有机/无机多层复合膜的制备及光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文介绍了有机、无机及有机/无机复合光电材料的研究进展,对其结构、光电性能、制备方法及应用背景作了详细的总结、分析和讨论。重点综述了有机/无机复合膜的光电性能研究进展、应用背景及制备方法。酞菁铜(CuPc)是典型的有机光电半导体材料,在可见光区不仅吸收范围宽、吸收系数大,且具有较好的耐高温性能。Ⅱ-Ⅵ族化合物半导体ZnS与CdS都具有高的载流子迁移率,而且CdS本身也是可见光区域优良的无机光电材料。通过CuPc和ZnS、CdS的层状复合,期望能有效发挥各自材料的优势,并充分利用多层复合膜的界面性能等,特别是CuPc/CdS复合膜可以拓宽复合膜的响应光谱,提高复合膜光电导性能,从而制备出具有优异光电导性能,稳定性好的光电材料。为新型的光电材料开拓新的发展方向。
     本文研究了真空蒸发制备CuPc、ZnS和CdS薄膜的结构和性能。在此基础上,进一步研究了CuPc/ZnS和CuPc/CdS多层复合膜的结构和光电导性能。讨论了各工艺参数对多层复合膜的光电导性能的影响,获得了最佳的工艺参数。深入地探讨了有机、无机,特别是有机/无机多层复合膜的光电导机理,建立了相应的光电导模型。
     论文先研究了衬底温度对CuPc薄膜结构和性能的影响。随衬底温度的升高,CuPc薄膜的结晶性能变好,其中α-CuPc的相对含量逐渐增加,而β-CuPc相应减少。CuPc薄膜在可见光区域内有较高的吸收率,但载流子迁移率低,CuPc薄膜的光敏性很差,其最好光敏性的光暗电导比仅为3.27。
     分析了衬底温度对ZnS薄膜的结构和性能的影响。不同衬底温度的ZnS薄膜都出现好的定向生长特性。ZnS薄膜的结晶性能随衬底温度的升高逐渐变好,但过高的衬底温度使得薄膜不均匀,缺陷增多,成膜质量差。ZnS薄膜在可见光区域内有很高的透过率。衬底温度对ZnS薄膜在可见光区域内的吸收和透过率影响较小。ZnS薄膜的光学带隙随衬底温度的变化表现出先增加后有所减小的变化趋势,在200℃时得到最大的光学带隙值3.579 eV。ZnS薄膜的电阻率在平面和截面方向上存在各向异性特性,且随衬底温度升高,ZnS薄膜的平面电阻率先随衬底温度的升高而减小,到了200℃时达到最小值,后又随着衬底温度的升高而增大,而截面电阻率则先逐渐增大后有所减小,在200℃时具有最大截面电阻率。ZnS薄膜具有较高的载流子迁移率,其随衬底温度的升高呈现出先增大后减小的变化规律。在200℃衬底温度下,ZnS薄膜具有最大的电子迁移率。
     讨论了衬底温度对CdS薄膜的结构和性能的影响。不同衬底温度下CdS薄膜都为六方相纤锌矿结构,而且都在(002)晶面具有很好的择优取向性,随着
    
    浙江大学博士学位论文
    衬底温度的升高,薄膜的择优取向性变差。CdS薄膜的光学带隙在衬底温度较低
    时,随着温度的升高而增大,在衬底温度较高时,随温度升高而减小,在衬底温
    度为150℃时达到最大为2.459 eV。Cds薄膜的平面与截面电阻率随衬底温度变
    化呈现相反的规律。平面电阻率先随温度的升高而减小,后随着衬底温度的升高
    而增大,截面电阻率却先增大后减小。在150℃下薄膜的平面电子迁移率最大,
    电阻率最小;而截面电阻率达到最大。在衬底温度较低时CdS薄膜具有较好的
    光敏性,在150℃衬底温度时,得到了最佳的光敏性,光暗电导比达到1.73x103。
     首次成功地制备了光电导性能优良的CuPc/ZnS多层复合膜。复合膜的层数、
    衬底温度以及膜层厚度对复合膜的结构、光电导性能有很大影响。在Cul,e/ZnS
    多层复合膜中,随复合膜层数增加而出现p一ZnS到a一zns晶相转变的现象;CuPc
    膜层中CuPc单体的含量减少,CuPc二聚体的相对含量相应增加。低温衬底下
    CuPc膜层以p一CuP。为主,随着衬底温度的升高,CuPc膜层中的p一CuP。的含量
    减少,相应a一CuPc的含量逐渐增加。随衬底温度的升高,CuPc和ZnS膜层的结
    晶性变好。室温衬底下沉积的复合膜的晶粒小,堆积紧密,晶粒聚集严重,整个
    薄膜表面缺陷较多。150℃衬底温度下沉积的复合膜相对于室温衬底样品晶粒更
    大,整个薄膜表面更均匀。过高的衬底温度使得复合膜均匀性变差,表面粗糙度
    增加,膜层相互渗入严重。在150℃衬底温度下,膜层厚度为dcuP。=50nrn,dzns
    =IO0nrn的6层复合膜具有最佳的光敏性,其光暗电导比为950.41。表现出比
    CuPc薄膜更优良的光电导性能。
     CuPc/CdS在可见光区域拓宽复合膜的光谱响应范围,更有效地体现有机/无
    机复合体系的优势,获得更优异的光电导性能。Cul,c/Cds多层复合膜不仅在
    40小520nln区域出现了较强的光吸收,而且在60份soonln区域也有高的光响应。
    在衬底温度为150℃,膜层厚度为dcuPc二加Iun,dcds=20nm,6层CuPc/Cds
    复合膜具有最佳的光敏性,其光暗电导比为7.01、1护。cul,c/cds复合膜的光敏
    性比CuPc/Z ns复合膜高出近一个数量级。CuPc/Cds与CuPc/ZnS复合膜的光电
    导性能随各制备参数有着类似的变化规律。
     有机/无机复合膜的光电导机理不同于单纯的有机或无机薄膜。界面在复合
    膜的光电导过程中扮演重要的角色。六层CuPc/Zns复合膜的光敏性比单纯CuPc
    薄膜高出近三个数量级。CuPc/Z ns多层复合膜具有良好的光电导性能得益于
    CuPc在可见光区域有很高的
In the thesis, the researches and development on the preparation, structure, photoconductive properties, and application of organic, inorganic and organic/inorganic heterojunction films were reviewed. Organic/inorganic multilayer films were prepared by vacuum sublimation and their structure and photoconductive properties were investigated. Copper-phthalocyanine (CuPc) was chose as the organic layer because it is a typical organic photoelectric semiconductor with high absorption coefficient and wide absorption spectrum in visible region. II-VI semiconductors were chose as the inorganic layers because they have high drift mobility. Accordingly, it is expected to get Organic/inorganic multilayer films that have excellent photoconductive properties. Furthermore, in order to investigate the mechanism of photoconductivity, Zinc sulphide (ZnS), which is transparent in visible region, and cadmium sulphide (CdS), which has optical absorption in visible region, were employed as inorganic layers. The CuPc, ZnS, CdS, Cu
    Pc/ZnS and CuPc/CdS multilayer films were prepared. The effects of the preparation parameters on the photoconductive properties of the multilayer films were analyzed. The optimal preparation parameters of the CuPc/ZnS and CuPc/CdS multilayer films were obtained. The photoconductive mechanisms of organic, inorganic and especial organic/inorganic multilayer films were discussed in the thesis.
    The effect of the substrate temperature on the structure and properties of CuPc film was studied firstly. With increasing the substrate temperature, the crystalline of CuPc film became better, the proportion of -CuPc increased, and the proportion of p-CuPc decreased in the CuPc films. The CuPc film had high absorption coefficient in visible region, while the drift mobility of CuPc film was too low, resulting in the low photosensitivity of CuPc films. The CuPc film got the optimal photosensitivity at the substrate temperature of 100C, the radio of the photocurrent to the dark current was 3.27.
    The prepared ZnS films had a cubic structure with a preferred orientation of (111) at different substrate temperatures. The ZnS films had high transmission in visible region. Up to the substrate temperature of 200 C, the optical band gap increased with increasing the substrate temperature, while at higher substrate temperatures, it decreased. The ZnS film at 200癈 had the biggest optical band gap of 3.579 eV. The resistivity anisotropy between in-plane and transverse direction was found in ZnS films. Up to the substrate temperature of 200 C, the in-plane resistivity of ZnS films
    
    
    decreased with increasing the temperature. It increased with increasing the temperature at higher substrate temperatures. While the transverse resistivity of ZnS films followed inverse rule when the substrate temperature increased. The ZnS film at the substrate temperature of 200 C had the lowest in-plane resistivity, the highest transverse resistivity and in-plane drift mobility.
    The CdS films prepared at various substrate temperatures had a hexagonal structure with a preferred orientation of (002). With increasing the substrate temperature, the orientation growth became weak. At the low substrate temperatures, the optical band gap of CdS films increased with increasing the temperature. For high substrate temperatures, the optical band gap decreased with increasing the temperature. The optical band gap of CdS film at 150C reached the maximum, 2.459 eV. The in-plane resistivities of CdS films deposited at different substrate temperatures varied from 0.333 -cm to 18.924 -cm at room temperature. While the transverse resistivities were about 8 orders higher than the in-plane resistivities. Up to the substrate temperature of 150C, the in-plane resistivity of CdS films decreased with increasing the temperature. It increased with increasing the temperature at higher substrate temperatures. While the transverse resistivity of CdS films followed inverse rule when the substrate temperature increased. At the low substrate temperatures, the CdS films had high photosensi
引文
[1] 季国平,“十五”期间中国光电子技术产业发展战略,世界产品与技术/ECN,(2002),9,13~15。
    [2] Trade Information of World Machinelectronics, (2001), 7, 28~29.
    [3] 彭英才,傅广生,半导体超品格研究与相关学科领域发展的关系,固体电子学研究与进展,(2000),3,276~280。
    [4] J. Takada, Organic-inorganic hetero nanosystems as an approach to molecular optoelectronics, Jpn. J. Appl. Phys., (1995), Vol. 34, 3864~3870.
    [5] R. B. Bergmann, C. Berge, T. J. Rinke, J. Schmidt, J. H. Wemer, Advances in monocrystalline Si thin film solar cells by layer transfer, Solar Energy Materials & Solar Cells, (2002), 74, 213-218.
    [6] J. P. Moy, Recent developments in X-ray imaging detectors, Nuclear Instruments and Methods in Physics Research, (2000), A 442, 26-37.
    [7] J. M. Gaines, R. R. Drenten, K. W. Habesern, T. Marshall, P. Mensz, J. Petruzzello, Blue-green injection lasers containing pseudomorphic Zn_(1-x)Mg_xS_ySe_(1-y) cladding layers and operating up to 394 K, Appl. Phys. Lett., (1993), 6, 22462~2464.
    [8] E. J.Yarrnchuk, G. E. Keefe, High-resolution surface charge measurements on an organic photoconductor, J. Appl. Phys. (USA), (1989), Vol.66, no. 11, 5435-5439.
    [9] 胡玲,旧有机光鼓脱膜方法的研究,复印,(1997),3,25~26。
    [10] 董建华,有机光电材料研究进展,自然科学进展,7(2000)607~614。
    [11] R. Reuter, H. Franke, An integrated organic photoconductive detector for optoelectronics, Appl. Phys. B, Photophys. Laser Chem. (West Germany), (1989), vol. B48, no.3,219~224.
    [12] M. Umeda, T. Niimi, Photocarrier generation site in a layered photoreceptor based on azo pigment: xerographic and structural investigations, J. Imaging Sci. Technol. (USA), (1994), Vol.38, no.3, 281~286.
    [13] Z. D. Popvic, A. M. Hor, R. O. Loutfy, A study of carrier generation mechanism in benzimidazole perylene/tetraphenyldiamine thin film structures, Chem. Phys.,
    
    (1988), 127, 451~457.
    [14] J. Bondkowski, I. Bleyl, D. Haarer, D. Adam, Excitonic versus transport dominated charge injection at a dye photoconductor interface, Chem. Phys. Lett., (1998), vol.283, no.3-4, 207~214.
    [15] G. D. Hinch, K.A. Voll, Electrophotographic performance of phthalocyanine pigment composites containing titanyl phthalocyanine, Proc. SPIE - Int. Soc. Opt. Eng. (USA), (1996), vol.2850, 181~191.
    [16] J. A. VanAllan, G. A. Raynolds, The preparation of certain pyrylium salts by using chalcone and boron trifluoride etherate, J. Org. Chem., (1989), 33, 1102.
    [17] J. Ye, H. Z. Chen, M. Wang, Enhanced photoconductivity in organic single-layered photoreceptors with bipolar charge transport materials, Materials Chemistry and Physics, (2003), 82, 210-215.
    [18] T. A. Temofonte, K. F. Schoch, Phthalocyanine semiconductor sensors for room-temperature p.p.b, level detection of toxic gases, J. Appl. Phys., (1989), vol.65, no.3, 1350~1355.
    [19] C. M. Joseph, C. S. Menon, Device preparation and characteristics of CuPc transistor, Materials Letters, (2002), 52, 220-222.
    [20] Rudiono, Fujio Kaneko, Manabu Takeuchi, Morphological characteristics of perylene-doped phthalocyanine thin films and their photovoltaic effect, Applied Surface Science, (1999), 142, 589~602.
    [21] A. A. Berlin, L. G. Cherkashina, Ye. L. Frankevich, Ye. M. Balabanov and Yu. G. Aseyev, Polymers with a conjugate system-L, synthesis and study of the electrophysical properties of polymeric phthalocyanines, Polymer Science U.S.S.R., (1964), Volume 6 Issue 5, 915-921.
    [22] T. Kitamura, S. Imamura, M. Kawamata, Effects of purification on photoconductivity of phthalocyanine pigment used for electrophotographic cartier generation layer, J. Imaging Technol., (1988), vol. 14, no.5, 136-140.
    [23] Linstead, J. Chem. Soc., (1934), 1016~1022.
    [24] Q. Y. Chen, D. H. Gu, J. P. Shu, Optical and recording properties of copper phthalocyanine films, Materials Science and Engineering, (1994), B25 no.2-3, 171~174.
    [25] K. C. Nguyen, D. S. Weiss, Technological trends in the development of organic
    
    photoconductors for new applications, Electrophotography, (1988), vol.27, no.1,2~11.
    [26] 李淳飞,王惠,杨淼等,酞菁铜非共振反饱和吸收的稳态特性,光学学报,(1993),Vol,13 No.3,219~223。
    [27] Borge, Ingemann, Knuden, Copper phthalocyanine infared absorption spectra of polymorphic modifications, Acta Chem. Scand., (1966), 20, 1344-1356.
    [28] G.L. Han, Study of Photosensitivity of Copper-Phthalocyanine, Photosensitive Materials (China), (1997), 2, 21~23.
    [29] T. Enokida, R. Hirohashi, Electrophotographic dual-layered photoreceptors incorporating copper phthalocyanines, J. Imaging Sci. Technol., (1992), vol.36, no.2, 135~141.
    [30] Z. R. Shi, R. Y. Qian, Dark- and photo-conductivities of X-copper phthalocyanine, Chinese Science Bulletin, (1989), 16, 1353~1357.
    [31] A. Raghunathan, T. S. Natarajan, G. Rangarajan, Electrical conduction in heat treated poly copper phthalocyanine in the temperature range 35 to 4.2 K, Phys. Lett. A, (1991), vo1.159, no.1-2, 89~91.
    [32] Anto Regis Inigo, Francis P. Xavier and George J. Goldsmith, Copper phthalocyanine as an efficient dopant in development of solar cells, Materials Research Bulletin, (1997), 5, 539~546.
    [33] Y. Kim, J. G. Lee, K. Han, H. K. Hwang, D. K. Choi, Y. Y. Jung, J. H. Keum, S. Kim, S. S. Park, W. B. Im, Hole-transporting polyimide for organic electroluminescent display, Thin Solid Films, (1999), vol.363, no. 1-2, 263~267.
    [34] Rudiono, M. Takeuchi, Improvement of photovoltaic performance in copper phthalocyanine binder layer solar cells, Jpn. J. Appl. Phys., (1997), 36, 127~129.
    [35] S. Dogo, J. P. Germain, C. Maleysson, A. Pauly, Interaction of NO2 with copper phthalocyanine thin films. Ⅱ. Application to gas sensing, Thin Solid Film, (1992), 219, 251-256.
    [36] J. Martensson, H. Arwin, I. Lundstrom, Thin films of phthalocyanines studied with spectroscopic ellipsometry: an optical gas sensor?, Sensors and Actuators, (1990), B1,134~137.
    [37] S. F. Alvarado, L. Rossi, P. Muller, W. Rieb, Charge-cartier injection into CuPc thin films: a scanning tunneling microscopy study, Synthetic Materials, (2001) 122, 73~77.
    
    
    [38] Q. Y. Chen, D. H. Gu, F. X. Gan, Optical recording using copper phthalocyanine thin films, Solid-State Electronics, (1994), 10, 1768~1770.
    [39] H. Rau, Ber. Bunsen, Organic photoconductive materials: recent trends and development, Jp. J. Phys. Chem., (1969), 73, 810~819.
    [40] R. B. Charmp, M. D. Shurtuck, Electrophotographic processes using disazo pigments, U. S. Pat., (1975), 3 898 084.
    [41] K. Y. Law, I. W. Tarnawskyi, Bisazo photoconductive imaging member, U. S. Pat. (1989), 4 797 337.
    [42] M. Hushimoto, M. Sasaki, Electrophotographic photoconductor, U. S. Pat., (1989), 4 916 039.
    [43] M. Hashimoto, Bisazo compounds useful as charge generating pigments in electrophotography, U. S. Pat., (1986), 4 618 672.
    [44] T. Fukagei, M. Kimura, M. Ohta, Electrophotographic photoconductor, U. S. Pat., (1989), 4 830 942.
    [45] M. Hashimoto, M. Ohta, A. Kozama, 3, 6-bisazo-9-ethyl carbazole compounds, U. S. Pat., (1984), 4 426 327.
    [46] Y. Hanatani, E. Miyamoto, I. Yasuyuki, H. Iwasaki, Y. Mizuta, A. Kawahara, An azo compound and an electrophotographie photosensitive member having a photosensitive layer comprising the azo compound. Eur. Pat. Appl. EP0545618-620, (1993).
    [47] M. Umeda, T. Niimi, M. Hashimoto, Photocarrier generation in a layered organic photoreceptor containing azo pigment, Jpn. J. Appl. Phys. 1, Regul. Pap. Short Notes, (1990), vol.29, no. 12, 2746~2750.
    [48] K. Himeno, Y. Okada, Z. Morita, Photofading of monoazo disperse dyes on polyester and polyamide substrates, Dyes and Pigments, (2000), Volume 45, Issue 2, 109~123.
    [49] F. W.Yeng, J. M. Liu, Photoconductor comprising bisazo and squarylium pigments as the charge generation material, U. S. Pat. 5270139, (1993)
    [50] 王燕君,陈红征,汪茫,杨士林,偶氮类光电导材料研究进展,材料研究学报,(1997),Vol.11 No.3,225~230。
    [51] M. Wang, H. Z. Yang, X. F. Ma, Photoconductivity of iron phthalocyanine [Fe(Ⅱ)Pc] and its composites, J. Imaging Science, 1990, 34(6), 234~237.
    [52] H. Takimoto, K.Pongo, Phthalocyanine crystal mixture, its production, and
    
    electrophotographic photoreceptor made using the same, Japan Patent 6234937, (1994).
    [53] M. Fujimori, Y. Yamada, Electrophotographic photoreceptor, JP6348050, (1995).
    [54] K. Tamaki, H. Yoshizawa, Y.Fujimaki et al., Electrophotographic sensitive body, JP5011470, (1993).
    [55] M. Kobayahi, T. Ohashi, Production of phthalocyanine composition, JP5271564, (1993).
    [56] Y. Shigeomatsu, T. Ohashi, M. Hayashi, Electrophotographic photoreceptor, JP8110650, (1996).
    [57] E. Kurimoto, T. I. Kegami, S. Rokutunzo, Electrophotographic receptor, JP7114194, (1995).
    [58] T. Enokida, R. Kurata, S. Shimojima, Electrophotographic sensitive body and its manufacture, JP5072766, (1993).
    [59] Y. Kawamorita, H. Nakamura, Electrophotographic sensitive body and manufacture of same, JP 5072774, (1993)
    [60] S. Keisuke, M. Nariaki, S. Sakae, Electrophotographic photoreceptor, JP7199493, (1995).
    [61] K. Mitsuhiro, S. Koichi, Electrophotographic photoreceptor and electrophotographic device equipped with that electrophotographic photoreceptor, JP7152163, (1995).
    [62] 黄书万,光电材料,上海科学技术出版社,74~109。
    [63] E. Symposium, Properties of Ⅱ-Ⅵ Semiconductor: Bulk Crystals, Epitaxial Films,Quantum Well Structures and Dilute Magnetic Systems, American Materials Research Society, Nov. 27-Dec. 1, 1989.
    [64] M. A. Haase, J. Qiu, J.M. DePuydt, H. Cheng, Blue-green laser diodes, Appl. Phys. Lett., (1991), 59(11), 1272~1274.
    [65] K. Akimoto, H. Okuyama, M. Ikeda, Y. Mori, Isoelectronic oxygen in Ⅱ-Ⅵ semiconductors, Appl. Phys. Lett., (1992), vol.60, no. 1, 91~93.
    [66] T. Taguchi, C. Onodera, Y. Yamada, Y. Masumoto, Band offsets in CdZnS/ZnS strained-layer quantum well and its application to UV laser diode, Jpn. J. Appl. Phys., (1993), 32, L1308~1311
    
    
    [67] T. Taguchi, Y. Yamada, T. Ohno, J.T. Mullins, Y. Masumoto, Ultraviolet laser and photodetector of CdZnS/ZnS multiple quantum wells, Physica B, (1993), vol. 191, no.1-2, 136~139.
    [68] Y. Yamada, Y. Masumoto, J. Mullins and T. Taguchi, Ultraviolet stimulated emission and optical gain spectra in CdxZn1-xS-ZnS strained-layer superlattices, Appl. Phys. Lett., (1992), 61(18), 2190~2192.
    [69] M. Imaizumi, Y. Endoh, K. Ohtsuka, M. Suita, T. Isu, M. Nunoshita, Blue light emitting laser diodes based on ZnSe/ZnCdSe structure grown by gas source molecular beam epitaxy, Jpn. J. Appl. Phys. 2, Lett., (1994), vol.33, no.1A, L13~14.
    [70] I. P. McClean, C. B. Thomas, Memory effect in ZnS:Mn AC thin-film electroluminescent devices with low Mn concentration, IEEE transaction on etectron device, May 1993, Vol.40 No.5, 898~902.
    [71] S. Yano, R. Schroeder, B. Ullrich, H. Sakai, Absorption and photocurrent properties of thin ZnS films formed by pulsed-laser deposition on quartz, Thin Solid Films, (2003), 423,273~276.
    [72] K. Manzoor, S. R. Vadera, N. Kumar, T. R. N. Kutty, Synthesis and photoluminescent properties of ZnS nanocrystals doped with copper and halogen, Materials Chemistry and Physics, (2003), 82, 718~725.
    [73] V. Dimitrova, J. Tate, Synthesis and characterization of some ZnS-based thin film phosphors for electroluminescent device applications, Thin Solid Films, (2000), 365, 134~138.
    [74] A. Gichuhi, B. E. Boone, C. Shannon, Resonance Raman scattering and scanning tunneling spectroscopy of CdS thin films grown by electronchemical atomic layer epitaxy-thickness dependent phonon and electronic properties, Journal of Electroanalytical Chemistry, (2002), 522, 21-25.
    [75] D. P. Amalnerkar, Photoconducting and allied properties of CdS thick films, Materials Chemistry and Physics, (1999), 60, 1~21.
    [76] R. Lozada-Morales, O. Zelaya-Angel, G. Torres-Delgado, Photoluminescence in cubic and hexagonal CdS films, Applied Surface Science, (2001), 175~176, 562~566.
    [77] J. Takada, Organic-inorganic hetero nanosystems as an approach to molecular optoelectronics, Jpn. J. Appl. Phys., (1995), Vol. 34, 3864~3870.
    [78] I. Honma, H. Nakajima, O. Nishikawa, T. Sugimoto, S. Nomura,
    
    Organic/inorganic nano-composites for high temperature proton conducting polymer electrolytes, Solid State Ionics, (2003), 162~163,237~245.
    [79] K. S. Narayan, A. G. Manoj, J.Nanda, D. D. Sarma, Dual function hybrid polymer-nanoparticle devices, Appl. Phys. Lett., (1999), 74(6), 871~873.
    [80] Brian O'Regan, Michael Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, (1991), Vol. 353,737~739.
    [81] V. L. Colvin, M. C. Schlamp, A. P. Alivisatos, Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer, Nature, (1994), Vol. 370, 354~356.
    [82] J. Takada, H. Awaji, M. Koshioka, organic-inorganic multilayers: A new concept of optoelectronic material, Appl. Phys. Lett., (1992), 61(18), 2184~2186.
    [83] J. Zhang, D. J. Wang, Y. M. Chen, A new type of organic-inorganic multilayer: Fabrication and photoelectric properties, Thin Solid Films, (1997), 300, 208~212.
    [84] T. Ito, Y. Okayama, S. Shiratori, The fabrication of organic/inorganic multilayer by wet process and sequential adsorption method, Thin Solid Films, (2001), 393, 138~142.
    [85] H. Lee, T. Kawai, Photoelectric properties of Copper-phthalocyanine/PbTe multilayer, J. Appl. Phys., (1996), 80(6), 3601~3603.
    [86] R. Walter, R. Heike, F. S. Paul, V. Horst, Organic-inorganic multilayer structures: a novel route to highly efficient organic light-emitting diodes, Synthetic Metals, (1999), 99, 213~218.
    [87] W. A. Nevin, Q. A. Chamberlain, Photovoltaic properties of iodine-doped magnesium tetraphenylporphyrin sandwich cells. Optimization of doping, and dark electrical properties, J. Appl. Phys., (1990), vol.68, no. 10, 5247~5255.
    [88] W. A. Nevin, Q. A. Chamberlain, Photovoltaic properties of iodine-doped magnesium tetraphenylporphyrin sandwich cells. Ⅱ. Properties of illuminated cells, J. Appl. Phys., (1991), vol.69, no.8, pt.1, 4324~4332.
    [89] F. F. Fan, Allan. J. Bard, Photoconductive properties of Titanium oxide/phthalocyanine heterojunctions, J. Am. Chem. Soc, (1979), 20, 6140~6143.
    [90] J. Takada, T. Awaji, M. Koshioka, W.A. Nevin, M. Imanishi, N. Fukada, J. Appl. Phys., (1994), 75(8), 4055~4059.
    [91] T. Yamaki, R. Shinohara, K. Asai, Formation of hybrid monolayers and Langmuir-Blodgett-type multilayers from ammonium cations and TiO2 crystalline nanosheets, Thin Solid Films, (2001), 393, 154~160.
    
    
    [92] Takashi Wakamatsu, Kazuhiro Saito, Youichi Sakakibara, Surface plasmon-enhanced photocurrent in organic photoelectric cells, Jpn. J. Appl. Phys., (1997), Vol.36, 155~158.
    [93] J. Takada, M. Hoshi, T. Yamamoto, M. Watanabe, T. Takagi, Optoelectronic functions in organic-inorganic hetero nanosystems, Proc. SPIE - Int. Soc. Opt. Eng., 3-5 June 1996, vol.2779, 788~793.
    [94] S. M. Tracey, A. K. Ray, T. S. Shishiyanu, Device characteristics of CuPc/TiO2 heterojunctions, IEE Proc.-Circuit Devices Syst., (1998), Vol. 145 No. 5, 383~387.
    [95] Henini M., MBE: 8th International Conference on Molecular Beam Epitaxy, Osaka Japan, Ⅱ-Ⅴ, Review, 1995, 8 (1), 18~24.
    [96] S. Tokito, J. Sakata, Y. Taga, Organic/inorganic superlattices with ordered organic layers, J. Appl. Phys. (1995), 77(5), 1985~1989.
    [97] T. Kltmnura, S. Imamura and M. Kawamata, Effects of Purification on Photoconductivity of Phthalocyanine Pigment Used for Electrophotographic Carder Generation Layer, J. Imaging. Tech., (1988), Vol. 14 (5), 134~140.
    [98] B. A. Kolesov, T. V. Basova, I. K. Igumenov, Determination of the Orientation of CuPc Film by Raman Spectroscopy, Thin Solid Films, (1997), 304, 166~169.
    [99] K. Ishii, S. Mitsumura, Y. Hibino, R. Hagiwara, H. Nakayama, Preparation of Phthalocyanine and Octacyanophthalocyanine Films by CVD on Metal Surfaces, and In Situ Observation of The Molecular Processes by Raman Spectroscopy, Applied Surface Science, (1988), 33/34, 1324~1331.
    [100] 封继康,李君,孙家钟,酞菁和酞菁铜的三价非线性光学性质,化学学报,(1994)52,539~544。
    [101] E. A. Lucia, F. D. Verderame, Spectra of polycrystalline phthalocyanines in the visible region, J. Chem. Phys., (1968), 48(6), 2674~2681.
    [102] W. Leigh, B. W. Wessels, High conductivity zinc sulphoselenide thin films. Applied Physics Letters, (1982), 41(2), 165~167.
    [103] M. A. Tagliente, M. Penza, M. Gusso, A. Quirini, Characterisation of ZnS:Mn thin films by Rietveld refinement of Bragg-Brentano X-ray diffraction patterns. Thin Solid Films, (1999), 353, 129~136.
    
    
    [104] J. Ihanus, M. Ritala, M. Leskel(?), E. ALE Rauhala, Growth of ZnSSe Thin Films by Substituting Surface Sulfur with Elemental Selenium. Applied Surface Science, (1997), 112, 154~158.
    [105] H. Kim, D. Kim, Influence of CdS heat treatment on the microstrueture of CdS and the performance of CdS/CdTe solar cells, Solar Energy Materials & Solar Cells, (2001), 67, 297~304.
    [106] S A Al Kuhaimi, Influence of preparation technique on the structural, optical and electrical properties of polycrystalline CdS films, Vacuum, (1998), Vol. 51(3), 349~355.
    [107] S. Yano, B. Ullrich, Identity of green single- and two-photon excited interband emission in thin film CdS on glass, Thin Solid Films, (2003), 444, 295~298.
    [108] Y. Kashiwaba, K. Isojima, K. Ohta, Improvement in the efficiency of Cu-doped CdS/non-doped CdS photovoltaic cells fabricated by an all-vacuum process, Solar Energy Materials & Solar Cells 75 (2003) 253-259.
    [109] B. Ullrich, H. Sakai, Y. Segawa, Optoelectronic properties of thin film CdS formed by ultraviolet and infrared pulsed-laser deposition, Thin Solid Films 385(2001) 220-224.
    [110] 郑毓峰,石磊,邓榕平,查朝征,周贵恩,玻璃基底上Cd(S,Se)膜结构的一维特征,科学通报,1994,39,852~854。
    [111] S. Y. Kim, D. S. Kim, B. T. Ahn, H. B. Im, Structural, electrical and optical properties of In-doped CdS thin films prepared by vacuum coevaporation, Thin Solid Films, 1993,229, 227~231.
    [112] A. Ashour, N. El-Kadry, S. A. Mahmoud, On the electrical and optical properties of CdS films thermally deposited by a modified source, Thin Solid Films, (1995), 269, 117~120.
    [113] M. Ichimura, F. Goto, E. Arai, Structural and optical characterization of CdS films grown by photochemical deposition, J. Appl. Phys., 1999, 85, 7411~7417.
    [114] U. Pal, R. Silva-Gonzalez, G. Martinez-Montes, M. Gracia-Jimenez, M.A. Vidal, Sh. Torres, Optical characterization of vacuum evaporated cadmium sulfide films, Thin solid films, (1997), 305,345~350.
    
    
    [115] 刘云峰,陈国平,ZnS薄膜的结构研究,真空,(1996),2,32~36。
    [116] S. R. Forrest, P. H. Schmidt, Semiconductor analysis using organic-on inorganic contact barriers. I. Theory of the effects of surface states on diode potential and ac admittance, J. Appl. Phys., (1986), 59 (2), 513~525.
    [117] S. R. Forrest and F.F. So, Organic-on-inorganic semiconductor heterojunctions: Energy-band discontinuities, quasi-Fermi levels, and carder velocities, J. Appl. Phys., (1988), 64 (1), 399~409.
    [118] K. Orihara, Fabrication of an organic-inorganic pseudosuperlattice, Thin Solid Films, (1992), 219, 236-238.
    [119] The Concept of Intelligent Materials, and Guidelines on their R&D Promotion, Science and Technology Agency of Japan, Nov. 30, 1989.
    [120] M. F. Molaire, E. H. Magin, E M. Borsenberger, Hole photogeneration in dual layer photoreceptors, Proc. SPIE - Int. Soc. Opt. Eng. (USA), 28-29 July 1997, vol.3144, 26~33.
    [121] Y. A. Cherkasov, E. L. Alexandrova, New properties of homological arrays of CT-complexes for xerographic photoreceptors, Proc. SPIE - Int. Soc. Opt. Eng. (USA), 28-29 July 1997, vol.3144, 59~70.
    [122] M. Umeda, Electron transfer and geminate pair dissociation processes in layered photoreceptors containing azo compounds, Proc. SPIE - Int. Soc. Opt. Eng. (USA), 22-23 July 1998, vol.3471, 212~223.
    [123] U. Efron, J. Grinbeng, P. O. Braatz, M. J. Little, P. G. Reif, R. N. Schwartz, The silicon liquid-crystal light valve, J. Appl. Phys., (1985), 57 (4), 1356~1368.
    [124] U. Efron, P. O. Braatz, M. J. Little, R. N. Schwartz, J. Grinbeng, Silicon liquid crystal light valves: status and issues, Optical Engineering, (1983), 22(6), 682~686.
    [125] P. R. Ashley, J. H. Davis, O. Tae Kwan, Liquid crystal spatial light modulator with a transmissive amorphous silicon, Applied Optics, (1988), 27(9), 1797~1802.
    [126] P. R. Ashley, J. H. Davis, Amorphous silicon photoconductor in a liquid crystal spatial light modulator, Applied Optics, (1987), 26(2), 241~246.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700