城市生活垃圾焚烧厂渗沥液生物处理工艺及其效能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垃圾焚烧发电技术可以实现城市生活垃圾的减量化、无害化和资源化,但是垃圾焚烧发电厂也面临着垃圾渗沥液的合理处置问题。城市生活垃圾焚烧厂渗沥液产生于垃圾焚烧前的堆酵过程,具有成分复杂、有机污染物和氨氮浓度高、毒性大、可生化性好等特点,是目前废水处理领域中的热点和难点。本文以北京某生活垃圾焚烧发电厂的垃圾渗沥液为研究对象,在比较不同工艺运行效能的基础上,确定了适用于渗沥液处理的厌氧-好氧生物组合工艺,分析探讨了渗沥液中有机污染物在组合工艺处理过程中的降解特性和规律。
     对比研究了UASB和EGSB反应器对城市生活垃圾焚烧厂渗沥液的处理效果。实验结果表明,EGSB反应器具有更高的处理效率,更适用于渗沥液的处理。当渗沥液COD为72000mg/L左右时,UASB反应器的最大有机容积负荷(Organic loading rate,OLR)为12.5kgCOD/(m~3·d),此时COD去除率为82.4%,所需的水力停留时间(Hydraulic retention time,HRT)为5.8d。而EGSB在OLR约为18.2kgCOD/(m~3·d)、液体上升流速(Velocity liquid,V_(up))为2m/h和HRT为4d的条件下,COD平均去除率达90.3%,且呈酸性的渗沥液可以不经pH调节直接进入反应器。EGSB反应器在OLR≤18.2kgCOD/(m~3·d)的条件下稳定运行时,去除的COD中有85.7%转化成了甲烷,颗粒污泥中的古菌菌群主要为属于甲烷鬃毛菌属、甲烷杆菌属和甲烷螺菌属的产甲烷菌。高浓度的渗沥液具有厌氧抑制性,采用Haldane模型对厌氧污泥降解渗沥液时的基质抑制动力学进行了模拟,拟合结果表明,最大比基质反应速率q_(max)为3.45gCOD/(gVSS·d),半饱和常数K_s和基质抑制系数K_i分别为19.265g/L和130.996g/L。
     城市生活垃圾焚烧厂渗沥液中含有高浓度的氨氮,且经厌氧生物处理后氨氮浓度升高,必须进行脱氮处理。首先研究了缺氧/两级好氧MBBR系统对渗沥液厌氧出水的处理效果,结果表明:当回流比为300%,总停留时间为3.75d,进水氨氮浓度为850mg/L左右,好氧MBBR中溶解氧大于3mg/L时,NH_4~+-N和TN去除率分别达到84.1%和69.8%。当进水氨氮浓度增加至1000mg/L时,即使总停留时间延长至4.8d,氨氮去除率仍下降至70%左右。因此,本文进一步提出并采用缺氧/两级好氧MBBR-MBR双回流系统对渗沥液厌氧处理出水进行处理。结果表明:在进水pH约为7.0,好氧段DO>3mg/L,总停留时间为6.8d和总回流比为400%的条件下,即使渗沥液中氨氮浓度高约1650mg/L,COD约为6500mg/L,COD、NH_4~+-N和TN的去除率仍达到80%、99%和81%左右,但COD浓度过高会导致系统硝化效果变差,应小于8000mg/L。与此同时,还发现二级好氧MBBR和MBR中的亚硝酸盐积累率分别达到90%和80%左右。最大可能计数法测定结果表明,这两个反应器中亚硝酸菌的数量远多于硝酸菌的数量。在较高的pH条件下,反应器中高浓度的游离氨对硝酸菌活性的抑制作用是短程硝化实现和维持的主要原因。以Haldane模型拟合得出反硝化的最大比基质反应速率q_(max)为2062mgNO_2--N/(gVSS·d),半饱和常数K_s和基质抑制系数K_i分别为140.2mg/L和836.3mg/L;一级好氧MBBR、二级好氧MBBR和MBR中污泥硝化的最大比基质反应速率q_(max)分别为172.8mgNH_4~+-N/(gVSS·d)、261.8mgNH_4~+-N/(gVSS·d)和782.6mgNH_4~+-N/(gVSS·d),半饱和常数K_s分别为57.9mg/L、82.3mg/L和148.9mg/L,基质抑制系数K_i分别为339.7mg/L、600.7mg/L和601.4mg/L。
     EGSB-缺氧/两级好氧MBBR-MBR组合工艺处理城市生活垃圾焚烧厂渗沥液时运行稳定,COD、BOD_5、NH_4~+-N、TN和TP的总去除率分别达到98.4%、99.7%、98.9%,81.8%和91.8%。EGSB对有机污染物的去除起主要贡献,去除的COD占总去除量的91.5%,去除的BOD_5占总去除量的95.6%。NH_4~+-N和TN的去除主要发生在缺氧/两级好氧MBBR-MBR单元,占各自总去除量的100%和84.3%。实验结果还表明,渗沥液经组合工艺处理后生物毒性降低。组合工艺对整个分子量区间的溶解性有机物都有很好的处理效果,>100kDa、50k~100kDa、10k~50kDa、4k~10kDa和<4kDa的有机物去除率分别达100%、100%、96.88%、98.90%和98.67%。组合工艺能显著降解渗沥液中的蛋白质、氨基酸、羧酸类化合物、脂肪族碳氢化合物等有机质,但新生成的富里酸类物质较难降解,并导致渗沥液经生物处理后芳香化程度增大。
Waste incineration for power generation is an effective technology for itsadvantages in reducing the volume and mass of municipal solid waste (MSW),detoxification and energy production. However, a considerable amount ofleachate can be generated during the period of MSW stored in the storage bunkerbefore incineration. The leachate contains various contaminants such as organics,refractory compounds, ammonia nitrogen (NH_4~+-N), etc. It is a difficulty and afocus of wastewater treatment to treat the leachate from MSW incineration plant. Inthis dissertation, a new anaerobic-aerobic combined process was adopted andoptimized for treating the leachate from an incineration plant in Beijing and thecharacteristics of the organics in the leachate degraded by the combined processwas discussed.
     The treatment efficiencies of the leachate from MSW incineration plant by theup-flow anaerobic sludge blanket (UASB) reactor and the expanded granular sludgebed (EGSB) reactor were compared. The results showed that the EGSB reactor hadhigher operation loading and higher COD removal efficiency than the UASB reactor.When the influent COD concentration was around72000mg/L, the maximumorganic loading rate (OLR) of the UASB reactor was12.5kgCOD/(m~3·d), and thecorresponding COD removal efficiency and hydraulic retention time (HRT) were82.4%and5.8d, respectively. With HRT of4d and velocity liquid (V_(up)) of2m/h,OLR of the EGSB reactor reached18.2kgCOD/(m~3·d), and the COD removalefficiency reached90.3%. Furthermore, the leachate could be treated by the EGSBreactor without pH adjustment. When OLR≤18.2kgCOD/(m~3·d),85.7%of theremoved COD was converted to methane in the EGSB reactor. Methanogens in thegranular sludge mainly included Methanosaeta sp., Methanobacterium sp. andMethanosarcina sp. The anaerobic degradation kinetic of the leachate was studied,and the results indicated that the leachate was inhibitive to the anaerobicbiodegradation. The maximal specific degrading rate (q_(max)) of organics reckoned bythe Haldane model was3.45gCOD/(gVSS·d), and the half-saturation constant(K_s)and the substrate inhibition coefficient (K_i) were19.265g/L and130.996g/L, respectively.
     The effluents from EGSB reactor need to be further treated as it contains highconcentrations of ammonia nitrogen. A system comprised of anoxic moving bedbiofilm reactor (MBBR) and two-stage aerobic MBBR was used to treat theanaerobic effluents. NH_4~+-N removal and total nitrogen (TN) removal efficiencieswere84.1%and69.8%with total HRT of3.75d, influent NH_4~+-N concentration of850mg/L, reflux ratio of300%and DO of above3mg/L. However, when theinfluent NH_4~+-N concentration increased to1000mg/L, the NH_4~+-N removalefficiency declined to around70%even though total HRT was extended to4.8d.Therefore, an anoxic/two-stage aerobic MBBR-MBR system was proposed andadopted to treat the anaerobic effluents of the leachate. The results showed that theanoxic/two-stage aerobic MBBR-MBR system was effective for nitrogen removal.Under the following conditions as influent pH of about7, total HRT of6.8d andtotal reflux ratio of400%, the removal efficiencies of COD, NH_4~+-N and TNreached around80%,99%and81%, respectively, even though the influent NH_4~+-Nconcentration increased to around1650mg/L and the influent COD concentrationwas around6500mg/L. However, the influent COD concentration should be <8000mg/L to avoid being detrimental to nitrification. Furthermore, short-cut nitrificationwith about90%and80%of nitrite accumulation efficiency took place in the secondstage of aerobic MBBR and MBR. The most probable number (MPN) measurementshowed that the amount of ammonia-oxidizing bacteria was much more than that ofthe nitrite-oxidizing bacteria in the second stage aerobic MBBR and MBR. And thehigh pH and high concentration of free ammonia in the reactors were critical forshort-cut nitrification. q_(max)of denitrification for the sludge in the anoxic MBBRfitted by Haldane model was2062mgNO_2--N/(gVSS·d), K_sand K_iwere140.2mg/Land836.3mg/L, respectively. And q_(max)of nitrification for the sludge in the firststage aerobic MBBR, the second stage aerobic MBBR and MBR were172.8mgNH_4~+-N/(gVSS·d),261.8mgNH_4~+-N/(gVSS·d) and782.6mgNH_4~+-N/(gVSS·d), respectively; K_swere57.9mg/L,82.3mg/L and148.9mg/L, respectively; and K_iwere339.7mg/L,600.7mg/L and601.4mg/L,respectively.
     The organic pollutants in the leachate from MSW incineration plant could be effectively removed by EGSB-anoxic/two-stage aerobic MBBR-MBR combinedprocess. The removal efficiencies of COD, BOD_5, NH_4~+-N, TN and TP were98.4%,99.7%,98.9%,81.8%and91.8%, respectively. Most organic pollutants wereremoved in EGSB reactor. COD and BOD_5removal by the EGSB reactor took91.5%and95.6%of each of their total removal by the combined process,respectively. NH_4~+-N and TN were mainly removed in the anoxic/two-stage aerobicMBBR-MBR system as NH_4~+-N and TN removal by the system took100%and84.3%of each of their total removal by the combined process, respectively. Besides,experimental results showed that after treated by the combined process, thebiological toxicity of the leachate decreased. The dissolved organic matter (DOM)was effectively removed by the combined process. TOC removal efficienciesreached to100%,100%,96.88%,98.90%and98.67%, corresponding to DOM withmolecular weight of>100kDa,50k-100kDa,10k-50kDa,4k-10kDa and <4kDa,respectively. Protein, amino acid, carboxylic acids compounds and aliphaticcompounds were obviously removed. However, fulvic acid substrates was generatedafter the leachate treated by the combined process, which lead to the increase ofaromatic degree.
引文
[1] Chou J D, Wey M Y, Liang H H, et al. Biotoxicity Evaluation of Fly Ash andBottom Ash from Different Municipal Solid Waste Incinerators[J]. Journal ofHazardous Materials,2009,168(1):197-202.
    [2] Chimenos J M, Segarra M, Fernández M A, et al. Characterization of the BottomAsh in Municipal Solid Waste Incinerator[J]. Journal of Hazardous Materials,1999,64(3):211-222.
    [3]中国环境保护产业协会尘世生活垃圾处理委员会.我国城市生活垃圾处理行业2008年发展综述[J].中国环保产业,2009,(6):17-23.
    [4]中国环境保护产业协会尘世生活垃圾处理委员会.我国城市生活垃圾处理行业2009年发展综述[J].中国环保产业,2010,(7):4-8.
    [5]中国环境保护产业协会尘世生活垃圾处理委员会.我国城市生活垃圾处理行业2010年发展综述[J].中国环保产业,2011,(4):32-37.
    [6]芈金建.生活垃圾入焚烧炉前的处理[J].资源与环境,2010,(2):42-44.
    [7] Chen D, Christensen T H. Life-cycle Assessment (EASEWASTE) of TwoMunicipal Solid Waste Incineration Technologies in China[J]. WasteManagement&Research,2010,28(6):508-519.
    [8] Nie Y F. Development and Prospects of Municipal Solid Waste (MSW)Incineration in China[J]. Frontiers of Environmental Science&Engineering inChina,2008,2(1):1-7.
    [9]宋灿辉,肖波,胡智泉,等. UASB-SBR-MBR工艺处理生活垃圾焚烧厂渗滤液[J].中国给水排水,2009,25(2):62-64.
    [10]王娟,郑展望.蒸发浓缩-UASB-A/O工艺处理垃圾渗滤液[J].中国给水排水,2008,24(6):34-37.
    [11]胡晨燕.生活垃圾焚烧厂渗滤液物化处理的工艺与机理研究[D].上海:同济大学博士学位论文,2006:4-7.
    [12]何品晶,冯军会,瞿贤,等.生活垃圾焚烧厂贮坑沥滤液的污染与可处理特性[J].环境科学研究,2006,19(2):86-89.
    [13]陈鹏.垃圾填埋场和垃圾焚烧厂渗滤液处理工艺研究[D].重庆:重庆大学硕士学位论文,2007:46.
    [14]方芳,刘国强,郭劲松,等.三峡库区垃圾填埋场和焚烧厂渗滤液水质特征[J].重庆大学学报,2008,31(1):77-82.
    [15]杨飞黄.膜组合技术处理城市垃圾焚烧厂渗滤液运行特性的研究[D].成都:西南交通大学硕士学位论文,2007:21.
    [16]石剑菁.上海江桥生活垃圾焚烧场二次污染物分析[J].环境卫生工程,2009,17(5):49-50,53.
    [17]邓黛青,夏凤毅,李光明,等. UASB法处理城市生活垃圾焚烧场渗滤液[J].环境工程,2006,24(2):11-13.
    [18] Renou S, Givaudan J G, Poulain S, et al. Landfill Leachate Treatment: Reviewand Opportunity[J]. Journal of Hazardous Materials,2008,(150):468-493.
    [19]肖正,焦学军,党同.城市生活垃圾焚烧厂垃圾池防腐措施[J].环境卫生工程,2008,16(6):34-37.
    [20] Yu H Q, Tay J H, Fang H H. The Roles of Calcium in Sludge Granulationduring UASB Reactor Start-up[J]. Water Research,2001,35(4):1052-1060.
    [21] Van Langerak E P A, Ramaekers H, Wiechers J, et al. Impact of Location ofCaCO3Precipitation on the Development of Intact Anaerobic Sludge[J]. WaterResearch,2000,34(2):437-446.
    [22]石岩,王启山,岳琳.组合工艺处理城市垃圾渗滤液的研究进展[J].给水排水,2007,33(增刊):119-123.
    [23]姚敏,黄力群,成一知.物化法处理MSW渗滤液研究进展[J].环境科学与技术,2010(4):77-83.
    [24] Silva A C, Dezotti M, Sant'Anna G L Jr. Treatment and Detoxication of aSanitary Landfill Leachate[J]. Chemosphere,2004,55(2):207-214.
    [25] Monje-Ramirez I and Orta de Veasquez M T. Removal and Transformation ofRecalcitrant Organic Matter from Stabilized Saline landfill Leachates byCoagulation-Ozonation Coupling Processes[J]. Water Research,2004,38(9):2358-2366.
    [26] Amokrane A, Comel C, Veron J. Landfill Leachate Pretreatment byCoagulation-flocculation [J]. Water Research,1997,31(11):2775-2782.
    [27] Tatsi A A, Zouboulis A I, Matis K A, et al. Coagulation-FlocculationPretreatment of Sanitary Landfill Leachates[J]. Chemosphere,2003,53(7):737-744.
    [28]张璐,李武,高兴斋,等.垃圾焚烧发电厂渗滤液处理工程设计[J].中国给水排水,2009,25(4):29-32.
    [29]李小燕,张叶.放射性废水处理技术研究进展[J].铀矿冶,2010(3):153-156.
    [30]危自燕,跃进,孟岩,等.环己酮皂化液蒸发浓缩技术的研究进展[J].化学工业与工程技术,2008,29,(3):16-18.
    [31]李夔宁,尹亚领,吴小波.蒸发法处理垃圾填埋场渗滤液的实验研究[J].工业水处理,2009,29(12):9-51,55.
    [32]康瑾,何品晶,邵立明.生活垃圾焚烧厂贮坑沥滤液的负压蒸发预处理研究[J].环境科学研究,2006,19(4):111-114.
    [33]邵立明,何品晶,康瑾. pH和负压对生活垃圾焚烧厂渗滤液蒸发处理的影响[J].环境工程学报,2007,1(2):108-111.
    [34]宋灿辉,吕志中,方朝军.生活垃圾焚烧厂垃圾渗滤液处置技术[J].2008,环境工程,26(增刊):148-150.
    [35] Marttinen S K, Kettunen R H, Sormunen K M, et al. Screening ofPhysical-chemical Methods for Removal of Organic Material, Nitrogen andToxicity from Low Strength Landfill Leachates[J]. Chemosphere,2002,46(6):851-858.
    [36] Zhang L, Lee Y W, Jahng D. Ammonia Strpping for EnhancedBiomethanization of Piggery Wastewater[J]. Journal of Hazardous Materials,2012,199-200:36-42.
    [37]俞年丰,唐运平,需丹宁,等.高浓度马铃薯淀粉废水处理工艺研究现状及发展[J].工业水处理,2011,31(1):4-8.
    [38] Liu J Y, Zhong J P, Wang Y L, et al. Effective Bio-treatment of Fresh Leachatefrom Pretreated Municipal Solid Waste in an Expanded Granular Sludge BedBioreactor[J]. Bioresource Technology,2010,101(5):1447-1452.
    [39] Kim Y H, Yeom S H, Ryu J Y, et al. Development of a NovelUASB/CO2-stripper System for the Removal of Calcium Ion in PaperWastewater[J]. Process Biochemistry,2004,39(11):1393-1399.
    [40]湛含辉,罗彦伟,韦小利.生物吸附剂对废水中钙离子的去除试验[J].工业用水与废水,2007,38(3):28-31.
    [41]韩磊,纪树兰,李巍,等. MBR处理特殊废水及脱氮效果的研究进展[J].给水排水,2009,35(增刊):330-334.
    [42]朱卫兵,李月中,龚方红. MBR工艺在垃圾焚烧发电厂渗滤液处理中的应用[J].江苏工业学院学报,2008,20(2):17-19.
    [43]孙志霄.膜生化反应器处理垃圾焚烧厂渗沥液的试验研究[J].环境卫生工程,2007,15(1):35-36.
    [44]申欢.膜生物法(MBR)处理垃圾渗滤液的研究[D].西安:西安建筑科技大学博士学位论文,2004:12.
    [45] Porcelli N and Judd S. Chemical Cleaning of Potable Water Membranes: AReview[J]. Separation and Purification Technology,2010,71(2):137-143.
    [46]谢元华,何站敏,韩进,等.膜生物反应器中膜污染控制技术的研究进展[J].化学工程,2012,40(1):59-63.
    [47]胡焰宁.垃圾焚烧发电厂垃圾渗滤液处理工艺的研究[J].环境工程,2004,22(5):30-32.
    [48]宫鲁.垃圾焚烧厂渗滤液处理的一种组合工艺的研究[J].冶金动力,2009,(4):86-88.
    [49] Chaudhari L B and Murthy Z V P. Treatment of Landfill Leachate byNanofiltration[J]. Journal of Environmental Management,2010,91(5):1209-1217.
    [50] Olivier L, René M. Treatment of Organic Pollution in Industrial SalineWastewater: A Literature Review[J]. Water Research,2006,40(20):3671-3682.
    [51] Trebouet D, Schlumpf J P, Jaouen P, et al. Stabilized Landfill LeachateTreatment by Combined Physicochemical Nanofiltration Processes[J]. WaterResearch,2001,35(12):2935-2942.
    [52] Renou S, Givaudan J G, Poulain S, et al. Landfill Leachate Treatment:Reviewn and Opportunity[J]. Journal of Hazardous Materials,2008,150(3):468-493.
    [53]汪进辉.膜组合技术处理垃圾渗滤液的研究[D].上海:东华大学硕士学位论文,2005.
    [54]胡晨燕,李光明,赵修华,等.垃圾焚烧厂渗滤液生化出水混凝处理及其模型的建立[J].工业水处理,2007,27(5):54-58.
    [55]宋灿辉,胡智泉,肖波. UASB+A/O+UF+NF工艺处理生活垃圾焚烧厂渗滤液[J].环境工程,2010,28(1):40-46.
    [56]李亚选,韩谷,李政,等. UASB-MBR-DTRO工艺在垃圾渗滤液处理中的应用[J].给水排水,2009,35(10):49-52.
    [57]王昉,陆新生,欧明. UASB-MBR-NF工艺在生活垃圾焚烧电厂渗滤液处理中的应用[J].给水排水,2009,35(增刊):135-138.
    [58]袁江,夏明,黄兴,等. UASB和MBR组和工艺处理生活垃圾焚烧发电厂渗滤液[J].工业安全与环保,2010,36(4):21-22,24.
    [59]华佳,张林生.改良UASB-MBR工艺在垃圾渗滤液处理中的应用[J].给水排水,2010,36(9):43-46.
    [60] Cervantes F J, Pavlostathis S G, Van Haandel A C. Advanced BiologicalTreatment Processes for Industrial Wastewaters: Principles andApplications[M]. IWA Publishing,2006.
    [61] Yi J C, Mei F C, Chung L L, et al. A Review on Anaerobic-aerobic Treatmentof Industrial and Municipal Wastewater[J].2009,155(1-2):1-18.
    [62] Goncalves I C, Penha S, Matos M, et al. Evaluation of an IntegratedAnaerobic/Aerobic SBR System for the Treatment of Wool DyeingEffluents[J]. Biodegradation,2005,16(1):81-89.
    [63] Wang R M, Wang Y, Ma G P, et al. Efficiency of Porous Burnt-coke Carrier onTreatment of Potato Starch Wastewater With an Anaerobic–AerobicBioreactor[J]. Chemical Engineering Journal,2009,148(1):35–40.
    [64] Yang Z and Zhou S. The Biological Treatment of Landfill Leachate using aSimultaneous Aerobic and Anaerobic (SAA) Bio-reactor System[J].Chemosphere,2008,72(11):1751-1756.
    [65] Erguder T H and Demirer G N. Low-strength Wastewater Treatment withCombined Granular Anaerobic and Suspended Aerobic Cultures in UpflowSludge Blanket Reactors[J]. Journal of Environmental Engineering,2008,134(4):295–303.
    [66] Vlyssides A, Barampouti E M, Mai S. Influence of Ferrous Iron on theGranularity of a UASB Reactor[J]. Chemical Engineering Journal,2009,146(1):49-56.
    [67] Uemura S and Harada H. Treatment of Sewage by a UASB Reactor underModerate to Low Temperature Conditions[J]. Bioresource Technology,2000,72(3):275-282.
    [68] Von Sperling M, Freire V H, De Lemos Chernicharo C A. PerformanceEvaluation of a UASB-activated Sludge System Treating MunicipalWastewater[J]. Water Science and Technology,2001,43(11):323-328.
    [69] Lerner M, Stahl N, Galil N. Aerobic vs. Anaerobic-Aerobic Biotreatment:Paper Mill Wastewater[J]. Environmental Engineering Science,2007,24(3):277-285.
    [70] Peng Y Z, Zhang S J, Zeng W, et al. Organic Removal by Denitritation andMethanogenesis and Nitrogen Removal by Nitritation from LandfillLeachate[J]. Water Research,2008,42(4-5):883-892.
    [71] Ulson de Souza A A, Brand o H L, Zamporlini I M, et al. Application of aFluidized Bed Bioreactor for COD Reduction in Textile Industry Effluents[J].Resources, Conservation and Recycling,2008,52(3):511-521.
    [72] Yu J, Chen H, Ji M, et al. Distribution and Change of Microbial Activity inCombined UASB and AFB Reactors for Wastewater Treatment[J]. Bioprocessand Biosystems Engineering,2000,22(4):315-322.
    [73]马溪平.厌氧微生物学与污水处理[M].北京:化学工业出版社,2005:107.
    [74] Seghezzo L, Zeeman G, Van Lier J B, et al. A review: The AnaerobicTreatment of Sewage in UASB and EGSB Reactors[J]. BioresourceTechnology,1998,65(3):175-190.
    [75]王凯军,Van der Last A R M,Lettinga G.水解与颗粒污泥膨胀床串联工艺处理城市污水[J].中国给水排水,1999,15(8):18-22.
    [76]朱桂艳,王靖飞,李洪波,等.厌氧颗粒污泥膨胀床(EGSB)反应器处理高硫酸盐有机废水的厌氧生物脱硫试验[J].环境化学,2011,30(6):1175-1179.
    [77] Zhang Y, Yan L, Chi L, et al. Startup and Operation of Anaerobic EGSBReactor Treating Palm Oil Mill Effluent[J]. Journal of Environmental Sciences,2008,20(6):658-663.
    [78] Zhang Y, Yan L, Qiao X, et al. Integration of Biological Method andMembrane Technology in Treating Palm Oil Mill Effluent[J]. Journal ofEnvironmental Sciences,2008,20(5):558-564.
    [79]王翔,王钊,丁丽丽,等. EGSB-MBBR处理高浓度聚酯废水[J].化工环保,2010,30(1):48-51.
    [80] Del Pozo R, Diez V. Organic Matter Removal in Combined Anaerobic-AerobicFixed-Film Bioreactors[J]. Water Research,2003,37(15):3561-3568.
    [81] Agdag O N, Sponza D T. Anaerobic/aerobic Treatment of Municipal LandfillLeachate in Sequential Two-stage Up-flow Anaerobic Sludge Blanket Reactor(UASB)/completely Stirred Tank Reactor (CSTR) Systems[J]. ProcessBiochemistry,2005,40(2):895-902.
    [82] Tezel U, Guven E, Erguder T H, et al. Sequential (Anaerobic/Aerobic)Biological Treatment of Dalaman SEKA Pulp and Paper Industry Effluent[J].Waste Management,2001,21(8):717-724.
    [83] Sklyar V, Epov A, Gladchenko M, et al. Combined Biologic(Anaerobic-aerobic) and Chemical Treatment of Starch Industry Wastewater[J].Applied Biochemistry and Biotechnology,2003,109(1-3):253-262.
    [84] Kapdan I K and Alparslan S. Application of Anaerobic–Aerobic SequentialTreatment System to Real Textile Wastewater for Color and COD removal[J].Enzyme and Microbial Technology,2005,36(2-3):273-279.
    [85]高雅玉,韩志勇,钱鞠,等.厌氧-好氧工艺处理啤酒生产废水[J].水处理技术,2010,36(4):130-134.
    [86] Lo K V, Liao P H. Anaerobic-aerobic Biological Treatment of a Mixture ofCheese Whey and Dairy Manure[J]. Biological Wastes,1989,28(2):91-101.
    [87] Ahn Y T, Kang S T, Chae S R, et al. Simultaneous High-strength Organic andNitrogen Removal with Combined Anaerobic Upflow Bed Filter and AerobicMembrane Bioreactor[J]. Desalination,2007,202(1-3):114-121.
    [88]周保昌,孙凯,陆晓峰,等. EGSB/SPMBR工艺深度处理高浓度豆制品废水[J].中国给水排水,2010,26(17):19-22.
    [89] Chen S, Sun D Z, Chung J S. Simultaneous Removal of COD and Ammoniumfrom Landfill Leachate Using an Anaerobic-aerobic Moving-bed BiofilmReactor System[J]. Waste Management,2008,28(2):339-346.
    [90] Kwon J C, Park H S, An J Y, et al. Biological Nutrient Removal in SimpleDual Sludge System with an UMBR (Upflow Multi-layer Bioreactor) andAerobic Biofilm Reactor[J]. Water Science and Technology,2005,52(10):443-451.
    [91]国家环境保护总局.《水和废水监测分析方法》(第四版)[M].北京:中国环境科学出版社,2002.
    [92] De Zarruk K K, Scholer G, Dudal Y. Fluorescence Fingerprints andCu2+-Complexing Ability of Individual Molecular Size Fractions in Soil-andWaste-Borne DOM[J]. Chemosphere,2007,69(4):540-548.
    [93]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社,1998:509-510,538-543.
    [94] OECD. OECD guildelines for the testing of chemicals[M]. Organization forEconomic Co-operation and Development,2006.
    [95]马放,任南琪,杨基先.污染控制微生物学实验[M].哈尔滨:哈尔滨工业大学出版社,2002:39-40.
    [96]何连生,朱迎波.高效厌氧生物反应器研究动态及趋势[J].环境工程,2004,22(1):7-11.
    [97] Li X M, Guo L, Yang Q, et al. Removal of Carbon and Nutrients from LowStrength Domestic Wastewater by Expanded Granular Sludge Bed-Zeolite BedFiltration (EGSB-ZBF) Integrated Treatment Concept[J]. Process Biochemistry,2007,42(8):1173-1179.
    [98] Chen S, Sun D Z, Chung J S. Anaerobic Treatment of Highly ConcentratedAniline Wastewater Using Packed-Bed Biofilm Reactor[J]. ProcessBiochemistry,2007,42(12):1666-1670.
    [99] Fang C, O-Thong S, Boe K, et al. Comparison of UASB and EGSB ReactorsPerformance, for Treatment of Raw and Seoiled Palm Oil Mill Effluent(POME)[J]. Journal of Hazardous Materials,2011,189(1-2):229-234.
    [100]左剑恶,胡纪萃,陆正禹,等.厌氧消化过程中的酸碱平衡及pH控制[J].中国沼气,1998,16(1):3-7.
    [101]王路光,王强,王靖飞,等. EGSB工艺在VC生产废水处理中的应用[J].中国给水排水,2009,25(17):81-84.
    [102] Timur H and zturk I. Anaerobic Sequencing Batch Reactor Treatment ofLandfill Leachate[J]. Water Research,1999,33(15):3225-3230.
    [103]陈胜.悬浮填料生物膜特性及其处理高浓度有机废水效能研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2006:108.
    [104] Im J H, Woo H J, Choi M W, et al. Simultaneous Organic and NitrogenRemoval from Municipal Landfill Leachate Using an Anaerobic-AerobicSystem[J]. Water Research,2001,35(10):2403-2410.
    [105]金仁村,黄冠男,马春,等.厌氧消化工艺的氨抑制现象[J].工业水处理,2010,30(4):9-12.
    [106]张波,徐剑波,蔡伟民.有机废物厌氧消化过程中氨氮的抑制性影响[J].中国沼气,2003,21(3):26-28.
    [107]于芳芳,伍健东.氨氮对厌氧颗粒污泥产甲烷菌的毒性研究[J].化学与生物工程,2008,25(4):75-78.
    [108] Gustin S and Marinsek-Logar R. Effect of pH, Temperature and Air FlowRate on The Continuous Ammonia Stripping of the Anaerobic DigestionEffluent[J]. Process Safety and Environmental Protection,2011,89(1):61-66.
    [109] Kabdasli I, Safak A, Tünay O. Bench-Scale Evaluation of Treatment SchemesIncorporating Struvite Precipitation for Young Landfill Leachate[J]. WasteManagement,2008,28(11):2386-2392.
    [110] Lozecznik S, Sparling R, Oleszkiewicz J A, et al. Leachate Treatment beforeInjection into a Bioreactor Landfill: Clogging Potential Reduction andBenefits of Using Methanogenesis[J]. Waste Management,2010,30(11):2030-2036.
    [111] Kettunen R H and Rintala J A. Performance of an On-site UASBReactor Treating Leachate at Low Temperature[J]. Water Research,1998,32(3):537-546.
    [112] Kim Y H, Yeom S H, Ryu J Y, et al. Development of a NovalUASB/CO2-Stripping System for the Removal of Calcium Ion in PaperWastewater[J]. Process Biochemistry,2004,39(11):1393-1399.
    [113] Uemura S, Harada H. Inorganic Composition and Microbial Characteristics ofMethanogenic Granular Sludge Grown in a Thermophilic Upflow AnaerobicSludge Blanket Reactor[J]. Applied Microbiology and Biotechnology,1995,43(2):358-364.
    [114]孙寓姣,左剑恶,李建平,等.厌氧颗粒污泥中微生物种群变化的分子生物学解析[J].中国环境科学,2006,26(2):183-187.
    [115]邢薇,左剑恶,林甲,等.20℃EGSB反应器中颗粒污泥的微生物种群结构分析[J].环境科学,2008,29(9):2558-2563.
    [116] Liu W T, Chan C O, Fang H H. Microbial Community Dynamics duringStart-up of Acidogenic Anaerobic Reactors[J]. Water Research,2002,36(13):3203–3210.
    [117]孙寓姣,左剑恶,陈莉莉.同时产甲烷反硝化颗粒污泥中微生物群落结构[J].中国环境科学,2007(1):44-48.
    [118] Hulshoff Pol L W, De Castro Lopes S I, Lettinga G, et al. Anaerobic SludgeGranulation[J]. Water Research,2004,38(6):1376–1389.
    [119]邓黛青.城市垃圾焚烧厂垃圾储坑渗滤液生物处理技术研究[D].上海:同济大学博士学位论文,2006:92,102.
    [120]李亚新.活性污泥法理论与技术[M].北京:中国建筑工业出版社,2007:224,230.
    [121] Lei G, Ren H Q, Ding L L, et al. A Full-Scale Biological Treatment SystemApplication in the Treated Wastewater of Pharmaceutical Industrial Park[J].Bioresource Technology,2010,101(15):5852-5861.
    [122] Rusten B, Hem L J, degaard H. Nitrification of Municipal Wastewater inMoving Bed Biofilm Reactors[J]. Water Environment Research,1995,67(1):75-86
    [123] Sigrun J J and degaard H. Treatment of Thermomachanical PulpingWhitewater in Thermophilic (55℃) Anaerobic-Aerobic Moving Bed BiofilmReactors[J]. Water Science and Technology,1999,40(8):81-89.
    [124] Jing J Y, Feng J, Li W Y, et al. Removal of COD from Coking-PlantWastewater in the Moving-Bed Biofilm Sequencing Batch Reactor[J]. KoreanJournal of Chemical Engineering,2009,26(2):564-568.
    [125] Ozdemir B, Mertoglu B, Yapsakli K, et al. Investigation of NitrogenConverters in Membrane Bioreactor[J]. Journal of Environmental Science andHealth, Part A: Toxic/Hazardous Substances and Environmental Engineering,2011,46(5):500-508.
    [126] Li J F, Yang F L, Ohandja D G. Integration of Nitrification and Denitrificationby Combining Anoxic and Aerobic Conditions in a Membrane Bioreactor[J].2010,62(11):2590-2598.
    [127] Chang C Y, Tanong K, Chiemchaisri C, et al. Feasibility Study of a CyclicAnoxic/Aerobic Two-Stage MBR for ABS Resin ManufacturingWastewater[J]. Bioresource Technology,2011,102(9):5325-5330.
    [128]倪蔚佳.厌氧-好氧移动床生物膜反应器处理果汁废水试验研究[D].西安:长安大学硕士学位论文,2008:23-24.
    [129] Kim D J, Lee D I, Keller J. Effect of Temperature and Free Ammonia onNitrification and Nitrite Accumulation in Landfill Leachate and Analysis ofits Nitrifying Bacterial Community by FISH[J]. Bioresource Technology,2006,97(3):459-468.
    [130]史一欣,倪晋仁.晚期垃圾渗滤液短程硝化影响因素研究[J].环境工程学报,2007,1(7):110-114.
    [131] Ruiza G, Jeisonb D, Chamy R. Nitrification with High Nitrite Accumulationfor the Treatment of Wastewater with High Ammonia Concentration[J]. WaterResearch,2003,37(6):1371-137.
    [132]孙洪伟,王淑莹,张树军,等.高氮渗滤液短程深度脱氮及反硝化动力学[J].环境科学,2010,31(1):129-133.
    [133] Elisabeth V M. Simultaneous Nitrification and Denitrification in Bench-ScaleSequencing Batch Reactors[J]. Water Research,1996,30(2):277-284.
    [134]傅金祥,张羽,杨洪旭,等.短程消化反硝化影响因素研究[J].工业水处理,2010,30(12):38-41.
    [135] Tam N F Y, Wong Y S, Leung G. Effect of Exogenous Carbon Sources onRemoval of Inorganic Nutrient by the Nitrification-Denitrification Process[J].Water Research,1992,26(9):1229-1236.
    [136] Anthonisen A C, Loehr R C, Prakasam T B S, et al. Inhibition of Nitrificationby Ammonia and Nitrous Acid[J]. Water Pollution Control Federation,1976,48(5):835-852.
    [137] Hanaki K, Wantawin C, Ohgaki S. Nitrification at Low Levels of DissolvedOxygen with and without Loading in a Suspended Growth Reactor[J]. WaterResearch,1990,24(3):297-302.
    [138]遇光禄,陈胜,孙德智.移动床生物膜反应器SHARON工艺半亚硝化特性[J].化工学报,2008,59(1):201-207.
    [139] Wong M H and Chan K M. Accumulation of Trace Metals by ChlorellaPyrenoidosa Cultivated in Different Organic Wastes[J]. Microbiology,1985,43(176):261-275.
    [140] Cserháti T, Forgacs E, Oros G. Biological Activity and Environmental Impactof Anionic Surfactants[J]. Environment International,2002,28(5):337-348.
    [141] Cheung K C, Chu L M, Wong M H. Toxic Effect of Landfill Leachate onMicroalgae[J]. Water, Air and Soil Pollution,1993,69(3-4):337-349.
    [142] Pearson H W, Mara D D, Mills S W, et al. Factors Determining AlgalPopulations in Waste Stabilization Ponds and the Influence of Algae on PondPerformance[J]. Water Science and Technology,1987,19(12):131-140.
    [143] Marttinen S K, Kettunen R H, Sormunen K M, et al. Screening ofPhysical-Chemical Methods for Removal of Organic[J]. Chemosphere,2002,46(6):851-858.
    [144]方芳,刘国强,郭劲松,等.垃圾渗沥液中溶解性有机质研究进展[J].水处理技术,2009,35(4):4-8.
    [145] Fan H J, Shu H Y, Yang H S, et al. Characteristics of Landfill Leachates inCentral Taiwan [J]. Science of the Total Environment,2006,361(1-3):25-37.
    [146] Andy B, Michael C. Fluorescence of Leachates from Three ContrastingLandfills[J]. Water Research,2004,38(10):2605-2613.
    [147] Peuravuori J and Pihlaja K. Isolation and Characterization of Natural OrganicMatter from Lake Water: Comparison of Isolation with Solid Adsorption andTangential Membrane Filtration[J]. Environment International,1997,23(4):441-451.
    [148]叶晓英,刘守业,郑菡文,等.循环冷却水中亚稍酸盐和硝酸盐紫外吸收直接测定[J].工业水处理,1983,(2):37-43.
    [149]薛爽.土壤含水层技术去除二级出水中溶解性有机物[D].哈尔滨:哈尔滨工业大学,2008:46,68,73.
    [150] He X S, Xi B D, Wei Z M, et al. Physicochemical and SpectroscopicCharacteristics of Dissolved Organic Matter Extracted from Municipal SolidWaste (MSW) and their Influence on the Landfill Biological Stability[J].Bioresource Technology,2011,102(3):2322-2327.
    [151] Weishaar J L, Aiken G R, Bergamaschi B A, et al. Evaluation of SpecificUltraviolet Absorbance as an Indicator of the Chemical Composition andReactivity of Dissolved Organic Carbon[J]. Environmental Science&Technology,2003,37(20):4702-4708.
    [152] Kang K H, Shinb H S, Park H. Characterization of Humic Substances Presentin Landfill Leachates with Different Landfill Ages and Its Implications[J].Water Research,2002,36(16):4023-4032.
    [153]吴丰昌.天然有机质及其与污染物的相互作用[M].北京:科学出版社,2010:142.
    [154]方卫,许玫英,岑英华,等.废水处理中的可溶性微生物产物[J].微生物学通报,2006,33(6):112-116.
    [155] Wei L L, Zhao Q L, Xue S, et al. Behavior and Characteristics of DOMDuring a Laboratory-Scale Horizontal Subsurface Flow Wetland Treatment:Effect of DOM Derived from Leaves and Roots[J]. Ecological Engineering,2009,35(10):1405-1414.
    [156]卜琳.垃圾渗滤液溶解性有机物在生化-物化处理中的降解规律[D].哈尔滨:哈尔滨工业大学,2011:67.
    [157]魏自民,席北斗,李鸣晓,等.微生物接种堆肥胡敏酸三维荧光特性研究[J].光谱学与光谱分析,2008,12(28):2895-2897.
    [158] Visanathan C, Choudhary M K, Montalbo M T, et al. Landfill LeachateTreatment Using Thermophilic Membrane Bioreactor[J]. Desalination,2007,204(1-3):8-16.
    [159]吉芳英,谢志刚,黄鹤,等.垃圾渗滤液处理工艺中有机污染物的三维荧光光谱[J].环境工程学报,2009,3(10):1783-1788.
    [160]谢志刚,吉芳英,黄鹤,等.农家乐污水中溶解性质的三维荧光特性研究[J].中国给水排水,2009,25(15):103-108.
    [161] Huo S L, Xi B D, Yu H C, et al. Characteristics of Dissolved Organic Matter(DOM) in Leachate with Different Landfill Ages[J]. Journal of EnvironmentalSciences,2008,20(4):492-498.
    [162]欧阳二明,张锡辉,王伟.常规净水工艺去除有机物效果的三维荧光光谱分析法[J].光谱学与光谱分析,2007,27(7):1373-1376.
    [163]刘国强.垃圾渗滤液中DOM特性分析及去除性能研究[D].重庆:重庆大学硕士学位论文,2007:30.
    [164] Marcato C E, Mohtar R, Revel J C, et al. Impact of Anaerobic Digestion onOrganic Matter Quality in Pig Slurry[J]. International Biodeterioration&Biodegradation,2009,63(3):260-266.
    [165]赵庆良,张静,卜琳. Fenton深度处理渗滤液时DOM结构变化[J].哈尔滨工业大学学报,2010,42(6):977-981.
    [166] Tian Y, Chen L, Jiang T L. Characterization and Modeling of the SolubleMicrobial Products in Membrane Bioreactor[J]. Separation and PurificationTechnology,2011,76(3):316-324.
    [167] Wichitsathian B, Sindhuja S, Visvanathan C, et al. Landfill LeachateTreatment by Yeast and Bacteria Based Membrane Bioreactors[J]. Jounal ofEnvironmental Science and Health, Part A: Toxic/Hazardous Substances andEnvironmental Engineering,2004,39(9):2391-2404.
    [168] Shon H K, Vigneswaran S, Aim R B, et al. Influence of Flocculation andAdsorption as Pretreatment on the Fouling of Ultrafiltration andNanofiltration Membranes: Application with Biologically Treated SewageEffluent[J]. Environmental Science&Technology,2005,39(10):3864-3871.
    [169]任南琪,马放.污染控制微生物学[M].哈尔滨:哈尔滨工业大学出版社,2002:121-122,298.
    [170]赵庆良,卜琳,夏小青.垃圾渗滤液厌氧降解中溶解性有机物的光谱特性[J].天津大学学报,2012,45(1):13-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700