典型含氧挥发性有机物和全氟磺酰胺的大气降解机理的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含氧挥发性有机物(Oxygenated Volatile Organic Compounds, OVOCs)是大气对流层中重要的痕量组分,其来源广泛,种类繁多。它们是光化学反应的中间产物,并具有很高的反应活性,可与OH、NO3及O3等大气对流层中的重要的自由基和分子发生反应或直接发生光解作用,产生活性自由基和二次污染物。这些产物的极性和水溶性增强,易通过成核、水合或吸附作用产生二次有机气溶胶(Secondary Organic Aerosol, SOA)。二次有机气溶胶粒子尺度小,平均寿命长,不仅会影响空气能见度和全球气候变化,还严重威胁人类的健康。因此,研究OVOCs的大气氧化反应过程对于探讨区域及全球大气化学、气候变化和环境效应等都有非常重要的意义。
     全氟羧酸(PFCAs)和全氟磺酸(PFSAs)类化合物因其在自然界的广泛分布、难以降解及其潜在的毒性而受到广泛关注,它们不但存在于发达的工业国家,也存在于远离排放源的落后偏远地区,甚至是北极。PFCAs不(?)PFSAs的挥发性较低,水溶性很高,在环境中主要以离子形式存在,在大气中不具有长距离传输性。针对此现象有理论提出,挥发性较强的前体化合物如全氟烷基乙醇(fluorotelomer alchohols, FTOHs)f口全氟磺酰胺(polyfluorinated sulfonamides, FSAs)等经大气传输到北极,然后再降解生成PFCAs(?)(?)PFSAs.因此研究这些前体物在大气中的转化机理和动力学特性来评价其对偏远地区造成污染的潜势具有重要的意义。
     本论文使用密度泛函理论(Density Functional Theory, DFT)对甲基乙烯基醚、饱和酯(丙酸甲酯)及α,β-不饱和酯(乙烯基酯)和全氟磺酰胺在大气环境中的化学转化和降解机理进行了研究,并使用小曲率隧道效应校正的变分过渡态理论(CVT/SCT)和多通道的RRKM-TST理论计算了反应速率常数。通过本论文的研究得到了以下有意义的结论:
     一.大气中OH自由基引发的甲基乙烯基醚的氧化降解机理
     本论文用DFT密度泛函的方法对大气中甲基乙烯基醚(MVE)与OH自由基氧化反应机理进行了理论研究,反应物、过渡态和产物的结构优化和频率计算用的理论水平是B3LYP/6-31G(d),用MP2/6-311+G(d,p)理论水平计算了单点能。反应机理包括直接的H抽提反应和C=C双键加成反应。本文给出在O2和氮氧化物存在的情况下OH自由基引发的MVE在大气中的反应机理,给出了详细的势能剖面图。结果表明OH自由基加成到双键C的末端原子(C3原子)上是最容易发生的通道,反应的主要产物是甲酸甲酯(methyl formate)、甲醛(formaldehyde)和羟基乙酸甲酯(glycolic acid methyl ester)。
     二.大气中丙酸甲酯和丙烯酸酯的氧化降解机理
     (1)大气中OH自由基引发的丙酸甲酯的氧化降解机理
     本文用DFT密度泛函的方法研究了OH自由基引发的丙酸甲酯在大气中的氧化反应过程。用B3LYP/6-31G(d,p)理论水平计算了反应物、过渡态、中间体和产物的结构和振动频率,为了提高计算精度,又分别用MP2和CCSD(T)理论水平计算了单点能。本文给出了丙酸甲酯和OH自由基反应详细的反应机理图并进行了讨论,发现产物HC(O)CH2C(O)OCH3(3-oxo-methyl propionate)的生成以及中间体IM17(CH3CH(O)C(O)OCH3)的异构化在典型大气环境下是可行的。用CVT/SCT理论预测了速率常数,计算了在180-370K温度范围内的速率常数并进行了拟合,得到了阿伦尼乌斯(Arrhenius)方程k(T)=(1.35×10-12)exp(-174.19/T)cm3molecule-1s-1。
     (2)OH和NO3自由基与甲基丙烯酸甲酯(MMA)的气相反应机理
     本文用DFT密度泛函的理论计算方法研究了OH和NO3自由基引发的MMA在大气中的降解机理。用B3LYP/6-31G(d,p)理论水平计算了反应物、过渡态、中间体和产物的结构和振动频率,为了提高计算精度,又分别用MP2/6-31G(d)、 MP2/6-311++G(d,p)和CCSD(T)/6-31G(d)计算了单点能。本文给出了MMA与OH和NO3自由基反应详细的反应机理图并进行了讨论,反应以OH和NO3自由基加成到双键C上为主,H抽提反应对整个反应过程的贡献很小,结果显示OH和N03自由基更容易加成到双键C的末端原子(C1原子)上。分别用多通道的RRKM-TST和CVT/SCT理论方法计算了加成反应和H抽提反应在180-370K温度范围内的速率常数,并拟合了阿伦尼乌斯(Arrhenius)方程k(T)(MMA+OH)=(1.83×10-12)exp(945.59/T) cm3molecule-1s-1、 k(T)(MMA+NO3)=(6.75×10-16)exp(502.48/T) cm3molecule-1s-1。由OH和NO3自由基决定的大气寿命分别为3小时和6.5天,表明MMA在大气中的去除过程主要以与OH自由基反应为主。
     (3)OH自由基与丙烯酸酯气相反应的动力学研究
     为了评价烷基取代基的位置对丙烯酸酯的反应活性的影响,本文在已得到的CCSD(T)/6-31G(d)+CF//B3LYP/6-31G(d,p)势能面信息基础上,用CVT/SCT理论方法分别计算了丙烯(CH2=CH(CH3))、丙烯酸甲酯(CH2=CHCOOCH3)、甲基丙烯酸乙酉(?)(CH2=C(CH3)COOCH2CH3)与OH自由基反应在298K时的速率常数。并与MMA和OH自由基反应在298K时的速率常数进行比较,结果显示双键C=C上连接的-COOR基团降低了反应活性,但是-COOR基团中的-R基团(像甲基或者其他的烷基)反而会增强反应活性,并且随着碳链增长反应活性而增强,双键C=C上连接的-R基团是给电子效应,能够增强反应活性,使之与OH自由基反应的速率加快。
     三.大气中OH自由基与N-乙基全氟磺酰胺的氧化降解机理
     全氟磺酰胺(F(CF2)nSO2NR1R2, FSAs)在大气中普遍存在,经过长距离传输和氧化降解,可能造成北极偏远地区PFCAs和PFSAs的污染。本论文在MPWB1K/6-31G+(d,p)理论水平下研究了不同碳氟链长度的N-乙基全氟磺酰胺(F(CF2)nSO2NHCH2CH3)N-乙基全氟正丁基磺酰胺(NEtFBSA)、N-乙基全氟正己基磺酰胺(NEtFHxSA)和N-乙基全氟辛基磺酰胺(NEtFOSA)与OH自由基的大气氧化反应的机理,用更高精度的基组6-311+G(3df,2p)计算了单点能。以NEtFBSA为例提出了其与OH自由基反应的详细反应机理,讨论了抽提反应后生成的重要中间体在大气中可能的反应途径。并用CVT/SCT计算了OH自由基引发的反应速率常数,得出了在180-370K温度范围内的速率常数并进行了拟合,给出了NEtFBSA、NEtFHxSA和NEtFOSA与OH自由基反应的Arrhenius方程k(T)(NEtFBSA+OH)=(3.21×10-12)exp(-584.19/T),k(7)(NEtFHxSA+OH)=(3.21×10-12) exp(-543.24/T)和k(T)(NEtFOSA+OH)=(2.17×10-12)exp(-504.96/T) cm3molecule-1s-1。结果表明全氟碳链的长度对FSAs的反应活性影响不大,由OH自由基决定的FSAs的大气寿命是20-40天,与实验结果吻合得很好(20-50天),这一大气寿命足以允许FSAs这类污染物长距离传输到北极,并在北极氧化降解造成污染。
Oxygenated volatile organic compounds (OVOCs) are very important trace con-stituents in the troposphere, and they are also significant intermediate products of many photooxidation reactions. They have extensive source and a wide variety of kinds. They can be transformed in the chemical reactions with hydroxyl radicals (OH), nitrate radical (NO3) and ozone (O3) or through direct photodegradation in the at-mosphere, and products are activated radicals and second pollutants. Most of products in the atmosphere can contribute to the formation of secondary organic aerosol (SOA) through nucleation, hydration or absorption since their polarity and water-solubility are enhanced. Because of the small size, long average lifetime and adverse environ-ment effects of SOA, they not only degrade air visibility, change global climate, but also are a severe threaten to human body. Therefore, the oxidation process investiga-tion of volatile organic compounds in atmosphere is of great significance for explor-ing the regional and global atmospheric chemistry, climate change and environmental effects.
     Perfluorocarboxylates (CF3(CF2)nCOO-,PFCAs) and perfluorosulfonates (CF3(CF2)nSO3-, PFSAs) have attracted much attentions in recent years as a result of their widespread detection, persistent nature and toxicity. They have been detected globally in the environment, wildlife, and humans, including those from remote re-gions such as the Arctic. The source of the perfluorinated acids in the Arctic is re-markable because under environmental conditions they exist mainly as anions due to the low volatility and high water solubility, and are not susceptible to long-range at-mospheric transport in the gas phase. One possible explanation is that precursor chemicals undergo atmospheric transport to remote locations and subsequent oxida-tion results in the production of PFCAs and PFSAs. Polyfluorinated sulfonamides have been suggested to be important precursors. So detailed mechanism and kinetic studies of atmospheric reactions for FSAs is prerequisite to understand their fate and contribution to PFCAs and PFSAs in remote environments.
     In this thesis, quantum chemical calculations have been carried out to study the degradation processes of typical OVOCs and FSAs, and CVT/SCT and multichannel RRKM-TST methods have been used to predict the branch and overall rate constants. As a result, some significant progresses have been made, which can be described as follows:
     1. Quantum Chemical Study on the Atmospheric Photooxidationof Methyl Vinyl Ether (MVE)
     The reactions of methyl vinyl ether (MVE, CH3OCH=CH2) with OH radicals have been studied using density functional theory (DFT/B3LYP) with the6-31G(d) basis set. The geometries and frequencies of all thestationary points and the minimum energy paths (MEPs) are calculated at the B3LYP/6-31G(d) level. The energetic in-formation along the MEPs is further refined at the MP2/6-311+G(d,p) level of theory. Three reaction pathways have been considered:one H abstraction and two OH addi-tions to>C=C     2. Mechanism and Kinetic Studies for Atmospheric Oxidation of Methyl Propio-nate and a Series of Acrylate.
     (1) Mechanism and Kinetic Studies for OH Radical-initiated Atmospheric Oxidation of Methyl Propionate
     DFT molecular orbital theory calculations were carried out to investigate OH radical-initiated atmospheric oxidation degradation of methyl propionate. Geometry optimizations of the reactants as well as the intermediates, transition states and prod-ucts were performed at the B3LYP/6-31G(d,p) level. As the electron correlation and basis set effect, the single-point energies were computed by using various levels of theory, including second-order M(?)ller-Plesset perturbation theory (MP2) and the cou-pled-cluster theory with single and double excitations including perturbative correc-tions for the triple excitations (CCSD(T)). The detailed oxidation mechanism is pre-sented and discussed. The results indicate that the formation of3-oxo-methyl propio-nate (HC(O)CH2C(O)OCH3) is thermodynamically feasible and the isomerization of alkoxy radical IM17(CH3CH(O)C(O)OCH3) can occur readily under the general at-mospheric conditions. CVT/SCT theory was used to predict the rate constants. The overall rate constants were determined over the possible atmospheric temperature range of180-370K, k(T)(CH3CH2COOCH3+OH)=(1.35×10-12)exp(-174.19/T) cm3molecule-1s-1.
     (2)Mechanism and Kinetic Studies for OH and NO3radical initiated Atmospheric Oxidation of Methyl methacrylate
     DFT molecular orbital theory calculations were carried out to investigate OH and NO3radicals initiated atmospheric oxidation of methyl methacrylate (MMA). Geometry optimizations of the reactants as well as the intermediates, transition states and products were performed at the B3LYP/6-31G(d,p) level. As the electron correla-tion and basis set effect, the single-point energies were computed by using various levels of theory, including second-order M(?)ller-Plesset perturbation theory (MP2) and the coupled-cluster theory with single and double excitations including perturbative corrections for the triple excitations (CCSD(T)). The detailed oxidation mechanism is presented and discussed. The reactions of MMA with OH and NO3radicals proceed via two possible mechanisms:addition-elimination and H abstraction. The H abstrac-tion is insignificant and can be ignored. The most energetically favorable reaction pathway is that of OH and NO3addition to the terminal carbon positions (C1atom). The branch and overall rate constants for the reaction of OH and NO3radicals with methyl methacrylate have been calculated using CVT/SCT and multichannel RRKM-TST methods. The overall rate constants were determined over the possible atmospheric temperature range of180-370K (cm3molecule-1s-1), k(T)(MMA+OH)=(1.83×10-12)exp(945.59/T), k(T)(MMA+NO3)=(6.75×10-16)exp(502.48/T).
     (3)Kinetic Studies for OH radical initiated Atmospheric Oxidation of a series of acry-late.
     To estimate the influence of H-substitution in the olefin on the reactivity toward the electrophilic attack of OH radicals, CVT/SCT theory was used to predict the rate constants of OH radical-initiated reaction with propylene, methyl acrylate and ethyl methacrylate at298K, which was compared with the rate constant of methyl methac-rylate with OH radicals at the same temperature. Results show that-C(O)OR func-tional group deactivates the double bond toward OH radicals attack. The electron-withdrawing mesomeric effect provided by the-C(O)OR group decreases the electron density in the p-bond that is attacked, whereas the electron-donating-R group in the-C(O)OR functional group can offset such decrease,but H-substitution by electron donor groups like-CH3or other alkyl groups in the α,β unsaturated ester increases quite significantly the reactivity of the compounds toward electrophilic attack of OH radicals.
     3. Mechanism and Kinetic Studies for OH Radical-initiated Atmospheric Oxida-tion of Polyfluorinated Sulfonamides
     Polyfluorinated sulfonamides (FSAs, F(CF2)nSO2NR1R2) are present in the at-mosphere and may serve as the source of perfluorocarboxylates (PFCAs) in remote locations, through long-range atmospheric transport and oxidation. DFT molecular orbital theory calculations were carried out to investigate OH radical-initiated atmos-pheric oxidation of a series of sulfonamides, F(CF2)nSO2NR1R2(n=4,6,8). Geometry optimizations of the reactants as well as the intermediates, transition states and prod-ucts were performed at the MPWB1K level with the6-31G+(d,p) basis set. Sin-gle-point energy calculations were carried out at the MPWB1K/6-311+G(3df,2p) lev-el of theory. The OH radicals initiated reaction mechanism is given and confirmed that the OH addition to the sulfone double bond producing perfluoroalkanesulfonic acid directly cannot occur in the general atmosphere. Use NEtFBSA as an example, detailed reaction mechanism is presented and discussed. Of these, the rate constants of some important elementary reaction are calculated using multichannel RRKM-TST methods to estimate the contributionto the burden of perfluorinated pollution in re-mote regions. CVT/SCT theory was used to predict the rate constants. The overall rate constants were determined over the possible atmospheric temperature range of180-370K,k(T)(NEtFBSA+OH)=(3.21×10-12)exp(-584.19/T),k(T)(NEtFHxSA+OH)=(3.21×10-12)exp(-543.24/T),k(T)(NEtFOSA+OH)=(2.17x10-12)exp(-504.96/7) cm3molecule-1s-1, indicating that the length of the F(CF2)n-group has no large effect on the reactivity of FSAs. Results show that the atmospheric lifetime of FSAs deter-mined by OH radicals will be20-40days, thus they may contribute to the burden of perfluorinated pollution in remote regions.
引文
[1]李晓华,陆思华,邵敏.大气中含氧挥发性有机物(OVOCs)的测量技术.北京大学学报(自然科学版),2006,4(42):548-554.
    [2]陆思华,李晓华,刘莹,邵敏.大气中挥发性含氧有机物研究进展.环境科学与技术,2006,29:112-114.
    [3]BASF. Available from:.
    [4]Scarfogliero, M., Picquet-Varrault, B., Salce, J., Durand-Jolibois, R., Doussin, J. F. Kinetic and mechanistic study of the gas-phase reactions of a series of vinyl ethers with the nitrate radical. J. Phys. Chem. A 2006,110 (38):11074-11081.
    [5]刘芮伶,黄晓锋,何凌燕,袁斌,陆思华,冯凝.质子转移反应质谱在线测量大气挥发性有机物及来源研究—以深圳夏季为例.环境科学学报,2012,32(10):2540-2547.
    [6]Grosjean, D., Grosjean, E., Gertler, A. On-road emissions of carbonyls from light -duty and heavy-duty vehicles. Environ. Sci. Technol.2001,35:45-53.
    [7]Goldan, P. D., Kuster, W.C., Fehsenfeld, F.C. Hydrocarbon measurements in the southeastern United States:the rural oxidants in the southern environment (ROSE) program 1990. J. Geophys. Res.1995,100 (D12):25945-25963.
    [8]Possanzini, M., Dipalo, V., Petricca, M. Measurements of lower carbonyls in rome ambient air. Atmos. Environ.1996,30(22):3757-3764.
    [9]Lamanna, M. S., Goldstein, A. H. In situ measurements of C2-C10 volatile or-ganic compounds above a Sierra Nevada Ponderosa pine plantation. J. Geophys. Res.1999,104 (D17):21247-21262.
    [10]Singh, H. B., Kanakidou, M., Crutzen, P. J., Jacob, D. J. High-concentrations and photochemical fate of oxygenated hydrocarbons in the global troposphere. Nature 1995,378(6552):50-54.
    [11]Wyche, K. P., Blake, R. S., Ellis, A. M., Monks, P. S., Brauers, T., Koppmann, R., Apel, E.C. Technical note:performance of chemical ionization reaction time-of-flight mass spectrometry (CIR-TOF-MS) for the measurement of at-mospherically significant oxygenated volatile organic compounds. Atmos. Chem. Phys.2007,7:609-620.
    [12]Ho, K. F., Lee, S. C., Louie, P. K. Seasonal variation of carbonyl compound concentrations in urban area of Hong Kong. Atmos. Environ.2002, 36:1259-1265.
    [13]Pun, B. K., Wu, S. Y., Seigneur, C. Contribution of biogenic emissions to the formation of ozone and particulate matter in the eastern United States. Environ. Sci. Technol.2002,36:3586-3596.
    [14]Calogirou, A., Larsen, B. R., Kotzias, D. Gas-phase terpene oxidation products: a review. Atmos. Environ.1999,33:1423-1439.
    [15]Glasius, M., Lahaniati, M., Calogirou, A., Bella, D. D., Jensen, N. R., Hjorth, J., Kotzias, D., Larsen, B. R. Carboxylic acids in secondary aerosols from oxida-tion of cyclic monoterpenes by ozone. Environ. Sci. Technol.2000,34: 1001-1010.
    [16]Andreae, M. O., Crutzen, P. J. Atmospheric aerosols:biogeochemical sources and role in atmospheric chemistry. Science 1997,276:1052-1058.
    [17]World Health Organization (WHO):Guidelines for air quality, WHO:Geneva, Switzerland,2000.
    [18]Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ.2000, 34:2063-2101.
    [19]Derwent, R. G. Volatile organic compounds in atmosphere. Environ. Sci. Technol.1995,4:1-15.
    [20]Dewulf, J., Langenhove, H. V. Analytical techniques for the determination and measurement data of 7 chlorinated C1- and C2-hydrocarbons and 6 monocyclic aromatic hydrocarbons in remote air masses:an overview. Atmos. Environ. 1997,31:3291-3307.
    [21]Kurun, P., Sojak, L. Environmental analysis of volatile organic compounds in water and sediments by gas chromatography. J. Chromatogr. A 1996,733: 119-141.
    [22]Vasconcelos, L. A., Macias, E. S., White, W. H. Aerosol composition as a func-tion of haze and humidity levels in the southwestern US. Atmos. Environ.1994, 28:3679-3691.
    [23]Penner, J. E., Dickenson, R. E., O'Neill, C. A. Effects of aerosol from biomass burning on the global radiation budget. Science 1992,256:1432-1434.
    [24]Joly, M. Federation des Industries de la Peinture, Encres et Colles, FIPEC, per-sonal communication.
    [25]Lemoine, S. European Solvents Industry Group, ESIG, personal communica-tion.
    [26]Thiault, G., Mellouki, A. Rate constants for the reaction of OH radicals with n-propyl, n-butyl, iso-butyl and tert-butyl vinyl ethers. Atmos. Environ.2006, 40:5566-5573.
    [27]盖艳波,葛茂发,王炜罡.NO3自由基与三种环醚的大气化学反应动力学研究.环境科学,2011,32(12):3593-3598.
    [28]Huber, K. P., Herzberg, G. Molecular spectra and molecular structure. IV. Con-stants of diatomic molecules. Princeton:Van Nostrand Reinhold Co.
    [29]Van, W. J. R., Ewig, C. S. Ab initio structures of phosphorus acids and esters.2. Methyl phosphinate, dimethyl phosphonate, and trimethyl phosphate. J. of Ame. Chem. Soc.108(15):4354-4360.
    [30]Ignatyev, I. S., Montejo, M., Sundius, T., Uren, F. P., Gonzalez, J. J. L. Structure and vibrational spectra of vinyl ether conformers. The comparision of B3LYP and MP2 predictions. Chem. Phys.2007,333:148-156.
    [31]Perry, R. A., Atkinson, R., Pitts, J. N. Rate constants for the reaction of OH rad-icals with dimethyl ether and vinyl methyl ether over the temperature range 299-427 K. J. Chem. Phys.1997,67(2):611-614.
    [32]Thiault, G., Thevenet, R., Mellouki, A., Le, B. G. OH and 03-initiated oxidation of ethyl vinyl ether. Phys. Chem. Chem. Phys.2002,4:613-619.
    [33]Bjorn, K., Ian, B., Takashi, I. Product study of the gas-phase reactions of O3, OH and NO3 radicals with methyl vinyl ether. Phys. Chem. Chem. Phys.2004, 6:1725-1734.
    [34]Shou, M. Z., Ian, B., Tong, Z., Iustinian, B., Thorsten, B. Kinetic study of the gas-phase reactions of OH and NO3 radicals and O3 with selected vinyl ethers. J. Phys. Chem. A 2006,110:7386-7392.
    [35]Shou, M. Z., Ian, B., Tong, Z., Bjorn, K., Mihaela, A., Iustinian, B., Thorsten, B. Product study of the OH, NO3, and O3 initiated atmospheric photooxidation of propyl vinyl ether. Environ. Sci. Technol.2006,40:5415-5421.
    [36]Record of CAS RN 109-94-4 in the GESTIS substance database from the IFA.http://gestis-en.itrust.de/nxt/gateway.dll/gestis_en/012710.xml?f=templates $fn=default.htm$3.0
    [37]http://china.chemnet.com/product/
    [38]Timothy, J. W., Philippe, D., Ren, Z. L., Michael, J. K. The gas reactions of hy-droxyl radicals with a series of esters over the temperature range 240-440 K. Int. J. Chem. Kinet.1988,20:177-186.
    [39]Calvert, J. G., Mellouki, A., Orlando, J. J. Mechanisms of atmospheric oxida-tion of the oxygenates. Oxford, NEWYORK PRESS, p774.
    [40]Geir, L., Jacob, B., Johannes, S., Christoph, H., Matthias, H., Brigitte, B., Andre, S. H., Stefan, R. Oxygenated volatile organic compounds (OVOCs) at an urban background site in Zu" rich (Europe):Seasonal variation and source allocation. Atmos. Environ.2007,41:8409-8423.
    [41]Anita, N., Kar, H. B., Ralf, K., Peter, W. The contribution of traffic and solvent use to the total NMVOC emission in a German city derived from measurements and CMB modeling. Atmos. Environ.2007,417:108-7126.
    [42]Maria, P., Martin, P., Maria, P. G. G., Jose, L. E. R., Araceli, T. V., Beatriz, C. G., Maria, S. S. M. Gas phase reactions of unsaturated esters with Cl atoms. Envi-ron. Sci. Pollut. Res.2010,17:539-546.
    [43]梁鹏,牟玉静,Mellouki, A若干酯和醇的大气化学反应动力学及机理研究.2011年博士论文.
    [44]Teruel, M., Benitez, J., Caballero, M., B. Gas-phase oxidation of methyl croto-nate and ethyl crotonate:kinetic study of their reactions toward OH radicals and Cl atoms. J. Phys. Chem. A 2012,116:6127-6133.
    [45]Porrero, M. P. M., Garcia, M. P. G., Ruiz, J. L. E., Valle, A. T, Galan, B. C., Munoz, M. S. S. Gas phase reactions of unsaturated esters with Cl atoms. Envi- ron. Sci. Pollut. Res.2010,17:539-546.
    [46]Blanco, M. B., Bejan, I., Barnes, I., Wiesen, P., Teruel, M. A. FTIR product dis-tribution study of the Cl and OH initiated degradation of methyl acrylate at at-mospheric pressure. Environ. Sci. Technol.2010,44:7031-7036.
    [47]Picquent, V. B., Scarfogliero, B., Doussin, J. F. Atmospheric reactivity of vinyl acetate:kinetic and mechanistic study of its gas-phase oxidation by OH, O3, and NO3. Environ. Sci. Technol.2010,44:4615-4621.
    [48]Blanco, M. B., Bejar, I., Barnes, I., Wiesen, P., Teruel, M. A. OH-initiated deg-radation of unsaturated esters in the atmosphere:kinetics in the temperature range of 287-313 K. J. Phys.Chem. A.2009,113:5958-5965.
    [49]Prevedouros, K., Cousins, I. T., Buck, R. C. Sources, fate and transport of per-fluorocarboxylates. Environ. Sci. Technol.2006,40 (1):32-44.
    [50]Paul, A. G., Jones, K. C., Sweetman, A. J. A first global production, emission and environmental inventory for perfluorooctane sulfonate. Environ. Sci. Tech-nol.2009,43(2):386-392.
    [51]Kissa, E. Fluorinated surfactants and repellents,2nd edition. New York:Marcel Dekker Inc.2001.
    [52]Kannan, K., Tao, L., Sinclair, E., Pastva, S. D., Jude, D. J., Giesy, J. P. Per-fluorinated compounds in aquatic organism at various trophic levels in a great lakes food chain. Arch. Environ. Contam. Toxicol.2005,48:559-566.
    [53]Tomy, G. T., Budakowski, W., Halldorson, T. Detection of perfluorooctane surfactants in Great Lakes water. Environ. Sci.Technol.2004,38:6475-6481.
    [54]OSPAR Commission. Perfluorooctane sulphonate (PFOS). Hazardous sub-stances series 2005 (2006 update). Available from http://www.ospar.org/documents/dhase/publications.
    [55]Lau, C., Anitole, K., Hodes, C. Perfluoroalkyl acids:A review of monitoring and toxicological findings. Toxicol. Sci.2007,99 (2):366-394.
    [56]U. S. Environmental protection agency (US EPA). Draft risk assessment of the potential human health effects associated with exposure to perfluorooctanoic acid and its salts.
    [57]Hansen, K. J., Johnson, H. O., Eldridge, J. S., Butenhoff, J. L., Dick, L. A. Quantitative characterization of trace levels of PFOS and PFOA in the Tennessee River. Environ. Sci. Technol.2002,36(8):1681-1685.
    [58]Sinclair, E., Kannan, K. Mass loading and fate of perfluoroalkyl surfactants in wastewater treatment plants. Environ. Sci. Technol.2006,40(5):1408-1414.
    [59]Giesy, J. P., Kannan, K. Global distribution of perfluorooctane sulfonate in wildlife. Environ. Sci. Technol.2001,35(7):1339-1342.
    [60]Kannan, K., Franson, J. C., Bowerman, W. M., Hansen, K. J., Jones, P. D., Giesy, J. P. Perfluorooctane sulfonate in Fish-Eating water birds including Bald Eagles and Albatrosses. Environ. Sci. Technol.2001,35(15):3065-3070.
    [61]Taniyasu, S., Kannan, K., Horii, Y., Hanari, N., Yamashita, N. A survey of perfluorooctane sulfonate and related perfluorinated organic compounds in water, fish, birds and humans from Japan. Environ. Sci. Technol.2003,37(12): 2634-2639.
    [62]Bossi, R., Riget, F. F., Dietz, R. Temporal and spatial trends of perfluorinated compounds in ringed seal (Phoca hispida) from Greenland. Environ. Sci. Technol.2005,39(19):7416-7422.
    [63]Higgins, C. P., Field, J. A., Criddle, C. S., Luthy, R. G. Quantitative determination of perfluorochemicals in sediments and domestic sludge. Environ. Sci. Technol.2005,39(11):3946-3956.
    [64]Butenhoff, J. L., Olsen, G. W., Pfahles, A. The applicability of biomonitoring data for perfluorooctanesulfonate to the environmental public health continuum. Environ. Health. Perspect.2006,114(11):1776-1782.
    [65]Calafat, A. M., Kuklenyik, Z., Reidy, J. A., Caudill, S. P., Tully, J. S., Needham, L. L., Serum concentrations of 11 polyfluoroalkyl compounds in the US population:Data from the National Health and Nutrition Examination Survey (NHANES) 1999-2000. Environ. Sci. Technol.2007,41(7):2237-2242.
    [66]Boulanger, B., Vargo, J., Schnoor, J. L., Hornbuckle, K. C. Detection of perfluorooctane surfactants in Great Lakes water. Environ. Sci. Technol. 2004,38(15):4064-4070.
    [67]Saito, N., Harada, K., Inoue, K., Sasaki, K., Yoshinaga, T., Koizumi, A. Perfluorooctanoate and perfluorooctane sulfonate concentrations in surface water in Japan. J. Occup. Health 2004,46(1):49-59.
    [68]Loewen, M., Halldorson, T., Wang, F. Y., Tomy, G. Fluorotelomer carboxylic acids and PFOS in rainwater from an urban center in Canada. Environ. Sci. Technol.2005,39(9):2944-2951.
    [69]Emmett, E. A., Shofer, F. S., Zhang, H., Freeman, D., Desai, C, Shaw, L. M. Community exposure to perfluorooctanoate:Relationships between serum concentrations and exposure sources. J. Occup. Environ. Med.2006,48(8): 759-770.
    [70]Harada, K., Nakasanishi, S., Sasake, K. Partical size ditribution and respiratory deposition estimates of airborne perfluorooctanoate and perfluooctanesulfonate in Kyoto area, Japan. Bui. Environ. Contam. Toxicol.2006,76:306-310.
    [71]Moriwaki, H., Takata, Y., Arakawa, R. Concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in vacuum cleaner dust collected in Japanese homes. J. Environ. Monit.2003,5(5):753-757.
    [72]金一和,王烈,董光辉.长江三峡库区江水和武汉地区地面水中PFOS和PFOA污染现状调查.生态环境,2006,15,486-489.
    [73]So, M. K., Miyake, Y., Yeung, W. Y, Ho, Y. M., Taniyasu, S., Rostkowski, P., Yamashita, N., Zhou, B. S., Shi, X. J., Wang, J. X., Giesy, J. P., Yu, H., Lam, P. K. S. Perfluorinated compounds in the Pearl River and Yangtze River of China. Chemosphere 2007,68(11):2085-2095.
    [74]Li, X., Yeung, L. W. Y., Taniyasu, S., Lam, P. K. S., Yamashita, N., Xu, M., Dai, J. Accumulation of perfluorinated compounds in captive Bengal tigers (Panthera tigris tigris) and African lions (Panthera leo Linnaeus) in China. Chemosphere 2008,73(10):1649-1653.
    [75]Young, C. J., Furdui, V. I., Franklin, J., Koerner, R. M., Muir, D. C. G., Mabury, S. A. Perfluorinated acids in arctic snow:new evidence for atmospheric formation. Environ. Sci. Technol.2007,41(10):3455-3461.
    [76]Giesy, J. P., Kannan, K. Global distribution of perfluorooctane sulfonate in wildlife. Environ. Sci. Technol.2001,35(7):1339-1342.
    [77]Young, C. J., Furdui, V. I., Franklin, H., Koetner, R. M., Muir, D. C. G., Ma-bury. S. A. Perfluorinated acids in Arctic snow:new evidence for atmospheric formation. Environ. Sci. Technol.2007,41(10):3455-3461.
    [78]Armitage, J., Cousins, I. T., Buck, R. C., Prevedouros, K., Russell, M. H., MacLeod, M., Korzeniowski, S. H. Modeling global-scale fate and transport of perfluorooctanoate emitted from direct sources. Environ. Sci. Technol.2006, 40(22):6969-6975.
    [79]Wania, F. A global mass balance analysis of the source of perfluorocarboxylic acids in the Artic Ocean. Environ. Sci. Technol.2007,41(13):4529-4535.
    [80]Young, C. J., Furdui, V. I., Franklin, J., Koerner, R. M., Muir, D. C. G., Mabury, S. A. Perfluorinated acids in Arctic snow:new evidence for atmospheric for-mation. Environ. Sci. Technol.2007,41(10):3455-3461.
    [81]Ellis, D. A., Martin, J. W., Mabury, S. A.Atmospheric lifetime of fluorotelomer alcohols. Environ. Sci. Technol.2003,37(17):3816-3820.
    [82]Hurley, M. D., Ball, J. C., Wellington, T. J. Atmospheric chemistry of 4:2 fluorotelomer alcohol (CF3(CF2)3CH2CH2OH):products and mechanism of CI atom initiated oxidation. J. Phys. Chem. A 2004,108(26):5635-5642.
    [83]David, A., Ellis, J. W., Martin, A. O., De, S., Scott, A. M., Michael, D. H., Mads, P. S., Andersen, Timothy, J. W. Degradation of fluorotelomer alcohols:a likely atmospheric source of perfluorinated carboxylic acids. Environ. Sci. Technol.2004,38(12):3316-3321.
    [84]Wallington, T. J., Hurley, M. D., Xia, J., Wuebbles, D. J., Sillman, S., Ito, A., Penner, J. E., Ellis, D. A., Martin, J., Mabury, S. A., Nielsen, O. J., Andersen, M. P. S. Formation of C7F15COOH(PFOA) and other perfluorocarboxylic acids during the atmospheric oxidation of 8:2 fluorotelomer alcohol. Environ. Sci. Technol.2006,40(3):924-930.
    [85]Young, C. J., Hurley, M. D., Wallington, T. J., Mabury S. A. Atmospheric chemistry of 4:2 fluorotelomer iodide (n-C4F9CH2CH2l):kinetics and products of photolysis and reaction with OH radicals and Cl atoms. J. Phys. Chem. A 2008,112(51):13542-13548.
    [86]Hohenberg, P., Kohn, W. Inhomogeneous electron gas. Phys. Rev.1964,136(3): 864-871.
    [87]Ricca, A., Bauschlicher, J. C. W. Successive H2O binding energies for Fe(H2O)n+J. Phys. Chem.1995,99(22):9003-9007.
    [88]Kohn, W., Sham L. J. Self-consistent equations including exchange and correla-tions effects. Phys. Rev.1965,140(4):1133-1138.
    [89]Glastone, S., Laidler, K. J., Eyring, H. The theory of rate process. New York: Mc-Graw-Hill Book Company,1941.
    [90]Laidler, K. J. Theories of chemical reaction rates. New York:Mc-Graw-Hill Book Company,1969.
    [91]Eyring, H., Lin, S. H., Lin, S. M. Basic Chemical Kinetics. New York:Wiley, 1980.
    [92]罗渝然.过渡态理论的进展.化学通报,1983,10:10-16.
    [93]Stern, M. J., Persky, A., Klein, F. S. Force field and tunneling effects in the H-H-Cl reaction system:Determination from kinetic-isotope-effect measure-ments. J. Chem. Phys.1973,58(12):5697-5706.
    [94]Garrett, B. C., Truhlar, D. G. Generalized transition state theory. Classical me-chanical theory and applications to collinear reactions of hydrogen molecules. J. Phys. Chem.1979,83(8):1052-1079.
    [95]Garrett, B. C., Truhlar, D. G. Additions and corrections-generalized transition state theory. Quantum effects for collinear reactions of hydrogen molecules. J. Phys. Chem.1983,87(22):4553-4553.
    [96]Garrett, B. C., Truhlar, D. G. Generalized transition state theory. Quantum ef-fects for collinear reactions of hydrogen molecules and isotopically substituted hydrogen molecules. J. Phys. Chem.1979,83(8):1079-1112.
    [97]Wang, B., Hou, H., Gu, Y. Ab initio/density functional theory and multichannel RRKM calculations for the CH3O+CO reaction. J. Phys. Chem. A 1999,103(40): 8021-8029.
    [98]Diau, E. W., Lin, M. C., Melius, C. F. A theoretical study of the CH3+C2H2 reac-tion. J. Chem. Phys.1994,101(5):3923-3927.
    [99]Berman, M. R., Lin, M. C. Kinetics and mechanism of the methylidyne+mo-lecular nitrogen reaction. Temperature-and pressure-dependence studies and transition-state theory analysis. J. Phys. Chem.1983,87(20):3933-3942.
    [100]Troe, J. Theory of thermal unimolecular reactions at low pressures. Solutions of the master equation. J. Chem. Phys.1977,66(11):4745-4758.
    [101]Lewis, R. J. Hawley's Condensed Chemical Dictionary.12th Ed. NY:Van Nos-trand Reinhold Company,1994.
    [102]Daubert, T. E., Danner, R. P. Physical and thermodynamic properties of pure chemicals:data compilation. Design Inst Phys Prop Data, Amer Inst Chem Eng NY:Hemisphere Pub Corp 5 Vol.
    [103]Frisch, M. J., Trucks, G. W., Schlegel, H. B., Gill, P. W. M., Johnson, B. G., Robb, M. A., Cheeseman, J. R., Keith, T. A., Petersson, G. A., Montgomery, J. A., Raghavachari, K., Allaham, M. A., Zakrzewski, V. G., Ortiz, J. V, Foresman, J. B., Cioslowski, J., Stefanov, B. B., Nanayakkara, A., Challacombe, M., Peng, C. Y, Ayala, P. Y., Chen, W., Wong, M. W., Andres, J. L., Replogle, E. S., Gomperts, R., Martin, R. L., Fox, D. J., Binkley, J. S., Defrees, D. J., Baker, J., Stewart, J. P., Head-Gordon, M., Gonzales, C., Pople, J. A. (2003). GAUSSIAN 03, Pittsburgh, PA.
    [104]Becke, A. D. J. Density-functional thermochemistry. IV. A new dynamical cor-relation functional and implications for exact-exchange mixing. J. Chem. Phys. 1996,104:1040-1047.
    [105]Lee, C., Yang, W., Parr, R. G. Negative magnetoresistance in some dimethyl-trimethylene-tetraselenafulvalenium salts:a signature of weak-localization ef-fects. Phys. Rev. B 1988,127:7785-7793.
    [106]Ignatyev, I. S., Montejo, M., Sundius, T., Uren, F. P., Gonzalez, J. J. L. Struc-ture and vibrational spectra of vinyl ether conformers. The comparison of B3LYP and MP2 predictions. J. Chem. Phys.2007,333(2-3):148-156.
    [107]Fukui, K. The path of chemical reactions-the IRC approach. Acc. Chem. Res. 1981,14:363-368.
    [108]Budavari, S., O'Neil, M. J. An encyclopedia of chemicals, drugs, and biologi-cals. Merck and Co., New Jersey.
    [109]Lewis, R. J., S. Hawley's condensed chemical dictionary. Van Nostrand Rhein-hold Co., New York.
    [110]Cavalli, F., Barnes, I., Becker, K. H. Atmospheric oxidation mechanism of me-thyl propionate. J. Phys. Chem. A 2000,104(48):11310-11317.
    [111]Chemical watch fact sheet:methyl propinate. Available from: www.chinadiaoyan.com.
    [112]Snyder, R. Ethel browning's toxicity and metabolism of industrial solvents. Volume 3 Alcohols and Esters. Elsevier, New York.
    [113]Bartley, J. P., Schwede, A. M. Production of volatile compounds in ripening ki-wi fruit (Actinidia chinensis). J. Agric. Food. Chem.1989,37(10):1023-1025.
    [114]Dirinck, P., et al. Analysis of volatiles. Walter Degruyter & Co., Berlin.
    [115]Wilkins, K., Larsen, K. Volatile organic compounds from garden waste. Chemosphere 1996,32(10):2049-2055.
    [116]BidlemanT. F. Atmospheric processes. Environ. Sci. Technol.1988,22: 361-367.
    [117]Daubert, T. E., Danner, R. P. Physical and thermodynamic properties of pure chemicals:data compilation. Hemisphere Pub Corp, NewYork.
    [118]Finlayson-Pitts, B. J. Indications of photochemical histories of pacific air mass-es from measurements of atmospheric trace species at Point Arena, California. J. Geophys. Res.1993,97(14):15883-15901.
    [119]McGillen, M. R., Percival, C. J., Duran, T. R., Reyna, G. S., Shallcross, D. E. Can topological indices be used to predict gas-phase rate coefficients of im-portance to tropospheric chemistry? Free radical abstraction reactions of alkane. Atmos. Environ.2006,40(14):2488-2500.
    [120]Eladio, M., Knipping, D. D. Impact of chlorine emissions from sea-salt aerosol on coastal urban ozone. Environ. Sci. Technol.2003,37(2):275-184.
    [121]Hine, J., Mookerjee, P. K. The intrinsic hydrophilic character of organic com- pounds. Correlations in terms of structural contributions. J. Org. Chem.1975, 40:292-298.
    [122]Calvert J. G., Pitts J. N. Photochemistry. Wiley, New York.1966.
    [123]Atkinson, R. Kinetics and mechanisms of the gas-phase reactions of the NO3 radical with organic compounds. J. Phys. Chem. Ref.1991,20:459-507.
    [124]Smith, N., Plane, J. M. C. Nighttime radical chemistry in the San Joaquin Val-ley. Atmos. Environ.1995,29:2887-2897.
    [125]Calve', S. L., Bras, G. L., Mellouki, A. Kinetic studies of OH reactions with a series of methyl esters. J. Phys. Chem. A 1997,101:9137-9141.
    [126]Alberto, N., Georges, L. B., Mellouki, A. Absolute rate constants for the reac-tions of Cl atoms with a series of esters. J. Phys. Chem. A 1998,102(18): 3112-3117.
    [127]Andersen, V. F., Berhanu, T. A., Nilsson, E. J. K., Jorgensen, S., Nielsen, O. J., Wallington, T. J., Johnson, M. S. Atmospheric chemistry of two biodiesel mod-el compounds:methyl propionate and ethyl acetate. J. Phys. Chem. A 2011, 115(32):8906-8919.
    [128]Lei, W. F., Zhang, R. Y. Theoretical study of hydroxyisoprene alkoxy radicals and their decomposition pathways. J. Phys. Chem. A 2001,105(15):3808-3815.
    [129]McGivern, W. S., Suh, I., Clinkenbeard, A. D., Zhang, R. Y., Simon, W. N. Experimental and computational study of the OH-Isoprene reaction:isomeric branching and low-pressure behavior. J. Phys. Chem. A 2000,104(28): 6609-6616.
    [130]Steckler, R., Chuang, Y. Y., Fast, P. L., Corchade, J. C., Coitino, E. L., Hu, W. P., Lynch, G. C., Nguyen, K., Jackells, C. F., Gu, M. Z., Rossi, I., Clayton, S., Melissas, V., Garrett, B. C., Isaacson, A. D., Truhlar, D. G. (2002). POLYRATE Version 9.3:University of Minnesota:Minneapolis.
    [131]Baldridge, M. S., Gordor, R., Steckler, R., Truhlar, D. G. Ab initio reaction paths and direct dynamics calculations. J. Phys. Chem.1989,93:5107-5119.
    [132]Gonzalez-Lafont, A., Truong, T. N., Truhlar, D. G. Interpolated variational tran-sition-state theory:Practical methods for estimating variational transition-state properties and tunneling contributions to chemical reaction rates from electronic structure calculations. J. Chem. Phys.1991,95(12):8875-8894.
    [133]Garrett, B. C., Truhlar, D. G. Generalized transition state theory. Classical me-chanical theory and applications to collinear reactions of hydrogen molecules. J. Phys. Chem.1979,83(8):1052-1079.
    [134]Fernandez-Ramos, A., Ellingson, B. A., Garret, B. C., Truhlar, D. G. Variational transition state theory with multidimensional tunneling. In reviews in computa-tional chemistry, Lipkowitz K. B., Cundari T. R. Eds, Wiley-VCH:Hoboken, NJ.
    [135]Kuchitsu, K. Structure of free polyatomic molecules-basic data. Springer, Ber-lin.
    [136]Hollenstien, H., Gunthard, H. Solid state and gas infrared spectra and normal coordinate analysis of 5 isotopic species of acetaldehyde. Spec. Acta.1971, 27A(10):2027-2060.
    [137]IUPAC (2006). Subcommittee on gas kinetic data evaluation. Available from:http//www.iupackinetic.ch.cam.ac.uk.
    [138]Hong, G., Ying, W., Wan, S. Q., Liu, J. Y., Sun, C. C. Theoretical investigation of the hydrogen abstraction from CF3CH2CF3 by OH radicals, F, and Cl atoms: a dual-level direct dynamics study. J. Mol. Struc:Theochem.2009,913(1-3): 107-116.
    [139]Cao, H. J., He, M. X., Han, D. D., Sun, Y. H., Xie, J. Theoretical study on the mechanism and kinetics of the reaction of 2,2',4,4'-tetrabrominated diphenyl ether (BDE-47) with OH radicals. Atmos. Environ.2011,45:1525-1531.
    [140]Ji, Y. M., Gao, Y. P., Li, G. Y., An, T. C. Theoretical study of the reaction mechanism and kinetics of low-molecular-weight atmospheric aldehydes (C1-C4) with NO2. Atmos. Environ.2012,54(8):288-295.
    [141]Xu, F., Wang, H., Zhang, Q. Z., Zhang, R. X., Qu, X. H., Wang, W. X. Kinetic properties for the completeseries reactions of chlorophenolswith OH radi-cals-relevance for dioxin formation. Environ. Sci. Technol.2010,44(4): 1399-1404.
    [142]Lewis, R.J. S. Hawley's condensed chemical dictionary 15th edition. John Wiley & Sons, Inc. New York, NY.
    [143]O'Neil, M. J. The Merck Index-An encyclopedia of chemicals, drugs, and bio-logicals. Whitehouse Station, NJ:Merck and Co., Inc.
    [144]Sittig, M. Handbook of toxic and hazardous chemicals and carcinogens.2nd ed. Park Ridge, NJ:Noyes Data Corporation.
    [145]Bisesi, M. S., Patty's Toxicology. New York, NY:John Wiley & Sons, Inc. Es-ters of mono-and alkenyl carboxylic acids and mono-and poly alcohols. On-line posting date:Apr 21,2007.
    [146]World Health Organization/International Programme on Chemical Safety. (1998). Concise international chemical assessment document No.4. methyl methacrylate. Available from: http://www.inchem.org/documents/cicad04.htm
    [147]http://www.bj-ifcc.com/news_list.asp?id=154.
    [148]Lyman, W. J., et al. Handbook of Chemical Property Estimation Methods. Washington, DC:Amer. Chem. Soc.1995:15,1-29.
    [149]Daubert, T. E., Danner, R. P. Physical and thermodynamic properties of pure chemicals:Data compilation. Design Inst Phys Prop Data, Amer Inst Chem Eng New York, NY:Hemisphere Pub Corp 5 Vol.
    [150]Brune, D., Beltesbrekke, H. Levels of methylmethacrylate, formaldehyde, and asbestos in dental workroom air. Scand. J. Dent. Res.1981,89(1):113-116.
    [151]Zhu, J., et al. Selected volatile organic compounds in residential air in the city of Ottawa, Canada. Environ Sci Technol.2005,39(11):3964-3971.
    [152]Maria, B., Blanco, I. B., Ian, B., Peter, W., Mariano, A. T. Tempera-ture-dependent rate coefficients for the reactions of Cl atoms with methyl methacrylate, methyl acrylate and butyl methacrylate at atmospheric pressure. Atmos. Environ.2009,43(38):5996-6002.
    [153]Man'a, B., Blanco, R., Taccone, S. I., Lane, M. A. T. On the OH-initiated deg-radation of methacrylates in the troposphere:gas-phase kinetics and formation of pyruvates. Chem. Phys. Lett.2006,429(4-6):389-394.
    [154]Teruel, M. A., Lane, S. I., Mellouki, A., Solignac, G., Le Bras, G. OH reaction rate constants and UV absorption cross-sections of unsaturated esters. Atmos. Environ.2006,40(20):3764-3772.
    [155]Bernard, F., Eyglunent, G., Daele, V., Mellouki, A. Kinetics and products of gas-phase reactions of ozone with methyl methacrylate, methyl acrylate, and ethyl acrylate. J. Phys. Chem. A 2010,114(32):8376-8383.
    [156]Kun, W., Mao, F. G., Wei, G. W. Kinetics of the gas-phase reactions of NO3 radicals with ethyl acrylate, n-butyl acrylate, methyl methacrylate and ethyl methacrylate. Atmos. Environ.2010,44(15):1847-1850.
    [157]Hou H., Wang B. S. Ab initio study of the reaction of propionyl (C2H5CO) radi-cal with oxygen (O2). J. Chem. Phys.2007,127(5):306-315.
    [158]Noxon, F., Norton, R. B., Marovitch, E. NO3 in the troposphere. Geophys. Res. Lett.1980,7:125-128.
    [159]Platt, U., Perner, D., Winer, A. W.Detection of NO3 in the polluted troposphere by differential optical absorption. Geophys. Res. Lett.1980,7:89-92.
    [160]McLaren, R., Salmon, R. A., Liggio, J., et al. Nighttime chemistry at a rural site in the Lower Fraser Valley. Atmos. Environ.2004,38 (34):5837-5848.
    [161]Perner, D., Schmeltkoph, A., Winkler, R. H. A laboratory and field study of the equilibrium N2O5(?) NO3+NO2. J. Geophys. Res.1985,90:3807-3812.
    [162]Shu, Y. H., Atkinson, R. Atmospheric lifetimes and fates of a series of sesquit-erpenes. J. Geophys. Res.1995,100(D4):7275-7282.
    [163]Aliwell, S. R., Jones, R. L. Measurements of tropospheric NO3 at midlatitude. J. Geophys. Res.1998,103(D5):5719-5727.
    [164]NIST. Chemical Kinetics Database on the Web, Standard Reference Database 17, Version 7.0 (Web Version), Release 1.2. (http://kinetics.nist.gov/index.php).
    [165]Teruel, A. M., Lane, I. S., Mellouki, A., Solignac, G., Bras, G. OH reaction rate constants and UV absorption cross-sections of unsaturated esters. Atmos. Envi-ron.2006,40(20):3764-3772.
    [166]Mahiba, S., Tom, H., Bryony, H., Wilford,K. C. J., Zhu, J. P. Perfluorinated sulfonamides in indoor and outdoor air and indoor dust:Occurrence, partition- ing, and human exposure. Environ. Sci. Technol.2005,39(17):6599-6606.
    [167]Stock, N. L., Lau, F. K., Ellis, D. A., Martin, J. W., Muir, D. C. G., Mabury, S. A. Polyfluorinated telomer alcohols and sulfonamides in the North American troposphere. Environ. Sci. Technol.2004,38(4):991-996.
    [168]Stuart, H. Persistent organic pollutants. Wiley-Blackwell Co:British,2011, p30.
    [169]Jonathan, P. B., Derek, C. G. M., Scott, B. C., Christine, S., Amila, O. D. S., Henrik, K., Jonathan, W. M., Adam, M., Rainer, L., Gregg, T., Bruno, R.,Sachi, T., Nobuyoshi, Y. Perfluoroalkyl acids in the Atlantic and Canadian Arctic oceans. Environ. Sci. Technol.2012,46(11):5815-5823.
    [170]Jun, L., Sabino, D. V., Jasmin, S., Gan, Z., Paromita, C., Yuso, K., Kevin, C. J. Perfluorinated compounds in the Asian atmosphere. Environ. Sci. Technol. 2011,45:7241-7248.
    [171]Paul, A. G., Jones, K. C., Sweetman, A. J.A first global production, emission, and environmental inventory for perfluorooctane sulfonate. Environ. Sci. Tech-nol.2009,43(2):386-392.
    [172]Dinglasan-Panlilio, M. J. A., Mabury, S. A. Significant residual fluorinated al-cohols present in various fluorinated materials. Environ. Sci. Technol.2006, 40(5):1447-1453.
    [173]Sinclair, E., Kim, S. K., Akinleye, H. B., Kannan, K. Quantitation of gas-phase perfluoroalkyl surfactants and fluorotelomer alcohols released from nonstick cookware and microwave popcorn bags. Environ. Sci. Technol.2007,41(4): 1180-1185.
    [174]Naomi, L. S., Vasile, I. F., Derek, C. M., Scott, A. M. Perfluoroalkyl contami-nants in the Canadian Arctic:evidence of atmospheric transport and local con-tamination. Environ. Sci. Technol.2007,41(10):3529-3536.
    [175]Vera, L., Annekatrin, D., Ralf, E. Polyfluorinated compounds in residential and nonresidential indoor air. Environ. Sci. Technol.2010,44:8075-8081.
    [176]Mahiba, S., Tom, H., Vlahos, P. Perfluorinated chemicals in the Arctic atmos-phere. Environ. Sci. Technol.2006,40(24):7577-7583.
    [177]Martin, J. W., Ellis, D. A., Mabury, S. A. Atmospheric chemistry of perfluoro- alkanesulfonamides:kinetic and product studies of the OH radical and Cl atom initiated oxidation of N-ethyl perfluorobutanesulfonamide. Environ. Sci. Tech-nol.2006,40(3):864-872.
    [178]Jessica, C. D., Michael, D. H., Timothy, J. W., Scott, A. M. Atmospheric chem-istry of N-methyl perfluorobutane sulfonamidoethanol, C4F9SO2N(CH3)CH2CH2OH:kinetics and mechanism of reaction with OH. En-viron. Sci. Technol.2006,40(6):1862-1868.
    [179]Becke, A. D. Density-functional thermochemistry. IV. A new dynamical correla-tion functional and implications for exact-exchange mixing. J. Chem. Phys. 1996,104(3):1040-1046.
    [180]Adamo, C, Barone, V. Exchange functionals with improved long-range behav-ior and adiabatic connection methods without adjustable parameters:the mPW and mPWIPW models. J. Chem. Phys.1998,108(2):664-675.
    [181]Zhao, Y., Truhlar, D. G. Hybrid meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions:The MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions. J. Phys. Chem. A 2004,108(33): 6908-6918.
    [182]Kuchitsu, L., B. Atomic and molecular physics volume 21:structure data of free polyatomic molecules. Springer-Verlag, Berlin.1992.
    [183]Zeroka, J., Samuels, J. Infrared spectra of some isotopomers of ethylamine and the ethylammonium ion:a theoretical study. J. Mol. Struct. Theochem.1999, 465(2-3):119-139.
    [184]McLachlan, C. Vibrational spectra of bromoethynyl benzene and chloroethynyl benzene. Spectrochimica Acta.1970,26A(4):919-925.
    [185]Qu, R. J., Liu, H. X., Qi, Z., Alison, F., Xi, Y., Wang, Z. Y. The effect of hy-droxyl groups on the stability and thermodynamic properties of polyhydrox-ylated xanthones as calculated by density functional theory. J. Thermochim. Acta.2012,527:99-111.
    [186]Berkowitz, J., Ellison, G. B., Gutman, D. J. Three methods to measure RH bond energies. J. Phys. Chem.1994,98(11):2744-2765.
    [187]Gurvich, L. V., Veyts, I. V., Alcock, C. B. Thermodynamic properties of indi-vidual substances, Fouth Edition. Hemisphere Pub. Co. New York,1989.
    [188]Ruscic, B., Pinzon, R. E., Morton, M. L., Srinivasan, N. K., Su, M., Sutherland, J. W., Michael, J. V. Tribute to David M. Golden. J. Phys. Chem. A 2006,110: 6579-6580.
    [189]Ernesto, C. T., William, P. L., Carter, R., Atkinson, A. M., Winer, J. N. P. At-mospheric reactions of N-nitrosodimethylamine and dimethylnitramine. Environ. Sci.Technol.1984,18(1):49-54.
    [190]James, N., Pitts, J., Daniel, G., Karel, V., Cauwenberghe, J. P., Schmid, D. R. F. Photooxidation of aliphatic amines under simulated atmospheric conditions: formation of nitrosamines, nitramines, amides and photochemical oxidant. En-viron. Sci. Technol.1978,12(8):946-953.
    [191]Prinn, R. G., Huang, J., Weiss, R. F., Cunnold, D. M., Fraser, P. J., Simmonds, P. G., McCulloch, A., Harth, C., Salameh, P., Doherty, S. O., Wang, R. H. J., Proter, L., Miller, B. R. Evidence for substantial variations of atmospheric hy-droxyl radicals in the past two decades. Science 2001,292(5523):1882-1887.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700