Fe-Mn-Si-Al TRIP/TWIP钢组织及性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用EBSD、AFM及光学显微镜研究了不同变形量下(2%、5%、10%和30%), Fe-30Mn-4Si-2Al TRIP/TWIP钢(A12钢)和Fe-30Mn-3Si-3Al TWIP钢(A13钢)的组织演变规律和加工硬化机制。
     在拉伸变形过程中,三种形变产物(平面位错带,ε马氏体和形变孪晶)都沿{111}惯习面产生,并呈现板条状形态。通过测量Al2钢拉伸变形的表面浮凸角发现,在拉伸变形量为10%时,大部分的板条状组织的表面浮凸角度都接近于形变孪晶的理论值。而在基体中新生的板条状组织的表面浮凸角度都接近于ε马氏体的理论值。实验结果表明,随着拉伸变形量的增大,Al2钢的变形机制由应力诱发ε马氏体逐渐转变为应力诱发孪晶。由于Al3钢产生的板条状组织过于“纤细”,大部分的板条状组织无法测量准确的浮凸角度,而少数可以测量的板条状组织的浮凸角度接近于形变孪晶的理论值。
     利用EBSD研究拉伸变形量为10%及30%的Al2钢发现,当拉伸变形量为10%时,Al2钢中并没有发现形变孪晶,主要的显微组织为应力诱发ε马氏体。当拉伸变形量增大到30%,发现在ε马氏体板条内侧形成了少量形变孪晶。通过EBSD观察发现在拉伸变形量为10%的Al3钢中只形成了少量的形变孪晶。
     结合Ogawa.Kazuyuki和Sawaguchi. Takahiro的TEM结果证明在小变形量下Al2钢的主要形变组织为ε马氏体,Al3钢的形变组织为形变孪晶及平面位错。尽管拉伸形变的组织不同,但两种钢显示了相似的加工硬化行为。
     利用EBSD观察了在拉伸变形过后,两不同{111}惯习面的马氏体板条或变形孪晶相交叉的现象。通过晶体学分析,得到以下结论:在Al2钢中两马氏体板条相交叉处形成了二次奥氏体相,这可能是由于不同{111}的两个半孪晶切变相结合的结果。在应力诱发ε马氏体板条内部形成了{1012}hcp孪晶。在Al3钢中两个变形孪晶也同样在交叉处形成了二次奥氏体相,但它的形成机制与马氏体板条相交叉的机制不同,形成机理仍有待进一步研究。
The deformation microstructures Fe-30Mn-4Si-2Al TWIP/TRIP steel (A12) and Fe-30Mn-3Si-3Al TWIP steel (A13) with different amount of tensile deformation (2%,5%, 10% and 30%) were investigated by the combined use of optical microscopy (OM), atomic force microscopy(AFM) and electron backscatter diffraction (EBSD) technique. The work hardening mechanism of the A12 and A13 steels were also discussed.
     Three kinds of deformation structures (the planar dislocation band, the s martensite and the deformation twin) are commonly formed on the{111} habit planes and exhibit plate-like morphology during tensile deformation. The surface tilt angles were determined by AFM for 10% tensile deformed A12 steel. It is found that surface tile angles of most banded structure determined by AFM are closed to the theoretical value of deformation twin. While, the surface tilt angles of the new plates formed in austenite matrix are close to the theoretical value of theεmartensite. Those results indicate, for A12 steel, in the case of small defomation, stress-induced martensite transformation is the dominant deformation mechanism, which alters into deformation twinning as deformation stain increases. Most of banded structures formed in A13 TWIP steel were too thin to precisely determine the surface tile angle by AFM. A few plates with relatively large thicknesses could be selected for the quantitative surface analysis. The values of their surface tilt angles were closed to the theoretical values of deformation twins.
     Microstructures of tensile deformed A12 steel (with deformation strains of 10% and 30%) were investigated by means of EBSD technique. For 10% tensile deformed A12 steel, fullεmartensite microstructure was observed and no deformation twin was found. As the deformation strain increased to 30%, a small amount of deformation twins were observed between s martensite plates. For 10% tensile deformed A13 steel, it was found that only a small amount of deformation twins was formed during deformation.
     Based on the TEM analysis taken by Ogawa.Kazuyuki and Sawaguchi.Takahiro, it may conclude that, under small deformation, the microsturcture of A12 steel consists mainly of s martensite, while the microstructure of A13 steel is mainly composed of deformation twin and planar dislocation. Although there is too much deference in microstructures between the two alloys, they exhibit a similar work hardening behavior during tensile deformation.
     By means of EBSD, the microstructures at intersections between twoεmartensite plates on different{111} habit planes in A12 steel and those between two deformation twin plates in A13 TWIP steel were examined. The following conclusions were made based on crystallographic analysis. It was found that the secondary FCC twin was formed at the intersection between two HCP plates, which could be probably attributed to the combination of two half-twinning shears on different{111} planes.{1012} HCP twinning was also observed inside the stress-induced s martensite plates. The intersecting of two deformation twin plates also brought about the formation of secondary austenite twin, but its formation mechanism may be different from that for the martensite intersecting. The detail is still under analysis.
引文
1.康永林.现代汽车板的质量控制与成型性[M],北京:冶金工业出版社,1999,2-3.
    2.黄宝旭.氮、铌合金化孪生诱发塑性(TWIP)钢的研究[D],上海交通大学,2007.
    3. Grassel O, Kruger L, Frommeyer G. High strength Fe-Mn-(A1, Si) TRIP/TWIP steels development-properties-application [J], Internation Journal Plasticity,2000,16(25):1391-1409.
    4. Frommeyer G, Udo Brux, Peter Neumann. Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes [J], ISIJ International,2003,43(1):438-446.
    5. Spitzer K H. Direct strip casting (DSC)-An option for the production of HSD steel grades [J], International conference for super-high strengh steel,2005,1(1):46-58.
    6. Scott C, Allain S. The development of a new Fe-Mn-C austenitic steel for automotive applications [J], Revue de Metallurgie,2006,103(6):293-302.
    7.刘国勋.金属学原理[M],北京:冶金工业出版社,1980,233-236.
    8. Grassel O, Frommeyer G. High-strength and ultra-ductile Fe-Mn-(AI, Si) TRIP/TWIP light-weight steels for structural components in automotive engineering [J], Stahl und eisen,2002, 122(4):65-69.
    9. Grassel O, Frommeyer G, Derder C. Phase transformations and mechanical properties of Fe-Mn-Si-Al TRIP steels [J], Journal Physics Ⅳ,1997,5(1):383-388.
    10.王轶娜,黎倩,何燕霖,符仁钰,李麟.高强度高塑性TWIP钢的组织和性能[J],热处理,2006,21(3):25-30.
    11.严玲,唐荻,米振莉.不同加工工艺对高强高塑性TWIP钢组织与性能的影响[J],热加工工艺,2005,8(5):15-17.
    12. Ueji R, Tsuchida N, Terada D. Tensile properties and twinning behavior of high manganese austenitic steel with fine-grained structure [J], Scripta materalia,2008,59(8):963-966.
    13. Hamdi F, Asgari S. Evaluation of the Role of Deformation Twinning in Work Hardening Behavior of Face-Centered-Cubic Polycrystals [J], The Minerals Metals&Materials Society and ASM International,2007,39(1):294-302.
    14. Tomota Y, Strum M. Microstructural dependence of Fe-high Mn tensile behavior [J], Metallurgical and Materials Transactions A,1986,17(3):537-547.
    15. Kim Y G, Han J M, Lee J S. Composition and temperature dependence of tensile properties of austenitic Fe-Mn-Al-C alloys [J], Materials Science and Engineering A,1989,114(1),51-59.
    16. Grassel O, Frommeyer G. Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe-Mn-Si-Al steels [J], Materials Science and Technology, 1998,14(12):1213-1217.
    17.胡赓祥,蔡殉,戎咏华.材料科学基础(第二版)[M],上海:上海交通大学出版社,2006,168-170.
    18.石德珂,金志浩.材料力学性能[M],西安:西安交通大学出版社,1998,256-268.
    19.严玲,唐荻,米振莉.汽车用TWIP钢的力学性能与微观组织[J],北京科技大学学报,2006,28(8):739-743.
    20.毛卫民.金属材料的晶体学织构与各向异性[M],北京:科学技术出版社,2002,62-67.
    21. Steven W, Haynes A G. Structure and Properties of Carbide Free Bainite [J], Journal Iron Steel Institute,1956,183(1):349-359.
    22.刘云旭.金属热处理原理[M],北京:机械工业出版社,1981,135-143.
    23.陈希杰.高锰钢[M],北京:机械工业出版社,1989,222-231.
    24. Owen W S. The effect of silicon on the kinetics of tempering [J], Metall Transaction A,1954, 46(1):812-829.
    25. Leslie W C, Rauch G C. Precipitation of carbides in low-carbon Fe-Al-C alloys [J], Metall Transaction A,1978,9(2),343-349.
    26. Li J C, Zheng W, Jiang Q. Stacking fault energy of iron-base shape memory alloys [J], Material Letter,1999,38(8):275-277.
    27. Ishida K. Direct estimation of stacking fault energy by thermodynamic analysis [J], Physics Status Solidi,1976,36(6):717-728.
    28. Petrov Y N, Yakubtsov I A. Thermodynamic calculation of stacking fault energy for multicomponent alloys with FCC lattice based on iron [J], The Physics of Metals and Metallography,1986,62(2):34-38.
    29.马凤仓,冯伟骏,王利,张荻.TWIP钢的研究现状[J],宝钢技术,2008,6(1),62-66.
    30. Frommeyer G. Physical and mechanical properties of iron aluminium-(Mn, Si) light weight steels [J], Revue de Metallurgie,2000,10(1):1245-1253.
    31.王书晗,刘振宇,王国栋,梁高飞.热处理工艺对TWIP钢组织性能的影响,东北大学学报(自然科学版),2008,29(9):1283-1286.
    32. Bouaziz O, Guelton N. Modeling of TWIP effect on work-hardening [J], Materials Science and Engineering A,2001,319(2):246-249.
    33. Allain S, Chateau J P, Bouaziz O. A physical model of the twinning induced plasticity effect in a high manganese austenitic steel [J], Materials Science and Engineering A,2004,378(1),143-147.
    34.肖纪美.金属的韧性与韧化[M],上海:上海科技出版社,1982,244-254.
    35.陈世朴,王永瑞.金属电子显微分析[M],北京:机械工业出版社,1982,221-223.
    36.李见.材料科学基础[M],北京:冶金工业出版社,2000,151-152.
    37. Bergeon N, Kajiwara S, Kikuchi T. Atomic force microscope study of stress-induced martensite formation and its reverse transformation in a thermomechanical treated Fe-Mn-Si-Cr-Ni alloy [J], Acta Metall,2000,48(1):4053-4064.
    38. Koyama M.高延性Fe-Mn-Si基形状记忆合金的性能及变形机制[D],日本芝浦工业大学,2008.
    39.刘庆.电子背散射衍射技术及其在材料科学中的应用[J],中国体视学与图像分析,2005,10(4):205-210.
    39. Brux U, Frommeyer G, Grassel O. Development and characterization of high strength impact resistant Fe-Mn-(A1, Si) TRIP/TWIP steels [J], Steel Research,2002,73(1):294-298.
    40. Lebedkina T A, Lebyodkin M A, Chateauc J Ph, Jacquesc A, Allaind S. On the mechanism of unstable plastic flow in an austenitic Fe-Mn-C TWIP steel [J], Materials Science and Engineering A,2009, doi:10.1016/j.msea.2009.04.067.
    41. Frommeyer G, Brux U. Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIP steels [J], Steel research international,2006,77(1):627-633.
    42. Barbier D, Geya N, Allain S, Bozzoloa N, Humbert M. Analysis of the tensile behavior of a TWIP steel based on the texture and microsturcture evolutions [J], Materials Science and Engineering A,2009,500(1):196-206.
    43. Lin Xiaoping, Gu Nanju, Zhang Yong, Meng Zhaowei, Ma Xiaoli. AFM quantitative analysis and determination of shear angle of{259} martensite surface relief [J], Progress in natural science,2002,12(10):23-28.
    44. Koyama M, M Murakami, K Ogawa, T Kikuchi, T Sawaguchi. Influence of Al on Shape Memory effect and twinning induced plasticity of Fe-Mn-Si-Al system alloy [J], Materials Transactions,2007,48(10):2729-2734.
    45. Koyama M, Sawaguchi T, Ogawa K, Kikuchi T, Murakamia M. The effect of thermomechanical training treatment on the deformation characteristics of Fe-Mn-Si-Al alloys [J], Materials Science and Engineering A,2008,497(1):353-357.
    46. Sawaguchi T, Kikuchi T, Kajiwara S. The pseudoelastic behavior of Fe-Mn-Si-based shape memory alloys containing Nb and C [J], Smart Materials and Structures,2005,14(5):317-322.
    47. Sawaguchi T, K Ogawa. Private discussion. 48. Tsakiris V, Edmonds D V. Matensite and deformation twinning in austenitic steels [J], Materials Science and Engineering A,1999,273(1):430-436.
    49. Bouaziz O, Allain S, Scott C. Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels [J], Scripta Materialia,2008,58(11):484-487.
    50. Matsumoto S, Sato A, Mori T. Formation of hcp and fcc twins in an Fe-Mn-Cr-Si-Ni alloy [J], Acta metal,1994,42(4):1207-1213.
    51. Yang J H, Wayman C M. Intersection-shear mechanisms for the formation of secondary ε martensite variants [J], Acta metal,1992,40(8):2025-2031.
    52. Yang J H, Wayman C M. On secondary variants formed at intersections of ε martensite variants [J], Acta metal,1992,40(8):2011-2023.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700