同时设计
    [C].第二十七届中国控制会议,中国,昆明.2008:45-49.
    [131]张建英.挠性航天器姿态机动中的分力合成主动振动抑制方法研究[D].哈尔滨:哈尔滨工业大学,2009.
    [132]张建英,刘暾,郑立伟.基于分力合成方法的航天器闭环反馈控制[J].哈尔滨工业大学学报,2010,42(3):384-388.
    [133]Q. L. Hu, G. F. Ma, Z. Wei. Maneuver and Vibration Reduction of FlexibleSpacecraft Using Sliding Mode/Command Shaping Technique[J]. Journal ofHarbin Institute of Technology (New Series),2006,13(4):477-488.
    [134]Q. L. Hu, G. F. Ma. Flexible Spacecraft Vibration Suppression Using PWPFModulated Input Component Command and Sliding Mode Control[J]. AsianJournal of Control,2007,9(1):20-29,30.
    [135]张建英,刘暾,郑立伟.基于PWM的挠性航天器分力合成主动振动抑制方法[J].空间科学学报,2010,30(1):66-72.
    [136]Y. Liu, Q. Hu, W. Song. Spacecraft Vibration Damping Using ShapedCommand Input[C]. Proceedings of the6th World Congress on IntelligentControl and Automation, Dalian.2006:6237-6241.
    [137]W. L. Song, Y. Q. Liu, Q. L. Hu. Spacecraft Vibration Suppression DuringAttitude Maneuver Using PWPF Modulated Input Component Commands[C]Proceedings of the IEEE International Conference on Mechatronics&Automation, Niagara Falls, Canada.493-498.
    [138] Q. L. Hu, G. F. Ma. Vibration Suppression of Flexible Spacecraft DuringAttitude Maneuvers[J]. Journal of Guidance, Control, and Dynamics,2005,28(2):377-380.
    [139]Q. Hu. Spacecraft Vibration Reduction Using Pulse Modulated CommandInput and Smart Materials[J]. Aircraft Engineering and AerospaceTechnology,2006,78(5):378-386.
    [140]胡庆雷.挠性航天器姿态机动的主动振动控制[D].哈尔滨:哈尔滨工业大学,2006.
    [141]J. Y. Zhang, T. Liu, Z. P. Zhao. Study on Component Synthesis ActiveVibration Suppression Method Using Zero-Placement Technique[J]. ChineseJournal of Aeronautics,2008,21(4):304-312.
    [142]张建英,刘暾.频域内分力合成主动振动抑制方法研究[C].第二十七届中国控制会议,中国,昆明.2008:667-671.
    [143]原劲鹏,杨旭,杨涤.输入成型在卫星喷气姿态机动控制中的应用[J].东南大学学报(自然科学版),2005,35(增刊Ⅱ):137-141.
    [144]谢辉,刘业超,谢宗武.四自由度柔性关节机器臂残余振动的输入整形控制[J].机械与电子,2009,10:32-34.
    [145]W. E. Singhose, W. P. Seering, N. C. Singer. Time-Optimal Negative InputShapers[J]. Journal of Dynamic Systems, Measurement, and Control,1997,119(2):198-205.
    [146]O. J. M. Smith. Feedback Control Systems[M]. McGraw-Hill Book Company,Inc.:1958:331-345pp
    [147]W. E. Singhose, S. Derezinski, N. Singer. Extra-Insensitive Input Shapers forControlling Flexible Spacecraft[J]. Journal of Guidance, Control, andDynamics,1996,19(2):385-391.
    [148]W. Singhose, E. O. Biediger, Y. H. Chen, et al. Reference Command ShapingUsing Specified-Negative-Amplitude Input Shapers for VibrationReduction[J]. Journal of Dynamic Systems Measurement andControl-Transactions of the ASME,2004,126(1):210-214.
    [149]L. Y. Pao, W. E. Singhose. A Comparison of Constant and Variable AmplitudeCommand Shaping Technique for Vibration Reduction[C]. IEEE Conferenceon Control Applications, Albany.1995:875-881.
    [150]M. Z, C. A K, H A W I Mohd, et al. Techniques for Vibration Control of aFlexible Robot Manipulator[J]. Robotica,2006,24:499-511.
    [151]J Vaughan, A Yano, W. Singhose. Comparison of Robust Input Shapers[J].Journal of Sound and Vibration,2008,315(4-5):797-815.
    [152]J Vaughan, A Yano, W. Singhose. Robust Negative Input Shapers forVibration Suppression[J]. Journal of Dynamic Systems, Measurement, andControl,2009,131(3):0310141-0310149.
    [153]T.D.Tuttle, W. P. Seering. Vibration Reduction in Flexible SpaceStructures Using Input Shaping on the Mace: Mission Results[C]. IFACWorld Congress, San Francisco, CA.1996:55-60.
    [154]T. D. Tuttle, W. P. Seering. Experimental Verification of Vibration Reductionin Flexible Spacecraft Using Input Shaping[J]. Journal of Guidance Controland Dynamics,1997,20(4):658-664.
    [155]董明晓,脱建智,任意翔,等.最优输入整形抑制变参数桥式起重机载荷摆动[J].振动与冲击,2009,28(10):207-209.
    [156]M. C. Pai. Closed-Loop Input Shaping Control of Vibration in FlexibleStructures Via Adaptive Sliding Mode Control[J]. Shock and Vibration,2012,19(2):221-233.
    [157]孔宪仁,杨正贤,董晓光,等.控制受限柔性航天器姿态机动内闭环成形控制[J].宇航学报,2011,32(2):329-335.
    [158]孔宪仁,杨正贤,叶东,等.基于输入成形的柔性航天器振动闭环抑制方法研究[J].振动与冲击,2010,29(3):72-76,205.
    [159]孔宪仁,杨正贤,张锦绣,等.刚柔耦合系统的输入成形控制[J].哈尔滨工业大学学报,2011,43(3):7-11.
    [160]李瑞川,徐涛,左文杰,等.基于PD结合输入整形控制的含有刚性模态弹性机构的力及能耗分析[J].振动与冲击,2010,29(12):158-161,245.
    [161]张鹏,李元春.基于混合EI成型器的多模态柔性结构振动控制[J].力学学报,2010,42(4):774-781.
    [162]M. O. T. Cole, T. Wongratanaphisan. A Direct Method of Adaptive FIR InputShaping for Motion Control with Zero Residual Vibration[J]. IEEE-ASMETransactions on Mechatronics,2013,18(1):316-327.
    [163]M. O. T. Cole. A Class of Low-Pass FIR Input Shaping Filters AchievingExact Residual Vibration Cancelation[J]. Automatica,2012,48(9):2377-2380.
    [164]J. J. Shan, H. T. Liu, D. Sun. Modified Input Shaping for a RotatingSingle-Link Flexible Manipulator[J]. Journal of Sound and Vibration,2005,285(1-2):187-207.
    [165]R R Orszulik, J. J. Shan. Vibration Suppression of Flexible Manipulator byCombining Modified Input Shaping and Adaptive Positive Position FeedbackControl[C]. AIAA Guidance, Navigation, and Control Conference, Toronto,Ontario Canada. August2-5,2010.
    [166]B. W. Rapple, N. C. Singer, W. P. Seering. Input Shaping with NegativeSequences for Reducing Vibrations in Flexible Structures[C]. Proceedings ofthe American Control Conference, San Francisco.1993:2695-2699.
    [167]W. E. Singhose, N. C. Singer, W. P. Seering. Design and Implementation ofTime-Optimal Negative Input Shapers[C]. International MechanicalEngineering Congress and Exposition, Chicago.1994:151-157.
    [168]K. L. Sorensen, A. Daftari, W. E. Singhose, et al. Negative Input Shaping:Eliminating Overcurrenting and Maximizing the Command Space[J]. Journalof Dynamic Systems Measurement and Control-Transactions of the ASME,2008,130(6).
    [169]刘暾,杨大明.带挠性附件卫星的模型化及截断[J].宇航学报,1989,(4):87-95.
    [170]陕晋军.挠性结构分力合成的主动振动抑制方法研究[D].哈尔滨:哈尔滨工业大学,1999.
    [171]K L Sorensen, A Daftari, W E Singhose, et al. Negative Input Shaping:Eliminating Overcurrenting and Maximizing the Command Space[J]. Journalof Dynamic Systems, Measurement, and Control,2008,130(6):0610121-0610127.
    [172]S. S. Gurleyuk, O. Bahadir, Y. Turkkan, et al. Performance Analysis of ThreeStep Positive Input Shaping[J]. ACMOS '08: Proceedings of the10th WseasInternational Conference on Automatic Control, Modelling and Simulation,2008:85-89.
    [173]W. E. Singhose, N. C. Singer. Effects of Input Shaping on Two-DimensionalTrajectory Following[J]. IEEE Transactions on Robotics and Automation,1996,12(6):881-887.
    [174]T. Singh, G. R. Heppler. Shaped Input Control of a System with MultipleModes[J]. Journal of Dynamic Systems, Measurement, and Control,1993,115(3):341-347.
    [175]M Bowden, J. Dugundji. Joint Damping and Nonlinearity in Dynamics ofSpace Structures[J]. AIAA Journal,1990,28(4):740-749.
    [176]韩京清,王伟.非线跟踪-微分器[J].系统科学与数学,1994,14(2):177-183.
    [177]黄一,韩京清.非线性连续二阶扩张状态观测器的分析与设计[J].科学通报,2000,(13):1373-1379.
    [178]H. Yi, H. Jingqing. Analysis and Design for Nonlinear Continuous ExtendedState Observer[J]. Chinese Science Bulletin,2000,45(21):1938-1944.
    [179]韩京清.自抗扰控技术-估计补偿不确定因素的控制技术[M].北京:国防工业出版社,2008.
    [180]A. Bonsignore, G. Ferretti, G. Magnani. Coulomb Friction Limit Cycles inElastic Positioning Systems[J]. Journal of Dynamic Systems,Measurementand Control,1999,121(2):298-301.
    [181]L. Freidovich, A. Robertsson, A. Shiriaev, et al. Lugre-Model-Based FrictionCompensation[J]. IEEE Transactions on Control Systems Technology,2010,18(1):194-200.
    [182]陈国栋,贾培发.基于扩张状态观测的机器人分散鲁棒跟踪控制[J].自动化学报,2008,34(7):828-832.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700