离子电池正极材料磷酸铁的改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移动通讯电子设备和电动汽车的飞速发展,对离子蓄电池在高循环性能、高比能量方面提出了新的要求,因此以新能源和新材料技术为背景的离子蓄电池正极材料的研究也在不断开拓新的方向。对低成本、高比能量、环境友好、长寿命的新型正极材料的开发已经成为了主流的研究方向。LiFePO4正极材料以其高的理论比容量(170mAh/g),适中的工作电压(约3.5V),较好的常温和高温稳定性,低廉的成本和优良的环保性能,成为了下一代离子电池正极材料最有力的竞争者。但由于LiFePO4晶体结构的固有限制导致其电子导电率和离子扩散速度低,特别是大电流倍率放电性能强烈受制于其电子导电性能,因此提高LiFePO4粒子的电导率成为近来研究者关注的热点。目前改善LiFePO4导电性能的研究主要集中在碳包覆及金属掺杂两方面。
     本文主要采用高温固相法制备LiFePO4正极材料,通过掺杂金属离子以及碳包覆的方式对材料进行改性研究,采用XRD、SEM TEM、CV(循环伏安)等手段对材料进行表征,并在不同条件下测试了材料的电化学性能。
     在掺杂单一种类金属离子对材料进行改性的过程中,掺杂Zr和Nb离子制得的LiFePO4正极材料具有较好的电化学性能,0.1C电流密度下首次放电容量都达到110mAh/g以上,并具有高倍率条件下充放电性能。
     复合掺杂金属离子Mn、Zr、Ni对材料进行改性效果明显,0.1C电流密度下首次放电容量达到121.1mAh/g,高倍率条件下充放电性能良好。
     对上述单一以及复合掺杂金属离子的LiFePO4正极材料采取碳包覆的方法进行改性,碳包覆在材料原有基础上提高了比容量降低了极化度,进一步稳定了材料的电化学性能,大幅提升了材料的高倍率条件下的充放电性能。其中,对复合掺杂金属离子Mn、Zr、Ni的材料碳包覆效果最佳,0.1C条件下比容量达到159 mAh/g,高倍率0.5C条件下比容量仍能保持120 mAh/g。
Because of the development of electronic equipment and electric mobile have new demands on lithium ion batteries for long cycling life and high theoretical capacity, depend on new energy resources and new material technology cathode material of lithium ion batteries continuously develops new direction.The developments of new cathode material with lower capital, high voltage, pollution-free and long cycling life already become primary research. LiFePO4 as the cathode material has the poformance of its high theoretical capacity (170mAh/g), appropriate voltage (about 3.5V), good stability both at room temperature and high temperature and being environmentally benign and inexpensive,that LiFePO4 has become the uppermost competitor at the cathode material. But the crystalloid configuration restricts LiFePO4 at low electronic conductivity and low lithium ion diffusivity, especially restricting its electrochemical reversibility, increasing the conductance of LiFePO4 is becoming the hotspot. In order to overcome these defaults, the researches focus the way both of carbon coating and ion doping.
     The cathode material LiFePO4 were obtained by solid-state reaction, and developing by ion doping and then coated carbon. LiFePO4 was characterized by XRD, SEM, TEM, CV analysis. We also studied the electrochemical properties of the product at different conditions.
     At the preparation by single species ion doping of LiFePO4, Zr ion and Nb ion dopants showed the best electrochemical properties. The both first discharge capacity of above-mentioned samples was over 120mAh/g with a current density of 0.1C.
     Excellent electrochemical reversibility and cycling stability have been achieved. Lithium iron phosphate contained diversified ion(Mn, Zr, Ni) dopants showed the best electrochemical properties. The first discharge capacity was 121.1mAh/g with a current density of 0.1C. The electrochemical reversibility and cycling stability were not bad.
     We used the carbon coating the ion doping samples for development which we mentioned. The carbon coating enhanced the discharge capacity, reduced the polarization of the material, tranquilized electrochemical properties and greatly increased the electrochemical properties of the cathode material.And the sample coated carbon which contained Mn, Zr, Ni ion had best performance .Its first discharge capacity was 159mAh/g with a current density of 0.1C. Its electrochemical reversibility was 120mAh/g with a current density of 0.5C.
引文
[1]张世超.离子电池产业现状与研究开发[J].新材料产业,2004,122(1):46
    [2]杨林.中、日、韩三国离子电池发展概况,[J].电池工业,2003,8(3):138~139
    [3]鲁俊彪,张中太等.一种新型的离子电池正极材料—LiFePO4[J].稀有金属材料与工程,2004,7(33):679~683
    [4]吴宇平,万春荣等.离子二次电池.化学工业出版社,2002,10
    [5]夏君垒,等.离子电池正极材料的设计方法与应用[J].材料导报,2001,15(93):33
    [6] Athula wijayasingfie.LiFeO2-LiCoO2-NiO cathcdes for molten caztxxmte fuel cells[J].Journal of the ElectrochmaicalSociety,2003,150(5):A558.
    [7]李新海,等.LiCoO2结构及性能与离子电池电压特性的关系[J].中国有色金属学报,2002,12(4):737
    [8]张世超.离子电池关键材料的现状与发展.产业透视,2004,2
    [9] Anders L, Bill B. Synthesis of LiCoO2 starting from carbonate precursors: Influence of calcinations′conditions and leaching[J]. Solid State Ionics, 1997, 96: 183~193
    [10] Tukaoto H, West A R. Electronic conductivity of LiCoO2 and its enhancement by magnesium doping[J]. Journal of the Electrochemical Society, 1997, 144(9): 3164~3168
    [11]易惠华,戴永年,代建清等.离子电池正极材料的现状与发展[J].云南化工, 2005, 32(1): 39~42
    [12]章少华,谢冰.离子电池的研究进展(二)[J].佛山陶瓷2003,(9):41~46
    [13] Holzapfel M, Schreiner R, Ott A. Lithium-ion conductors of the system LiCo1-xFexO2: A first electrochemical investigation[J]. Electrochim Acta, 2001, 46: 1063~1070
    [14] L.J. Liu, Z.X. Wang, H. Li, L.Q. Chen, X.J.Huang, Al2O3-coated LiCoO2 ascathode material for lithium ion batteries, [J].Solid State Ionics, 2002, 152~153:341~346.
    [15] J. Cho, C.S. Kim, S.Yoo, Improvement of structural stability of LiCoO2 cathode during electrochemical cycling by sol-gel coating of SnO2, [J].Electrochemical and Solid State Letters, 2000, 3(8): 362~365.
    [16]廖春发,郭守玉,陈辉煌.离子电池正极材料的制备研究现状[J].江西有色金属2003,17(2):34~38
    [17]其鲁.中国锂二次电池正极材料的发展趋势和产业特点[J].新材料产业,2004(Total No.122):23~24
    [18]李运姣,等.离子电池正极材料LiNiO2和LiMnO4的研究进展[J].稀有金属与硬质合金,2002,30(1):38
    [19] Biensan, Peres J P, Perion F. Optimized LiNi1-mMmO2 materials with improved safety and fading[C]. The 1999 Joint International Meeting Vol, 1999: 131
    [20]李淑华,何泽珍,刘兴泉.离子蓄电池正极材料LiNi0. 8Co0.2O2的制备及其电化学性能,[J].合成化学,2004,12:369~371
    [21]曹文玉,顾惠敏,翟玉春.LiNi0.8 Co0.2O2的制备与修饰[J].材料与冶金学报,2004,3(4):285~288
    [22]郭炳煜.离子电池[M].长沙,中南大学出版社,2002
    [23]李智敏,等.LiMn2O4正极材料高温电化学性能的研究[J].硅酸盐学报,2004,32(1):10
    [24] Ali Eftekhari.Mixed-metals,codeposition as a novel methodfor the preparation of LiMn2O4 electrodes with reduced capacity[J].Journal of the Electrochemical Society,2003,150(7):32
    [25]徐茶清,等.离子电池正极材料LiMn2O4的研究现状[J].材料与冶金学报,2002,1(4):243
    [26] Thackeray M M, P J Johnson, Goodenough J B, et al. Extraction of lithium ion from spinel phase of the system Li1+xM2-xO4-z, [J].J. Power Sources, 1997, 69:145~156
    [27]吴宇平,戴晓兵,马军旗,程预江等.离子电池-应用与实践,化学工业出版社
    [28] Pier P P, Daniela Z, Mauro P. Electrochimica Acta, 2001,46(23): 3517~3523
    [29] Takahashi M, Tobishima S, Takei K, et al. Solid State Ionics, 2002,148(3~4):283~289
    [30] Yang S F, Zavalij P Y, Whittingham M S. Electrochemistry Communication, 2001,3:505~508
    [31] Takahashi M, Tobishima S, Takei K, et al. Power Sources, 2001,97~98:508~511
    [32] Yang S F, Song Y N, Peter Y Z, et al. Electrochemistry Communication, 2002,4(3):239~244
    [33] Arnold G, Garche J, Hemmer R, et al. J. Power Sources, 2003,119~121:247~251
    [34] Masataka W. Material Science and Engineering, 2001,R33:109~134
    [35] Chung S Y, Bloking J T, Ching Y M. Nature Mater., 2002,2:123~128
    [36] Yamada A, Hosoya M, Chung S C, et al. Power Sources, 2003,119~121:232~238
    [37] Padhi A K,Nanjundaswamy K S,Goodenough J B.[J].J Electrochem Soc,1997,144:l188~1194.
    [38]张新龙,胡国荣.离子电池正极材料LiFePO4的研究进展[J].电池,2003,33(4):252~254
    [39]傅原.离子电池正极材料LiFePO4[J]新材料产业,2003(Total No.1l9):l3~l6
    [40]吴宇平.离子二次电池[M].北京,化学工业出版社,2002
    [41]储讳,吴辉,尤金跨,等.电源技术[J].1998,22(6):256~260
    [42] Choy J H,Kim D H,Kwom C W,et a1. Power Sources[J],1998,77(1):l~l1
    [43] Pnma,Thackeray M,Nature Mater.,2002,1:81~82
    [44] Taraseon J M,Armand M.Nature,2001,414:359~367
    [45]任俊霞,阎杰,王小建,高学平.离子电池正极材料LiFePO4的研究进展,[J].电池,2004,3(1):53~55
    [46]王要武,谢晓峰,蔡砚.离子电池正极材料评估[C].第十二次全国电化学会议论文,2003, A38
    [47] Prosini P P, Lisi M, Zane D. Determination of the chemical diffusion coefficient of lithium in LiFePO4[J]. Solid State Ion, 2002, 148: 45~51
    [48]罗文斌,李新海等.离子电池正极材料LiFePO4的研究进展[J].材料导报,2004,10(18):259~262
    [49] Ravet N,Chouinard Y,Magnan J F,et a1.Electroactivity of natural and synthetic triphylite [J]. Journal of Power Sources, 2001, 97-98: 503~507
    [50] Piana M,Arrabito M,Bodoardo S,et a1. Characterization of phospho-olivinesas materials for Li-ion cell Cathodes[J]. Solid State Ionics, 2002, 8: 17~26
    [51] Okada S,Sawas S,Egashira M,et a1. Cathode properties of phospho-olivineLiMPO4 for lithium secondary batteries[J]. Journal of Power Sources,2001,97~98: 430~432
    [52] Takahashi M,Tobishima S,Takei K,et a1.Characterization of LiFePO4 as the cathode material for rechargeable llithium batteries [J].J Power Sources,2001,97~98:508
    [53] Yamada A,Chung S C,Hinokuma K.Optimized LiFePO4 for lithium batterycathodes[J].J Electrochem Soc,2001,148(3):A224
    [54]张海朗.离子电池新型正极材料LiFePO4的研究评述[J].现代化工, 2005,25(9): 18~20
    [55] Shi Z C, Li Chen, Yang Yong. The electrochemical performance studies on novel LiFePO4 cathode materials for Li-ion batteries[J]. Electrochem, 2003, 9(1): 9~14
    [56] Franger S,Le Cras F,Bourbon B,et a1.LiFePO4 synthesis routes for enhanced electrochemical performance[J].J Electrochem So c,2002,5(10):A231
    [57] Park K S, Son T J, Chung H T, et al. Synthesis of LiFePO4 by coprecipitationand microwave heating[J]. Electrochemistry communications, 2003, 5: 829~842
    [58] Crose F,Epifanio A D,Hassoun J,et al [J].Electrochem.SolidStateLett.,2002,5(3):A47~A50
    [59] Franger S, Cras F L,Bourbon C,et a1.[J].SolidStateLett.,2002,5(10):A231~A233
    [60] Tucker M C, Doeff M M, et a1.7Li and 31P magic angle spinning nuclearmagnetic resonance of LiFePO4 type materials[J].Electrochem Solid State Lett,2002,5(5):A95
    [61] Shoufeng Y, Peter Y Z.W hittinggham M S.Hydrothermal synthesis of lithium iron phosphate cathodes [J].Electrochem Commun,2001,3(9):505
    [62] Park K S, Son J T, Chung H T, et al. Surface modification by silver coating for improving electrochemical properties of LiFePO4[J]. Solid State Communications, 2004, 129: 311~314
    [63] Park K S, Kang K T, Lee S B, et al. Synthesis of LiFePO4 with fine particle by co-precipitation method[J]. Materials researchbulletin, 2004,39: 1803~1810
    [64] Arnold G,Garche J,Hemmer R,et a1.Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique[J].J Power Sources,2003,119~121:247
    [65] Andersson A S,Thomas J O.[J]. Power Sources,2001,97~98:498~502
    [66] Yang S F,So ng Y N,W hittingham M S,et a1.Nanocomposite Electrodes for Advanced Lithium Batteries,The LiFePO4 Cathod [C]. Materials Research Society Symposium-Proceedings.Boston,MA,United States:Materials Research Society,2002,309~313
    [67] Ravet N, Goodenongh J B, Besner S,et a1.Improved Iron Based Cathode Material l C J. Electrochemical Society Meeting,Honolulu,Hawaii,1999
    [68] Tarascon J M,Armand M.Nature,2001,414:359~367
    [69] Chen Z H,Dahn J R.Electrochem.Soc.,2002,149(9):A1184~-A1189
    [70] Croce F,D Epifanio A,Hassoun J,et a1.Electrochem.andSolid State Lett.,2002,5(3):A47~A50
    [71]谭显艳,胡国荣,高旭光.掺杂Mg的LiFePO4电化学性能研究[J].电池,2004,34(5):344~345.
    [72] NI Jiang-Feng(倪江锋),ZHOU Heng-Hui(周恒辉),CHEN Ji-Taof(陈继涛),et a1.Wuli Huaxue Xuebao (Acta Physchim.Sin)2004,20(6):582~586.
    [73]倪江峰,周恒辉,陈继涛等.金属化物掺杂改善LiFePO4电化学性能[J].无机化学学报,2005,4(21):472~476
    [74]宋士涛,邓小川,孙建之.离子电池正极材料Li(MnzFe1-z)PO4的合成及电化学性能的研究[J].功能材料,2005,12,(36):1941~1943
    [75]阮艳丽,唐致远.Zr4+离子掺杂对LiFePO4结构及电化学性能的影响[J].电化学,2006,12(3):315~318
    [76]文衍宣,郑绵平等.镍离子掺杂对LiFePO4结构和性能的影响[J].中国有色金属学报,2005,15(9):1436~1440

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700