状态受限最优控制问题的谱方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
偏微分方程最优控制问题的理论分析和数值方法一直是一个非常活跃的研究领域.虽然关于采用有限元方法分析控制变量受限的最优控制问题已经有了大量很好的成果,但是,目前关于控制变量受限最优控制问题采用谱方法进行分析的研究工作还很少,文献[32]就控制变量积分受限型最优控制问题的谱方法分析进行了讨论.最近,一些学者开始考虑状态变量受限的最优控制问题.这类最优控制问题在实际问题中会经常遇到,但是非常难处理.目前,大多文献都是采用有限元方法分析状态变量受限的最优控制问题.就作者所知,目前关于状态变量受限最优控制问题谱方法分析的研究工作还很少.
     本文研究了状态变量积分受限最优控制问题的谱方法分析.为了能在形式上便于说明我们的方法和技巧,我们仅选择了以Poisson方程和双调和方程为状态方程的两大类,当然,本文的方法和结论可以推广到一般的模型问题.文章讨论了先验误差估计和后验误差估计,给出了有效的梯度投影算法,并证明了其收敛性.
     文中通过利用Legendre多项式的正交性就一维Poisson方程模型给出了较[38]改进型的后验误差估计子,我们推导出该后验误差估计子的显式表达式,这样为工程问题中的实际应用提供了极大的便利.特别地,我们给出的后验误差估计子中不包含数值解的信息,只依赖于模型问题中方程的右端项按照Legendre多项式展开系数中的两项,并构造了p-有限元方法的离散格式和相应的后验误差估计子.
     采用相似的技巧和方法,根据二维离散空间基函数的特点,我们同样得到了二维空间中Poisson方程的显式后验误差估计子,在该后验误差估计子的显式表达式中,仅包含模型问题状态方程的右端项按照Legendre多项式展开系数中的四项(事实上,因为对称性只是三项),并就二维空间中Poisson方程的p-有限元方法给出了离散格式及显式后验误差估计子.
     由于最优控制问题日益得到重视,其中大多数的文献都是采用有限元方法进行分析.如果模型问题的解具有任意光滑性,通过选择适当的谱方法就可以得到”谱精度”,因此,我们研究了最优控制问题的谱方法分析.我们给出了一维空间中状态变量积分受限最优控制问题的谱方法分析,得到了状态变量积分受限最优控制问题的最优性条件,讨论了相应的先验误差估计和后验误差估计,构造了近似等价的后验误差估计子,并得到其显式的表达式.
     在工程应用中,有很多的模型方程可以用双调和方程来描述,因此,对于以双调和方程为状态方程的状态变量积分受限最优控制问题如何采用谱方法来离散是我们必须考虑的问题,利用KKT条件,我们证明了该模型问题的最优性条件.此外,在讨论了相应的先验误差估计的同时,我们构造了有效的梯度投影算法,并证明了该算法的收敛性.
     同样地,在很多的控制问题模型中,我们经常会遇到包含状态变量的二阶导数项的目标泛函,因此,如何保证得到该项的高精度逼近在状态方程的数值模拟中显得尤为重要.混合有限元方法是通过引入中间变量来提高梯度项的逼近精度,类似地,我们在进行谱方法分析的过程中也引进辅助变量来构造混合元谱方法.从而,我们采用混合元谱方法分析以双调和方程为状态方程的状态变量积分受限最优控制问题,我们得到了相应的最优性条件及先验误差估计,并构造有效的梯度投影算法,讨论了该算法的收敛速度.
     我们通过具体的数值算例验证了上述理论的正确性.
There is an active and attractive area of the research about theoretical analysis and numerical methods for the optimal control problems governed by partial differential equa-tions. Although there are lots of research about the control constrained optimal control problems with finite element methods, not with the spectral methods. In [32], the authors investigated the control integral constrained optimal control problems. Recently, many re-searchers concern about the state constrained optimal control problems, which are met in applications, by the finite element methods. However, to the author's knowledge, it seems that there are few works have been made to systematically discuss spectral methods for these problems.
     This paper investigates the state constrained optimal control problems with spec-tral methods. For simplicity, we choose the Poisson equation and the first bi-harmonic equation as the state equations. Obviously, the same techniques and conclusions can be expanded to general model problems. We focus on the a priori error estimates and a posteriori error estimates, specially, a gradient projection algorithm and its convergent property are investigated.
     With the orthogonal property of the Legendre polynomials, we get an improved a posteriori error estimator to [38], which is given with explicit formulations. Then, the ex-plicit error estimator is convenient for engineering applications. Especially, the improved a posteriori error estimator only depends on the right hand side item in the state equation. In fact, there are the two coefficients of the Legendre expansion. Similarly, we discuss the p-version finite element methods and its a posteriori error estimator.
     According to the property of the basis for two dimension and the orthogonal property of Legendre polynomials, we study the Poisson equation in two-dimension and deduce the explicit a posteriori error estimator, which depends on four items of the coefficients for the Legendre expansion(with the symmetric property, there are only three items). Easily, we get the discrete formulation for p-version finite element methods and the explicit formulation for the a posteriori error estimator in two-dimensional domain.
     There are lots of works applying finite element methods to approximate the fashion-able optimal control problems. Obviously, if the initial data are sufficient smooth, we can choose suitable spectral methods to obtain "spectral accuracy". So, we investigate the optimal control problems with spectral methods. Firstly, we systematically analyze state integral constrained optimal control problems in one-dimension. We deduce the optimal conditions, the a priori error estimates and the a posteriori error estimator with explicit formulations.
     In engineering applications, the state equations can be described by the first bi-harmonic equations. So, it is the point for us to investigate state integral constrained optimal control problems subjecting to the first bi-harmonic equations. With the help of KKT conditions, we declare the optimal conditions easily. Moreover, we investigate the a priori error estimates and derive an efficient projection gradient algorithm, specially, we discuss the convergence of the algorithm.
     In many optimal control problems, the objective functions include two-order deriva-tive of the state variables. Then, how to ensure a high accuracy of this item is the key point in numerical approximation for the state equations. As we all known, the mixed finite element methods introduce an intervening variable to enhance the accuracy of ap-proximation for gradient item. Following the same ideals, we introduce an auxiliary vari-able to construct mixed spectral methods to investigate state integral constrained optimal control problems with the first bi-harmonic equation. We derive the optimal conditions, a priori error estimates and an efficient gradient projection algorithm, especially, we obtain the convergent rate of the algorithm.
     We perform numerical examples to confirm our theoretical results.
引文
[1]R. A. ADAMS, Sobolev Spaces, Academic Press 1978.
    [2]B. K. ALPERT, V. ROKHLIN, A fast algorithm for the evaluation of Legendre expan-sions, SIAM J. Sci. Stat. Comput.,12(1991), pp:158-179.
    [3]M. AINSWORTH, J. T. ODEN, A posteriori error estimators in finite element analysis, Comput. Methods Appl. Mech. Engrg.,142(1997), pp:1-88.
    [4]C. BERNAARDI, G. COPPOLETTA, AND Y. MADAY, Some Spectral Approximation of Two-dimensional Fourth-Order Problems, Math. Comp.,59(1992), pp:63-76.
    [5]M. BERGOUNIOUX AND K. KUNISCH, On the structure of Lagrange multipliers for state-constrained optimal control problems, Systems & Control Letters 48(2003), pp: 169-176.
    [6]J.F.BONNAS, A.SHAPIRO, Perturbation Analysis of Optimization Problems, Springer-Verlag, NewYork,2000.
    [7]S. C. BRENNER, L. R. SCOTT, The mathematical theory of finite element methods, Springer, NewYork,1994.
    [15]I. BABUSKA, M. SURTI, The optimal covergence rate of the p-version of the finite element method, SIAM J.Numer. Anal.,24(1987), pp:750-776.
    [9]I. BABUSKA, J. OABORN, AND J. PITKARANTA, Analysis of Mixed Methods using Mesh-dependent Norms,, Math. Comp.,35(1980), pp:1039-1079.
    [10]M.BERGOUNIOUX, D. TIBA, General optimality conditions for constrained convex control problems, SIAM J. Control Optim.,34(2)(1996), pp:698-711.
    [11]M.BERGOUNIOUX, K.KUNISCH, On the structure of Lagrange multipliers for state-constrained optimal control problems, Systems & Control Letters 48(2003), pp:169-176.
    [12]C.BERNARDI, Indicateurs d'erreur en h-N version des element spaectraux, M2AN 30(1996), pp:1-38.
    [13]C. BERNARDI, V. GIRAULT, AND Y. MADAY, Mixed spectral elememt approxima-tion of the Navier-Stokes equations in the stream-function and voricity formulation, IMA J. Numer. Anal.,12(1992), pp:565-608.
    [14]C. BERNARDI, Y. MADAY, Polynomial approximation of some sigular functions, Appl. Anal.,42(1991), pp:1-32.
    [15]C. BERNARDI AND Y. MADAY, Spectral methods, Handbook of Numerical Analy-sis (P.G.Ciarlet and J.-L.Lions, eds.). Elsevier, Amsterdam,(1997), pp.209-486.
    [16]J. H. BRAMBLE AND J. XU, Some estimates fora weighted L2 projection, Math. Comp.,56(1991), pp:463-476.
    [17]W. CAO, D. YANG, Ciarlet-Raviart mixed finite element approximation for an opti-mal control problem governed by the first bi-harmonic equation, J. Com. Appl. Math., Vol.233 (2)(2009), pp:372-388.
    [18]E. CASAS, Contol of an elliptic problem with pointwise state constraints, SIAM J. Control. Optim.,24 (1986), pp:1309-1318.
    [19]E. CASAS, Boundary control of semilinear elliptic equations with point wise state constraints. SIAM J. Control and Optimization,31(1993), pp:993-1006.
    [20]E. CASAS, Optimal control of semiliear multistate systems with state constraints, SIAM J. Control and OPtimization,27(1989), pp:446-455.
    [21]E. CASAS, Control of an elliptic problem with pointwise state constraints, SIAM J. Control and Optimization,24(1986), pp:1309-1318.
    [22]E. CASAS, Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints, ESAIM. Control, Optim. Calc. Var.,8(2002), pp:345-374.
    [23]E. CASAS AND M. MATEOS, Uniform convergence of the FEM applications to state constrained control problems, Comp. Appl. Math.,21(2002), pp:67-100.
    [24]E. CASAS, M. MATEOS AND F. TROLTZSCH, Necessary and sufficients optimality conditions for optimization problems in function spaces and applications to control theory, ESAIM. Proceedings,13(2003), pp:18-30.
    [25]A. CHARBONNEAU, K. DOSSOU, AND R. PIERRE, A Residual-Based a Posteriori Error Estimator for the Ciarlet-Raviart Formulation of the First Biharmonic Problem, Numer. Meth. Part. D. E.,13(1997), pp:93-111.
    [26]P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam,1978.
    [27]C. CANUTO, M. Y. HUSSAINI, A. QUARTERONI AND T. A. ZANG, Spectral Meth-ods in Fluid Dynamics, Springer-Verlag 1987.
    [28]F.H.CLARKE, Optimization and Nonsmooth Analysis. John Wiley Sons, (1983).
    [29]C. CANUTO AND A. QUARTERONI, Approximation results for orthogonal polyno-mials in Sobolev spaces, Math. Compu., Vol.38,(157)(1982),pp:67-86.
    [30]C. CANUTO AND A. QUARTERONI, Error estimates for spectral and pesudospectral approximations of hyperbolic equations, SIAM J. Numer. Anal.,19(1982), pp:629-642.
    [31]Y. CHEN, Superconvergence of quadratic optimal control problems by triangular mixed finite elements, Int. J. Numer. Meth. Eng.,75(2008), pp:881-898.
    [32]Y. CHEN, N. Yi, AND W. B. LIU, A legendre galerkin spectral method for optimal control problems governed by elliptic equations, SIAM J. Numer. Anal.,46(2008), pp:2254-2275.
    [33]P. J. DAVIS, Interpolation and Approximation Dover Publications, New York, (1975).
    [34]K. DECKELNICK AND M. HINZE, Convergence of a finite element approximation to a state-constrained elliptic control problems, SIAM J. Numer. Anal.45(2007), pp: 1937-1953.
    [35]LAWRENCE C. EVANS, Partial Differential Equations, Graduate Studies in Mathe-matics 19, (1997).
    [36]D. FUNARO, Polynomial Approximations of Differential Equations, Springer-Verlag, (1992).
    [37]C. GUI AND I. BABUSKA, The h, p and h-p versions of the finite element method in 1 dimension, Part 1:the error analysis of the p-version; Part 2:The error analysis of the h-and h-p version; Part 3:The adaptive h-p version, Numer. Math.,49(1986), pp:577-683.
    [38]B. Q. GUO, Recent Progress in A-posteriori Error Estimation for the p-version of Finite Element Method, Recent Advances in Adaptive, eds. Z-C. Shi, Z. Chen, T.Tang and D.Yu, AMS, Contemporary Mathematics,383(2005), pp:47-61.
    [39]PEN. YU. KUO, The convergence of the spectral scheme for solving two-dimensional vorticity equations, J. Compu. Math., Comtemporary Mathematics, 1(1983), pp:353-362.
    [40]郭本瑜,Navier-Stokes;方程的谱解法,中国科学A辑,8(1985),pp:715-728.
    [41]郭本瑜,KDV-Burges方程谱方法的误差估计,数学学报,1(1985),pp:1-15.
    [42]B.-Y. Guo, J. SHEN AND L.-L. WANG, Optimal spectral-Galerkin methods using generalized Jacobi polynomials, J. Sci. Comput.,27(2006), pp:305-322.
    [43]B.-Y. Guo, J. SHEN AND L.-L. WANG, Generalized Jacobi polynomials/functions and their applications, Appl. Numer. Math.,59(2009), pp:1011-1028.
    [44]B.-Y. GUO AND L.-L. WANG, Jacobi approximations in non-uniformly Jacobi-weighted Soblev spaces, J.Approx. Theory.,128(2004), pp:1-44.
    [45]B.-Y. GUO AND L.-L. WANG, Error analysis of spectral method on a triangle, Adv. Comput. Math.,26(2007), pp:473-496.
    [46]B.-Y. GUO, L.-L. WANG AND Z.-Q. WANG, Generalized Laguerre interpola-tion and pseudospectral method for unbounded domains, SI AM J. Numer. Anal., 43(2006), pp:2567-2589.
    [47]D. GOTTLIEB AND S. A. ORSZAG, Numerical Analysis of Spectral Methods:The-ory and Applications, SIAM-CBMS, Philadelphia 1977.
    [48]R. GHANEM AND H. SISSAOUI, A posteriori error estimate by a spectral method of an elliptic optimal control problem, J. Comp. Mathe. Optim.,2(2006), pp:111-125.
    [49]M. D. GUNZBURGER, L. HOU AND T. P. SVOBODNY, Boundary velocity con-trol of incompressible flow with an application to viscous drag reduction, SIAM J. Control Optim.,30(1992), pp:167-181.
    [50]W. HACKBUSH, Elliptic Differential Equations:Theory and Numerical Treatment, Springer-Verlag, Berlin, (1992).
    [51]M. HINZE AND K. KUNISCH, Optimal and instantaneous control of the instaionary Navier-Stokes equations, Habilitation thesis, Technische Universitat Berlin, (2000).
    [52]M. HINZE, R. PINNAU, M. ULBRICH AND S. ULBRICH, Optimization with PDE Constraints, Springer, Netherlands, (2009).
    [53]W. HUA, H.-P. MA AND H.-Y. LI, Optimal error estimates of the Chebyshev-Legendre spectral method for solving the generalized Burgers equation, SIAM J. Numer. Anal.,41(2003), pp:659-672.
    [54]W. HUANG, H.-P. MA AND W. SUN, Convergence analysis of spectral collocation methods for a singular differential equation, SIAM J. Numer. Anal.,41(2003), pp: 2333-2349.
    [55]H.-Y. LI, H. WU AND H.-P. MA, The Legendre Galerkin-Chebyshev collocation method for Burgers-like equations, IMA J. Numer. Anal.,23(2003), pp:109-124.
    [56]R. Li, W. B. LIU, H.-P. MA AND T. TANG, Adaptive finite element approximation of elliptic optimal control, SIAM J. Control. Optim.41(2002), pp:1321-1349.
    [57]S. LARSSON, V. THOMeE, Partial Differential Equations with Numerical Methods, Springer-Verlag, Berlin, (2003).
    [58]林群,微分方程数值解法基础教程,科学出版社,北哀(2000).
    [59]J. L. LIONS, Optimal Control of Systems Governed by Partial Differential Equa-tions, Springer-Verlag, Berlin, (1971).
    [60]Y.M. LIN, C.J. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput.Phys.,225(2007), pp:1533-1552.
    [61]W. B. LIU, N. N. YAN, A posteriori error estimates for distributed optimal control problems, Adv. Comp. Math.,15(2001), pp:285-309.
    [62]W. B. LIU, N. N. YAN, A posteriori error estimates for convex boundary control problems, SIAM J. Numer. Anal.,39(2001), pp:73-99.
    [63]W. B. LIU, N. N. YAN, Adaptive finite element methods for optimal control gov-erned by PDEs, Science Press, Bejing, (2008).
    [64]W.B. LIU, W. GONG, AND N. N. YAN, A new finite element approximation of a state-constrained optimal control problem, J. Comp. Math.,27 pp:97-114.
    [65]J. L. LIONS, Optimal Control of System Governed by Partial Differential Equa-tions, Springer, Berlin, (1971).
    [66]C. MEYER AND A. ROSCH, Superconvergence properties of optimal control prob-lems, SIAM J. Control. Optim.,43 (2004), pp:970-985.
    [67]H.-P. MA, Chebysehv-Legendre spectral viscosity method for nonlinear conserva-tion laws, SIAM J. Numer. Anal.,35(1998), pp:869-892.
    [68]H.-P. MA AND B.-Y. GUO, Composite Legendre-Laguerre pseudospectral approx-imation in unbounded domains, IMA J. Numer. Anal.,21(2001), pp:587-602.
    [69]H.-P. MA AND W. SUN, A Legendre-Petrov-Galerkin method and Chebyshev-collocation method for the third-order differential equations, SIAM J. Numer. Anal., 38(2000), pp:1425-1438.
    [70]H.-P. MA AND W. SUN, Optimal error estimates of the Legendre Petrov-Galerkin method for the Korteweg-de Vries equations, SIAM J. Numer. Anal.,39(2001), pp: 1380-1394.
    [71]H.-P. MA, W. SUN AND T. TANG, Hermite spectral methods with a time-dependent scaling for parabolic equations in unbounded domains, SIAM J. Numer. Anal., 43(2005), pp:58-75.
    [72]Y. MADAY, Analysis of spectral projectors in one-dimensional domains, Math. Compu.,55(1990), pp:537-562.
    [73]J. M. MELENK, hp-Interpolation of Nonsmooth Functions and an Application to hp-A posteriori Error, SIAM J.Numer. Anal.,43(2005), pp:127-155.
    [74]M. MELENK, hp-iterpolation of non-smooth functions, Preprint NI03050-CPD, Newton Institute for Mathematical Sciences, CAmbridge University, U.K.,2003.
    [75]米赫林C.,二次泛函的极小问题,王维新等译,科学出版社北京(1964).
    [76]M. MELENK AND B. WOHLMUTH, On residual-based a posteriori error estimation in hp-FEM, Adv. Comput. Math.,15(2001), pp:311-331.
    [77]K. W. MORTON, D. F. MAYERS, Numerical Solution of Partial Differential Equa-tions, Cambridge University Press, (2006).
    [78]A. MAJDA, J. MCDONOUGH AND S. OSHER, The Fourier method for nonsmooth initial data, Math. Compu., Vol.32(14)(1978),pp:1041-1081.
    [79]P. NEITTAANMAKI, J. SPREKELS AND D.TIBA, Optimization of Elliptic Systems: Theory and Applictions, Springer Scinece Business Media Inc., (2006).
    [80]H. Niu, D. Yang, L. Yuan Finite element approximation and analysis of optimal control problems of Stokes equations, Submitted.
    [81]T. ODEN, L. DEMOKOWICZ, W. RACHOWICZ AND T. A. WESTERMANN, To-wards a unversal hp-adaptive finite element method,Ⅱ. a posteriori error estimation, Comput. Meth. Appl. Mech. Engg.,77(1984), pp:113-180.
    [82]S. A. ORSZAG, Comparison of pseudospectral and spectral approximations, Stud. Appl. Math.,51(1972), pp:253-259.
    [83]P. A. RAVIART AND J. M. THOMAS, A mixed finite element method for 2nd or-der elliptic problems, Math. Aspecs of the Finite Element Method, Lecture Notes in Math.,606(1977), pp:292-315.
    [84]CU, PRUFERTY, F. TROLTZSCHY AND M. WEISERZTHE, Convergence of an inte-rior point method for an elliptic control problem with mixed control-state constraints, to appear.
    [85]A. QUARTERONI, A. VALLI, Numerical Approximation of Partial Differential Equations, Springer-Verlag, New York, (1997).
    [86]R. VERFuRTH, A Review of A Posteriori Error Estimation and Adaptive Mesh Re-finement Techniques, Teubner-Wiley, Leipzig,1996.
    [87]J. SHEN, Efficient Spectral-Galerkin Method I. Direct solvers for Second and Fourth Order Equations Using Legendre Polynomials, SIAM J. Sci. Comput.,15(1994), pp: 1489-1505.
    [88]J. SHEN, Efficient Spectral-Galerkin Method Ⅱ. Direct solvers of Second and Fourth Order Equations by Using Chebyshev Polynomials, SIAM J. Sci. Comput.,16(1995), pp:74-87.
    [89]J. SHEN, T. TANG, Spectral and High-Order Methods with Applications, Science Press, Beijing (2006).
    [90]J. SHEN, L.-L. WANG, Spectral approximation of the Helmholtz equation with high wave numbers, SIAM J. Numer. Anal.,43(2005), pp:623-644.
    [91]J. SHEN, L.-L. WANG AND H. Y. LI, A trangular spectral element methods using fully tensorial rational basis functions, SIAM J. Numer. Anal.,47(2009), pp:1619-1650.
    [92]G. SACCHI LANDERIANI, Spectral Tau approximation of the two dimensional Stokes problem, IAN Report 528, Pavia, Italy (1986).
    [93]A. SOLOMONOFF, A Fast Algorithm for Spectral Differetiation, J. Comput. Phys., 98(1992), pp:174-177.
    [94]L. R. SCOTT, S. ZHANG, Finite element interpolation of nonsmooth functions sat-isfying boundary condition, Math. Comp.,54(1990), pp:483-493.
    [95]J.-G. TANG AND H.-P. MA, A Legendre spectral method in time for first-order hyperbolic equations, Appl. Numer. Math.,57(2007), pp:1-11.
    [96]F. ABERGEL AND R. TeMAM, On some optimal control problems in fluid mechan-ics, Theoret. Comput. Fluid Mech.1,6(1990), pp:303-325.
    [97]D. TIBA AND F. TROLTZSCH, Error estimates for the discretization of state con-strained convex control problem, Numer. Funct. Anal. Optim.,17(1996), pp:1005-1028.
    [98]R.T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, (1970).
    [99]L. N. TREFETHEN, Spectral Methods in MATLAB, SIAM, Philadelphia, PA (2000).
    [100]M. ULIBRICH, Nonsmooth Newton-like methods for variational inequalities and constrained optimization problems in the function spaces, Habilitation thesis, Tech-nische Universitat Munchen,2002.
    [101]王烈衡,许学军,有限元方法的数学基础,科学出版社,北京(2004).
    [102]向新民,谱方法的数值分析,科学出版社,北哀(2000).
    [103]C.J. XU, An efficient method for the Navier-Stokes/Euler coupled equations via a spectral element approximation, SIAM J. Numer. Anal.,38(2000), pp:1217-1242.
    [104]C.J. XU, T. TANG, Stability Analysis of Large Time-Stepping Methods for Epi-taxial Growth Models, SIAM J. Numer. Anal.,44(2006), pp:1759-1779.
    [105]C.J. XU, Y. MADAY, A Spectral element method for the Euler equations:Ap-plication to flow simulations, J. Comput. Appl. Math.,91(1998), pp:63-85.
    [106]D. P. YANG, Y. Z. CHANG AND W. B. LIU, A priori estimate and super-convergence analysis for an optimal control problem of bilinear type, J. Comput. Math.,26(2008), pp:471-487.
    [107]K. YOSIDA, Functional Analysis. (Fifth ed.), Springer-Verlag,1978.
    [108]L. Yuan and D. P. Yang, A Priori Error Estimate of Optimal Control Problem of PDEs with L2 Norm Constraints for State, Submitted
    [109]L. YUAN AND D. P. YANG, A Posteriori Error Estimate of Optimal Control Prob-lem of PDEs with Integral Constraint for State, J. Comp. Math.,27(2009), pp:525-542.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700