Ⅰ 金属有机络合物薄膜的传质行为与热稳定性研究 Ⅱ PET中心辐射剂量监测与防护
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用双课题形式,以第一部分为主体内容。
     ●第一部分:
     金属有机络合物由于其独特的光电性质,近年来引起了人们的广泛关注。其中,M(Cu、Ag)-TCNQ络合物是一种重要的模型材料;由于它们具有电双稳特性与光致变色特性,因而成为高密度信息存储方面的重要候选材料。这类材料的高质量薄膜通常是由金属、有机物分层真空蒸发并通过固体扩散反应而获得。因而,了解其中的传质动力学规律与机制及其稳定性,对薄膜制备、使用具有重要的实际意义。此外,传质特性是材料的基本性质之一。以前,传质特性研究主要集中于无机固体,而对有机物中的传质特性研究很少,特别是化学位梯度下有机物中的传质研究尚不存在系统研究工作,因此,这种研究对于了解有机物中的特殊传质性质具有较为普遍的科学意义。
     本文选择了金属Ag和有机材料TCNQ作为研究对象,研究了Ag/TCNQ双层膜体系的动力学规律,包括:由Ag和TCNQ双层膜形成金属有机络合物过程中的传质机制和传质参数,以及络合物的热稳定性问题。
     主要研究结果如下:
     (1) 采用双源交替真空蒸发的方法,在玻璃基板上制备了摩尔比为1:1的Ag/TCNQ双层膜,并利用透射光谱作定标,即根据光谱曲线形状与时间以及络合产物数量间的关系,实现了薄膜的传质研究的表征技术。
     (2) 建立异质元素标志法,利用SIMS测量了金属与有机物反应前后相关元素的不同分布,得知Ag/TCNQ中的传质过程是Ag~+在已经形成的Ag-TCNQ络合物中迁移的结果,Ag~+迁移中存在换位现象。
     (3) 通过对相同温度不同厚度以及同一厚度不同温度条件下Ag/TCNQ双层膜的络合反应的研究(温度范围为60~110℃),得到了传质动力学规律和传质参数。结果表明,传质距离与传质时间符合抛物线规律;传质常数k′的对数与绝对温度T满足线性关系,对应的Arrhenius方程为:
     k′=k′_0exp(-Q/(RT))=5.62×10~(-6)exp(-(0.53eV)/(kT))cm~2/s;
     Ag/TCNQ双层膜形成Ag-TCNQ络合物的微观机制是Ag~+在
    Ag-TCNQ络合物中的间隙置换。
     (4) 研究了不同厚度的TCNQ薄膜和Ag-TCNQ金属有机络合物薄膜在不同温度下的热稳定性,计算了TCNQ和Ag-TCNQ的热激活能,两者分别为0.74eV和0.81eV。
     ●第二部分:
     随着科技的发展,医用回旋加速器小型化加快,为PET(正电子发射断层显像)、PET/CT的全面发展提供了支持。近10年来,国内PET中心(指同时具备回旋加速器、热室和PET或PET/CT扫描仪)的增加速度惊人,目前已经达到30多个,而PET和PET/CT扫描仪的数量更是达到60多台,回旋加速器数量也达到30多台。由于PET中心在运行过程中,需要处理大量的放射性问题,因此,很有必要对PET中心运行中涉及的放射性进行系统、全面的监测、分析和讨论,并提出合理的建议,以加强辐射防护措施,保证人员的安全。现在虽然有少数资料对辐射问题进行了研究,但是,都不全面,缺乏系统性。本部分详细监测了PET中心的辐射剂量,分析了影响辐射剂量的因素,测量并计算了工作人员受到的辐射剂量,为讨论了辐射的防护措施等,为保证人员安全提供参考和指导。
     主要研究结果如下:
     (1)回旋加速器在生产~(11)C、~(13)N、~(15)O、~(18)F时,大厅内除了一个点外,其余各处的γ射线和中子辐射剂量率均小于15μSv/h,大厅外的周围环境辐射剂量率都小于0.5μSv/h。
     (2)回旋加速器大厅内的辐射剂量率正比与束流强度,即束流越大,辐射剂量率也越大。
     (3)热室周围的γ辐射剂量率小于0.39μSv/h。
     (4)工作人员的年辐射剂量最大不超过5.22mSv,小于国家辐射安全标准中关于职业人员的年辐射剂量限值(职业人员年限值为每年20mSv)。
     (5)工作人员的年辐射剂量与受检者数量有关:受检者数量越多,工作人员的年辐射剂量也越多。
    导师说明:
     该论文作者为我校华山医院PET中心回旋加速器主管工程师,按预定的培养计划,其在职博士论文的两部分分别在材料科学系与华山医院进行。研究工作以第一部分为主,主要内容为金属有机双层膜传质的基础问题研究;第二部分工作为辅助内容,主要涉及核辐射监测内容。材料科学系与华山医院PET中心总体合作的背景是:利用PET中心的同位素制备和材料系的传质研究特长,在同位素示踪传质研究、放射性元素示踪传质研究(包括核辐射监测)中进行交叉合作。该论文工作属于该计划中的一个交叉研究预备部分。
Part 1:
    Great attention was paid in metalorganic complexes in recent years due to then-special optical and electric properties, in which M (Ag, Cu)-TCNQ complexes are one kind of model materials of great importance. M-TCNQ is one of the candidate materials for high-desity information storage because of their bistable and photochromic properties. The thin films of this type of materials with high quality are usually prepared by solid diffusive reaction between the metal and organic after successive vacuum evaporation. As one of the important properties, transport study was focused on inorganic materials while little on organic amterials, especially when there exist chemical potential gradient. Therefore, it is of great scientific importance to understand the special properties in the organic.
    In this part, Ag and TCNQ were selected as the evaporation materials and the transport behavior in Ag/TCNQ thin films was studied, including the transport mechanism during the formation process of Ag-TCNQ complex from Ag/TCNQ bilayer thin films, the calculation of activation energy, and the thermal stability of Ag-TCNQ complex.
    The results are as follows:
    (1) Ag/TCNQ bi-layer thin films with good molar ratio between Ag and TCNQ are prepared on glass by successive vacuum evaporation of Ag and TCNQ with the measurement of the optical transmittance spectra of Ag/TCNQ thin films.
    (2) The tracer method was established because of the similar properties of Ag and Cu when they react with TCNQ. The diffusion behavior in Ag/TCNQ is studied using Cu as a tracer, in combination with profile analyses by secondary ion mass spectroscopy (SIMS). The results show that the diffusion mechanism in Ag-TCNQ thin film is Ag ion diffusion accompanied by ion exchange.
    (3) The transport behavior of Ag-TCNQ was studied at different temperature (60~110℃) with different thickness. The results showed that the transport distance (x) and transport time (t) accord with parabola law (x~2 = 2k't) at 90℃. And the transport coefficient k' and
    the temperature T accord with Arrhenius Law, which could be expressed And the transport mechanism was discussed, which was believed to be interstitialcy mechanism.
    (4) The thermal stability of TCNQ films and Ag-TCNQ complex thin films with different thickness were studied at different temperatures. The activation energy of evaporation for both TCNQ and Ag-TCNQ was calculated, which were 0.74eV and 0.81eV, respectively.
    Part 2:
    The development of science and technology pushes the process of cyclotron miniaturization, which supply the development of PET (Positron Emission Tomography) and PET/CT with pharmaceutical support. In recent years, the quantities of PET centers in China increased dramastically, and more than 30 PET centers were established, in which cyclotrons, hotcell and PET (or PET/CT) scanners were included. Up to now, the number of PET and PET/CT scanners is more than 60, while the number of cyclotrons is more than 30.
    As there is much radiation in PET centers, it is necessary to monitor and analyze the radiation systematically and in detail, and put forward reasonable suggestions to strengthen the radiation protection to make all the staff safe. Although there are a few literatures about the radation dose and radiation protection, radiation data are not fully and systematically included.
    In this part, the radiation dose and dose rate were monitored and evaluated, including the points inside/outside of the cyclotron room and around the hotcell. The factors affecting the radiation dose rate aroud the cyclotron were analyzed, and the annual radiation doses of staff were calculated. After that, the methods of radiation protection were discussed.
    The results are as fellows:
    (1) During the production of ~(11)、 ~(13)N、 ~(15)O and ~(18)F with target current of 40μA, the radiation dose rate of most of the measuring points in the cyclotron room was less than 15μSv/h except one point, and the radiation dose rate of all the measuring points outside the cyclotron room was less than 0.5μSv/h.
    (2) The linear relationship between the radiation dose rate and the target current showed that the higher beam current, the higher radiation dose rate.
    (3) The Gamma radiation dose rate around the hotcell is less than 0.39μSv/h.
    (4) The annual radiation doses of occupational people were no more than 5.22mSv, which is less than the safety standard of our country (20mSv for occupational people).
    (5) The annual radiation dose of occupational people is related to the examinees. The more examinees, the higher radiation dose.
引文
[1] H. J. Gao, K. Sohlberg, Z. Q. Xue, H. Y. Chen, S. M. Hou, L. P. Ma, X. W. Fang, S. J. Pang, S. J. Pennycook. Reversible nanometer-scale conductance transitions in an organic complex[J]. Phys. Rev. Lett., 2000, 84(8): 1780-1783
    [2] L. P. Ma, J. Liu, Y. Yang. Organic electrical bistable devices and rewritable memory cells[J]. Appl. Phys. Lett., 2002, 80(16): 2997-2999
    [3] C. W. Tang, S. A. VanSlyke. Organic electroluminescent diodes[J]. Appl. Phys. Lett., 1987, 51(12): 913-915
    [4] S. Welter. K. Brunner, J. W. Hofstratt. Electroluminescent devices with reversible switching between red and green emission[J]. Nature, 2003, 421(6918): 54-57
    [5] K. I. Pokhodnya, A. J. Epstein, J. S. Miller. Thin-film V[TCNE]_(x) magnets[J]. Adv. Mater., 2000, 12(6): 410
    [6] C. Tengstedt, M. Unge, M. P. de Jong, S. Stafstrom, W. R. Salaneck, M. Fahlman. Coulomb interactions in rubidium-doped tetracyanoethylene: A model system for organometallic magnets[J]. Physical Review B, 2004, 69: 165208-1-7
    [7] J. Kido, Y. lizumi. Fabrication of highly efficient organic electroluminescent devices[J]. Appl. Phys. Lett., 1998, 73(19): 2721-2723
    [8] J. H. Burroughes, D. D. C. Bradley, A. R. Brown. Light-emitting diodes based on conjugated polymers [J]. Nature, 1990, 347(6293): 539-541
    [9] C. D. Muller, A. Falcou, N. Reckefuss, M. Rojahn, V. Wiederhim, P. Rudati, H. Frohne, O. Nuyken, H. Becker, K. Meerholz. Multi-colour organic light-emitting displays by solution processing[J]. Nature, 2003, 421(6925): 829-832
    [10] J. Ouyang, T. F. Guo, Y. Yang, H. Higuchi, M. Yoshioka, T. Nagatsuka. High-performance, flexible polymer light-emitting diodes fabricated by a continuous polymer coating process[J]. Adv. Mater., 2002, 14(12): 915-918
    [11] C. Y. Liu, H. L. Pan, M. A. Fox, A. J. Bard. High-density nanosecond charge trapping in thin films of the photoconductor ZnODEP[J]. Science, 1993, 261(5123): 897-899
    [12] P. R. Krauss, S. Y. Chou. Nano-compact disks with 400 Gbit/in~2 storage density fabricated using nanoimprint lithography and read with proximal probe[J]. Appl. Phys. Lett., 1997, 71(21)3174-3176
    [13] 宋化灿,潘文龙,英柏宁.N-烃基吖啶 TCNQ-盐及其 TCNQ 电荷转移络合盐的导电性能[J].中山大学学报(自然科学版),1999,38(增刊):54-56
    [14] 吉小松,严学俭,张群,王伟军,李旭,华中一.有机纳米整流器的 STM 研究[J].真空科学与技术,2002,22(6):425-428
    [15] 陈国荣,莫晓亮,陈殿勇,彭建军,徐华华,华中一,平贺隆,守谷哲郞,田中教雄,上野一郞,迁田,公二.基于Ag(TCNQ)热透镜效应的全光型开关[J].真空科学与技术学报,2000,20(2):85-87
    [16] Serhiy Z. Malynych. George Chumanov. Vacuum deposition of silver island films on chemically modified surface[J]. J. Vac. Sci. Technol. A, 2003, 21(3): 723-727
    [17] K. Z. Wanf, Z. Q. Xue, M. Ouyang, D. W. Wang, H. X. Zhang, C. H. Huang. A new polynitrile π acceptor for electronic switching devices[J]. Chemical Physics Letters, 1995, 243: 217-221
    [18] 叶钢锋,严学俭,潘钢,张群,章壮健,华中一.纳米晶粒Ag-TCNQ络合物薄膜的制备及电双稳特性[J].真空科学与技术,2001,21(2):91-95
    [19] 向伟,赖祖武,罗四维,方仁昌,李文治.离子束增强沉积TiN薄膜的研究[J].真空科学与技术学报,1998,18(4):308
    [20] 乔学亮,孙增辉,程宇航,陈建国,熊锋,王洪水,邓德圣.N含量对CN薄膜折射率的影响[J].硅酸盐学报,2003,31(5):465
    [21] 陈路,王元樟,巫艳,吴俊,于梅芳,乔怡敏,何力.分子束外延CdTe(211)B/Si复合衬底材料[J].红外与毫米波学报,2005,24(4):245
    [22] 孔梅影,曾一平,李晋闽.MBE InGaAs/GaAs量子点及其红外吸收波长调制[J].半导体学报,2003,24(增刊):78-81
    [23] 杨冰,蒲以康,孙殿照.射频等离子体发射光谱分析在分子束外延GaN生长中的应用[J].真空科学与技术学报,2002,22(2):153
    [24] A. K. Debnath, Niraj Joshi, K. P. Muthe, J. C. Vyas, D. K. Aswal, S. K. Gupta, J. V. Yakhmi. Surface and electrical-transport studies of Ag/Al bilayer-structures grown by molecular beam epitaxy[J]. Applied Surface Science, 2006, 243(1-4): 220-227
    [25] H. J. Gao, Z. Q. Xue, K. Z. Wang, Q. D. Wu, S. Pang. Ionized-cluster-beam deposition and electrical bistability of C_(60)-TCNQ thin films[J]. Appl. Phys. Lett. 1996, 68(16): 2192-2194
    [26] 薛增泉,高鸿钧,刘惟敏,王迅,找兴钰,马自力,褚星,刘宁,庞世瑾.用离子团束沉积技术制备有机功能薄膜[J].真空科学与技术,1994,14(3):179-182
    [27] H. J. Gao, Z. Q. Xue, S. J. Pang. Fabrication of crystalline thin dye films using an ionized-cluster-beam deposition method[J]. Thin Solid Films, 1997, 292(1-2): 40-42
    [28] K. Koski, J. Holsa. Properties of Zirconium oxide thin films deposited by pulsed reactive magnetron sputtering[J]. Surface and Coating Technology, 1999, 120-121: 303-312
    [29] 史波,李贺军,李克智,付前刚.化学气相沉积制备MoSi2涂层分析[J].材料导报,2005,19(7):37-40
    [30] 王从曾,马捷,毕安园,周美玲.化学气相沉积难熔金属钼组织性能的研究[J].材料热处理学报,2005,26(3):51-53
    [31] 侯文义,赵兴国,孙亦蕙,袁庆龙,梁伟.同基合金非磁控电弧离子镀镀层结构特征[J].材料热处理学报,2005,26(3):64-66
    [32] 邹友生,汪伟,宋贵宏,汪爱英,孙超,黄荣芳,闻立时.气体介质对电弧离子镀沉积类金刚石膜的影响[J].人工晶体学报,2003,32(6):613-617
    [33] 王英,张效岩,蔡炳初,张亚非.LB技术制备FePt纳米粒子单层膜[J].高等学校化学学报,2004, 25(12): 2212-2214
    [34] Marina Nieto-Suarez, Nuria Vila-Romeu, Inmaculada Prieto. Influence of different factors on the phase transitions of non-ionic Langmuir monolayers. Applied Surface Science, 2005, 246(4): 387-391
    [35] Satoru Isoda, Kouichi Akiyama, Satoshi Nishikawa, Satoshi Ueyama, Hiroshi Miyasaka, Tadashi Okada. Quantum electron tunneling in flavin-porphyrin hetero-type Langmuir-Blodgett films[J]. Thin Solid Films, 2004, 466(1-2): 285-290
    [36] 朱满康,代伍坤,侯育冬,严辉,邵明明,陈晓阳.溶胶-凝胶法Ba_2TiSi_2O_8铁电薄膜的制备及结构表征[J].人工晶体学报,2005,34(2):283
    [37] 梁达文,白守礼,杨东,陈霭璠,罗瑞贤.溶胶-凝胶法合成纳米复合氧化物的表征及应用[J].自然科学进展,2005,6(15):764-748
    [38] 朱永法,张利,姚文清,曹立礼.TiCl_4溶胶-凝胶法制备TiO_2纳米粉体[J].物理化学学报,999,15(9):784-788
    [39] M. N. Kamalasanan, S. Chandra. Sol-Gel synthesis of ZnO thin films[J]. Thin Solid Films, 1996, 288(1-2): 112-115
    [40] D. S. Acker, R. J. Harder, W. R. Healer, W. Mahler, L. R. Melby, R. E. Benson, W. E. Mochel. 7, 7, 8, 8-Tetracyanoquinodimethane and its electrically conducting anion-radical derivatives[J]. J. Am. Chem. Soc., 1960, 82(24): 6408-6409
    [41] L. R. Melby, R. J. Harder, W. R. Heftier, W. Mahler, R. E Benson, W. E. Mochel. Ⅱ. Substituted Quinodimethans. Anion-radical derivatives and complexes of 7, 7, 8, 8-Tetracyanoquinodimethane[J]. J. Am. Chem. Soc., 1962, 84(17): 3374-3387
    [42] R. S. Potember, T. O. Poehler, D. O. Cowan. Electrical switching and memory phenomena in Cu-TCNQ thin films[J]. Appl. Phys. Lett., 1979, 34(6): 405-407
    [43] R. S. Potember, T. O. Poehler, R. C. Benson. Optical switching in semiconductor organic thin films[J]. Appl. Phys. Lett., 1982, 41(6): 548-550
    [44] R. S. Potember, T. O. Poehler, A. Rappa, D. O. Cowan, A. N. Bloch. A current-controlled electrically switched memory state in silver and copper-TCNQF_4 radical-ion salts[J]. Syn. Met., 1982, 4(4): 371-380
    [45] R. S. Potember, R. C. Hoffman, T. O. Poehler. Molecular electronics[J]. Johns Hopkins APL Tech. Dig., 1986, 7(2): 129
    [46] R. S. Potember, T. O. Poehler, R. C. Benson. Optical storage and switching devices using organic charge transfer salts[P]. US Patent: 4574366, 1986-3-4
    [47] R. S. Potember, T. O. Poehler, R. C. Benson. Optical storage and switching devices using organic charge transfer salts[P]. US Patent: 4731756, 1988-3-15
    [48] R. S. Potember, T. O. Poehler. Multistate optical switching and memory using an amphoteric organic charge transfer material[P]. US Patent: 4731756, 1987-5-5
    [49] 欧阳敏,侯士敏,林琳,刘惟敏,薛增泉,吴全德,夏宗矩,邹英华.埋藏于有机介质中金属原子团的结构研究(Ⅰ)[J].物理学报,1998,47(5):802-806
    [50] 欧阳敏,侯士敏,林琳,刘惟敏,薛增泉,吴全德,夏宗矩,邹英华.埋藏于有机介质中金属原子团的结构研究(Ⅱ)[J].物理学报,1998,47(5):829-834
    [51] 万立骏,板谷谨悟.TCNQ分子在Cu(111)面上吸附结构的电化学扫描隧道显微技术[J].科学通报,2000,45(19):2067-2070
    [52] 黄伍桥,吴谊群,顾冬红,千福熹.AgTCNQ衍生物旋涂膜绿光可擦写光存储性质研究[J].光学学报,2004,24(9):1164-1167
    [53] 张群,孔令柱,张强基,王伟军,华中一.Ag-TCNQ薄膜电双稳态特性的XPS研究[J].真空科学与技术,2003,23(3):169-172
    [54] A. Brau, J. -P. Farges, H. Ghezzal, A. Mammou. Thermistor effect and current induced transition in Cu-TCNQ composites[J]. Solid State Ionics, 1996, 91(1-2): 137-143
    [55] H. Hiroshi, M. Shunsuke, S. Hideo. Reversible write-erase properties of CuTCNQ optical recording media [J]. Jpn. J. Appl. Phys., 1986, 25(4) L341-L342
    [56] Huang Wuiao(黄伍桥), Wu Yiqun(吴谊群), Gu Donghong(顾冬红), Gan Fuxi(干福熹). Green-Light static rewritable optical storage properties of a novel CuTCNQ derivative thin film[J]. Chin. Phys. Lett., 2003, 20(12): 2178-2181
    [57] Kahito Oyamada, Haruo Tanaka, Kazumi Matsushige, Hiroyuki Sasabe, Chihaya Adachi. Switching effect in Cu: TCNQ charge transfer-complex thin films by vacuum evaporation[J]. Appl. Phys. Lett., 2003, 83(6): 1252-1254
    [58] Z. P. Hu, Z. X. Shen, L. Qin, S. H. Tang, M. H. Kuok, G. Q. Xu, K. F. Mok, H. H. Huang. High pressure Raman studies of TCNQ and CuTCNQ[J]. Journal of Molecular Structure, 1995, 356(3): 163-168
    [59] Ning Gu, Haiqian Zhang, Yu Wei, Haoying Shen, Lan Zhang. Rectifying phenomenon of Cu-CTNQ organometallic crystallite device[J]. Supermolecular Science, 1998, 5(5-6): 691-693
    [60] N. Gu, X. M. Yang, H. Y. Sheng, W. Lu, Y. Wei. Electrical switch properties of CuTCNQ organic crystal with nanometersize[J]. Synthetic Metals, 1995, 71(1-3): 2221-2222
    [61] Hongjun Gao, Zengquan Xue, Shijin Pang. Ionized cluster beam deposition of C_(60), Ag-TCNQ thin films and electrical switching phenomena[J]. J. Phys. D: Appl. Phys., 1996, 29(7): 1868-1872
    [62] Wan Lijun, Kingo Itaya. Adlayer structure of TCNQ molecules on Cu(111): An in situ STM study[J]. Chinese Science Bulletin, 2001, 146(5): 377-379
    [63] Shuqing Sun, Peiji Wu, Daoben Zhu. The preparation, characterization of amorphous Cu-TCNQ film with a low degree of charge-transfer DCT and its electric switching properties[J]. Thin Solid Films, 1997, 301(1-2): 192-196
    [64] Shuqing Sun, Xiaoyin Xu, Peiji Wu, Daoben Zhu. Characterization and electrical switching properties of Cu-TCNQ films formed under different conditions[J]. Journal of Materials Science Letters, 1998, 17(9): 719-721
    [65] 沈浩瀛,顾宁.CuTCNQ有机薄膜器件的研究[J].固体电子学研究与进展,1997,17(3):251-255
    [66] Aaron K. Neufeld, lan Madsen, Alan M. Bond, Conor F. Hogan. Phase, Morphology, and Particle Size Changes Associated with the Solid-Solid Electrochemical Interconversion of TCNQ and Semiconducting CuTCNQ[J]. Chem. Mater., 2003, 15(19), 3573-3585
    [67] R. Kumai, Y. Okimoto, Y. Tokura. Current-induced insulator-metal transition and pattern formation in an organic charged-transfer complex[J]. Science, 1999, 284(4): 1645-1647
    [68] 章壮健.薄膜物理讲义[M].复旦大学材料科学系,1996
    [69] 许国基,郝秀红.金属化有机膜制备方法的研究[J].原子能科学与技术,1996,30(1):35-37
    [70] Xinggong Wan, Jin Li, Dianyong Chen, Yiming Jiang, Zhongyi Hua, The power effect in write-in process of Ag-TCNQ electric recording thin film, Phys. Stat. Sol.(A), 2000, 181(2): R13-R15
    [71] 谢亨博,蒋益明,郭峰,刘平,李劲.Ag/TCNQ双层膜传质规律与模型的理论研究[J].高等学校化学学报,2005,26(6):1143-1145
    [72] 郭峰,蒋益明,谢亨博,李劲.环境对Ag-TCNQ金属有机双层膜传质的影响[J].功能材料,2004,35(5):593-594
    [73] 谢亨博,蒋益明,郭峰,刘平,李劲.Ag/TCNQ纳米双层膜中传质规律研究[J].物理学报,200453(11):3849-3852
    [74] 蒋益明,万星拱,谢亨博,李劲,华中一.电双稳薄膜阻抗转变机理研究[J].真空科学与技术,2003,23(2):76-79
    [75] 蒋益明,郭峰,谢亨博,李劲,华中一.一种制备金属有机电双稳薄膜的新方法[J].功能材料与器件学报,2004,10(4):463-467
    [76] 谢亨博.PAR有机电双稳薄膜阻态转变规律的研究&Ag/TCNQ纳米双层膜中传质行为的研究[D].上海:复旦大学,2004
    [77] Zhiyong Fan, Xiaoliang Mo, Chengfei Lou, Yah Yao, Dawei Wang, Guorong Chen, Jia G. Lu. Structures and Electrical Properties of Ag-TCNQ Organometallic Nanowires[J]. IEEE transactions on nanotechnology, 2005, 4(2): 238-241
    [78] Huibiao Liu, Qing Zhao, Yuliang Li, Yang Liu, Fushen Liu, Junpeng Zhuang, Shu Wang, Lei Jiang, Daoben Zhu, Dapeng Yu, Lifeng Chi. Field emission properties of largr-area nanowires of organic charge-transfer complexes[J]. J. Am. Chem. Soc., 2005, 127(4): 1120-1121
    [79] Murlidhar S. Khatkle, J. Paul. Devlin. The vibrational and electronic spectra of the momo-, di-, and trianion salts of TCNQ[J]. J. Chem. Phys., 1979, 70(4): 1851-1859
    [80] Xiao-Liang Mo, Guo-Rong Chen, Qin-Jia Cai, Zhi-Yong Fan, Hua-Hua Xu, Yan Yao, Jian Yang, Hai-Hua Gu, Zhong-Yi Hua. Preparation and electrical/optical bistable property of potassium TCNQ thin films[J]. Thin Solid Films, 2003, 436(2): 259-263
    [81] S. Q. Sun, P. J. Wu, D. B. Zhu. Electronic switching properties in nanometer-sized Cu-(TCNQ)_2[J]. Solid State Communications, 1996, 99(4): 237-240
    [82] 万星拱.有机电双稳薄膜记忆特性的研究[D].上海:复旦大学,2002
    [83] 黄继华著.金属及合金中扩散[M].北京:冶金工业出版社,1996
    [84] 马兹希拉特著,赖和怡,刘国勋译.合金扩散和热力学[M].北京:冶金工业出版社,1984
    [85] Dietmar Reuhaus. Strong temperaturedepence of oxygen diffusion through porous platinum[J]. Int. J. Heat Mass Transfer, 1998, 41(3): 575-581
    [86] V. M. Matiushin, V. P. Shapovalov, A. R. Koshman. Low temperature diffusion in semiconductors caused by atomic hydrogen simulation[J]. Int. J. Hydrogen Energy, 1997, 22(2/3): 259-261
    [87] Mark E. Tuckerman, Dominik Marx, Michele Parrinello. The nature and transport mechanism of hydrated hydroxide ions in aqueous solution[J]. Nature, 2002, 417(6892): 925-929
    [88] R. B. McLellan, L. Yang. Low-temperature diffusion of hydrogen in Pd-Ni solution[J]. Scripta Metallurgica et Materialia, 1995, 32(7): 1015-1017
    [89] George T. Yu, S. K. Yen,. Determination of the diffusion coefficient of proton in CVD gamma aluminum oxide thin films[J]. Surface and Coating Technology, 2003, 166: 195-200
    [90] Olli Nordman, and Nina Nordman, Electron and photon induced metal diffusion in amorphous As_(50)Se_(50) thin films coated with two metal layers, Optics Communications, 2001, 193: 147-151
    [91] 周震,阎杰,林进,张允什.纳米Ni(OH)2的质子扩散行为研究[J].电源技术,1999,23(6):319-321
    [92] 杨瑞鹏,蔡殉,陈秋龙.氢在钯纳米晶薄膜中的扩散[J].中国有色金属学报,200l,11(4):558-56l
    [93] S. Indris, P. Heitjans, H. E. Roman, A. Bunde. Li diffusion in nano-and microcrystalline (1-x)Li_20: xB_2O_3 [J]. Diffusions in Materials: Defect and Diffusion Forum, 2002, 194-1: 935-940
    [94] S. Indris, P. Heitjans, H. E. Roman, A. Bunde. Nanocrystalline versus microcrystalline Li_2O: B_2O_3 composites: Anomalous ionic conductivities and percolation theory[J]. Phys. Rev. Lett., 2000, 84(13): 2989-2892
    [95] W. Puin, P. Heitjans. Frequency dependent ionic conductivity in nanocrystalline CaF_2 studiedby impedance spectroscopy[J]. Nanostructured Materials, 1995, 6(5-8): 885-888
    [96] M. Soetratmo, H. Natter, R. Hempelmann, O. Hartmann, R. Wappling, M. Ekstrom. Muon diffusion in nanocrystalline copper[J]. Hyperfine Interactions, 1997, 105(1-4): 245-252
    [97] Y. W. Fan, F. Z. Cui, J. Ge. AFM observation of CaCO_3 crystallization controlled by fetal bovine serum proteins[J]. Single Molecules, 2001, 2(2): 121-124
    [98] P. B. Barna, A. Csanady, U. Timmer, K. Urban. Nucleation, growth, and structure of A1-Mn quasi-crystalline thin films prepared by high-temperature-vapor deposition[J]. Journal of Materials Research, 1992, 7(5): 1115-1125
    [99] J. Lefebvre, P. J. Poole, G. C. Ares, D. Chithrani, R. L. Williams. Self-assembled InAs quantum dots on InP nano-templates[J]. Journal of Crystal Growth, 2002, 234(2-3): 391-398
    [100] M. Shui, L. H. Yue, Y. M. Hua, Z. D. Xu. The decomposition kinetics of the SiO_2 coated nano-scale calcium carbonate [J]. Thermochimica Acta, 2002, 386(1): 43-49
    [101] 金进生.熔融玻璃基底上金薄膜的表面形貌[J].浙江大学学报,2002,29(1):35-39
    [102] S. Ohta, D. Gotoh, N. Sakaguchi, H. Takahashi. Nanoscale analysis of multilayer interfaces of W/Al_2O_3/Ti/Cu[J]. Interface Science, 1999, 7(2): 191-196
    [103] X. J. Liu, X. Cai, J. F. Mao, C. Y. Jin. ZnS/Ag/ZnS nano-multilayer films for transparent electrodes in flat display application[J]. Appl. Surf. Sci., 2001, 183(1-2): 103-110
    [104] P. Knauth, A. Charai, C. Bergman, P. Gas. Calorimetric analysis of thin-film reactions-experiments and modeling in the nickel/silicon system[J]. J. Appl. Phys., 1994, 76(9): 5195-5201
    [105] 王文雍.Ni_(80)Fe_(20)/Mo纳米多层膜的互扩散[J].功能材料与器件学报,2001,7(1):63-68
    [106] P. Gas, C. Bergman, G. Clugnet, P. Barna, A. Kovacs, J. Labar. Reactive diffusion in Al/Pt films and the determination of the diffusion coefficients of Al in amorphous Al_2Pt[J]. Diffusions in Materials: Defect and Diffusion Forum, 2001, 194-1: 807-814
    [107] Y. Hirose, A. Kahn, V. Aristov, P. Soukiassian. Chemistry, diffusion, and electronic properties of a metal/organic semiconductor contact: In/perylenetetracarboxylic dianhydride[J]. Appl. Phys. Lett., 1996, 68(2): 217-219
    [108] J. Weckesser, J. V. Barth, K. Kem. Direct observation of surface diffusion of large organic molecules at metal surfaces: PVBA on Pd(110)[J]. J. Chem. Phys., 1999, 110(11): 5351-5354
    [109] S. T. Lee, Z. Q. Gao, L. S. Hung. Metal diffusion from electrodes in organic light-emitting diodes[J]. Appl. Phys. Lett., 1999, 75(10): 1404-1406
    [110] M. Fontaine, J. M. Layer, C. Gregoire, J. J. Pireaux, A. Cros. Thermal processing of a copper-poly(Phenyl Quinoxaline) interface diffusion of the metal in the polymer studied by high-resolution electron-energy-loss spectroscopy[J]. Appl. Phys. Lett., 1993, 62(23): 2938-2940
    [111] P. A. Gollier, P. Bertrand. Metal-polymer interface formation-diffusion and clustering of copper in PET [J]. Vide-Science Technique ET Applications, 1994, 272: 99-103
    [112] J. H. Das, J. E. Morris. Metal diffusion in polymers[J]. IEEE Transactions on Components Packaging and Manufacturing Technology Part B-Advanced Packaging, 1994, 17(4): 620-631
    [113] F. Faupel, R. Willecke, A. Thran, M. Kiene, C. vonBechtolsheim, T. Strunskus. Metal diffusion in polymers [J]. Defect and Diffusion Forum, 1997, 143: 887-902
    [114] T. Strunskus, M. Kiene, R. Willecke, A. Thran, C. von Bechtolsheim, F. Faupel. Chemistry, diffusion and cluster formation at metal-polymer interfaces[J]. Materials and Corrosion, 1998, 49(3): 180-188
    [115] M. Du, R. L. Opila, V. M. Donnelly, J. Sapjeta, T. Boone. The interface formation of copper and low dielectric constant fluoro-polymer: Plasma surface modification and its effect on copper diffusion[J]. J. Appl. Phys., 1999, 85(3): 1496-1502
    [116] N. Nagai, T. Hironaka, T. Imai, T. Harada, M. Nishimura, R. Mimori, H. Ishida. Study of interaction between polyimide and Cu under a high humidity condition[J]. Applied Surface Science, 2001, 171(1-2): 101-105
    [117] A. Thran, T. Strunskus, V. Zaporojtchenko, F. Faupel. Evidence of noble metal diffusion in polymers at room temperature and its retardation by a chromium barrier[J]. Appl. Phys. Lett., 2002, 81(2): 244-246
    [118] I. C. Deng. Suppress copper diffusion through barrier metal-free structure by implantation of nitrogen atom into low-k material[J]. Jpn. J. Appl. Phys. Part 1, 2003, 42(3): 1185
    [119] Konstantyn I. Pokhodnya, Nate Petersen, Joel S. Miller. Iron Pentacarbonyl as a Precursor for Molecule-Based Magnets: Formation of Fe[TCNE]_2 (Tc=100 K) and Fe[TCNQ]_2 (Tc=35 K) Magnets[J]. Inorganic Chemistry, 2002, 41(8): 1996-1997
    [120] W. J. Siemons, P. E. Bierstedt, R. G. Kepler. Electronic properties of a new class of highly conductive organic solids[J]. J. Chem. Phys., 1963, 39(12): 3523-3528
    [121] R. G. Kepler. Magnetic properties of a new class of highly conductive organic solids[J]. J. Chem. Phys., 1963, 39(12): 3528-3532
    [122] Rodolphe Clerac, Shannon O'Kane, Jerry Cowen, Xiang Ouyang, Robert Heintz, Hanhua Zhao, Mervin J. Bazile, Jr., Kim R. Dunbar. Glassy Magnets Composed of Metals Coordinated to TCNQ: M(TCNQ)2 (M=Mn, Fe, Co, Ni) [J]. Chem. Mater. 2003, 15(9): 1840-1850
    [123] N. Kuroda, T. Sugimoto, M. Hagiwara, Hasanudin, K. Ueda, T. Tada, H. Uozaki, N. Toyota, I. Mogi, K. Watanabe, M. Motokawa. Electronic properties of Cs_2TCNQ_3 crystals grown under magnetic field[J]. Synthetic metals, 2003, 133-134(13): 535-537
    [124] Stephen R. Day, Ross A. Hatton, Michael A. Chesters, Martin R. Willis. The use of charge transfer interlayers to control hole injection in molecular organic light emitting diodes[J]. Thin Solid Films, 2002, 410(1-2): 159-166
    [125] H. J. Gao, Z. Q. Xue, Q. D. Wu, S. J. Pang. Structure and electrical properties of Ag-ultrafine-particle-polymer thin films[J]. J. Vac. Sci. Technol. B, 1995, 13(3): 1242-1246
    [126] 夏焱,周峥嵘,农昊,乐翊洲,徐伟,潘星龙,陶凤岗,华中一.一种用作分子电子材料的螺杂环化合物[J].复旦学报(自然科学版),2002,41(2):156-158
    [127] 夏焱,徐伟,农昊,潘星龙,诸葛健,华中一,周峥嵘,陶凤岗.一种新型的有机电双稳薄膜及其极性记忆效应[J].真空科学与技术,2001,21(5):349-351
    [128] 刘春明,吕银详,郭鹏,农昊,蔡永挚,徐伟,潘星龙,华中一,周峥嵘,陶凤岗.一种具有极性记忆效应的热可檫有机电双稳薄膜[J].真空电子技术,2003,6:11-14
    [129] Hengbo Xie, Yiming Jiang, Feng Guo, Xinggong Wan, Jin Li. Energy effect in switching of PAR thin film as an electrical bistable material[J]. Physica Status Solidi A, 2004, 201(1): 111-114
    [130] 谢亨博,蒋益明,万星拱,郭峰,李劲.PAR 薄膜阻抗转变规律的研究[J].真空科学与技术 2003,2(5):311-314
    [131] 华中一,陈殿勇,蒋益明,莫晓亮,彭建军,陈国荣,潘星龙,章壮健.超快速高可靠过电压保护 器[J].仪器仪表学报,2000,21(6):557-559
    [132] 陈国荣,彭建军,陈殿勇等.单一有机材料PAN的电双稳特性及其应用[J].真空科学与技术学报,1999,19(6):403-406
    [133] Z. Y. Hua, G. R. Chen, W. Xu, D. Y. Chen. New organic bistable films for ultrafast electric memories[J]. Appl. Surf. Sci., 2001, 169-170: 447-451
    [134] 郭峰,蒋益明,谢亨博,万星拱,胡敬平,李劲.PEN薄膜阻抗转变规律研究[J].物理学报,2005,154(3):1396-1399
    [135] 蒋益明,万星拱,郭峰,谢亨博,刘平,李劲.一种具有电双稳特性的聚合物薄膜[J].功能材料与器件学报,2004,10(3):347
    [136] Yiming Jiang, Xinggong Wan, Feng Guo, Hengbo Xie, Ping Liu, Jin Li. A New Polymer Thin Film with Electrical Bistable States. Phys. Stat. Sol.(A). 2005, 202(9): 1804-1807
    [137] L. P. Ma, J. Liu, Y. Yang. Organic electrical bistable devices and rewritable memory cells[J]. Applied Physics Letters, 2002, 80(16): 2997-2999
    [138] W. Xu, G. R. Chen, R. J. Li, Z. Y. Hua. Two new all-organic complexes with electrical bistable states[J]. Appl. Phys. Lett., 1995, 67(15): 2241-2242
    [139] Kuo-Chuan Ho, Jung-Yu Liao. NO_2 gas sensing based on vacuum-deposited TTF-TCNQ thin films[J]. Sensors and Actuators B, 2003, 93(1-3): 370-378
    [140] Ryota Yuge, Akira Miyazaki, Toshiaki Enoki, Kaoru Tamada, Fumio Nakamura, Masahiko Hara. Fabrication of TTF-TCNQ Charge-Transfer Complex Self-Assembled Monolayers: Comparison between the Coadsorption Method and the Layer-by-Layer Adsorption Method[J]. J. Phys. Chem. B, 2002, 106(27): 6894-6901
    [141] W. D. Grobman, R. A. Pollak, D. E. Eastman, E. T. Mass, Jr., B. A. Scott. Valence electronic structure and charge transfer in TTF-TCNQ from photonemission spectroscopy[J]. Physical Review Letters, 1974, 32(10): 534-537
    [142] Kyung Sang Cho, Jeong-Woo Choi, Won Hong Lee, Nam Woong Song, Dongho Kim. Transient fluorescence in flavin/TCNQ hetero LB film[J]. Thin Solid Films, 1998, 327-329(31): 373-377
    [143] 李建昌,宋延林,薛增泉,刘惟敏,江雷,朱道本,聚苯胺-TCNQ复合薄膜的微观结构与电学特性[J],物理化学学报,2000,16(4):289-293
    [144] J. C. Li, Z. Q. Xue, Y. Zeng, W. M. Liu, Q. D. Wu, Y. L. Song, L. Jiang. Growth and characterization of polyaniline TCNQ complex films grown by vacuum evaporation[J]. Thin Solid Films, 2000, 374(1-2): 59-63
    [145] 王科志,张吴旭,王大伟,薛增泉.有机及有机金属化合物薄膜电开关特性[J].真空科学与技术,1996,16(4):277-285
    [146] S. Yamaguchi, C. A. Viands, R. S. Potember. Imaging of silver and copper tetracyanoquinodimethane salts using tunneling microscope and atomic force microscope[J]. J. Vac. Sci. Technol. B, 1991, 9(2): 1129-1133
    [147] Sheng-Gao Liu, Yun-qi Liu, Pei-Ji Wu, Dao-Ben Zhu, He Tian, Kong-Chang Chen, Characterisation and electrical property of molten-grown CuTCNQ film material[J]. Thin Solid Films, 1996, 289(1-2): 300-305
    [148] Sheng-Gao Liu, Yun-Qi Liu, Dao-Ben Zhu. Amorphous semiconducting film containing nanometer particles of CuTCNQ: Preparation, characterization and electrical switching property[J]. Thin solid Films, 1996, 280(1-2): 271-277
    [149] 顾宁,沈浩瀛,鲁武,韦钰.Met.(Cu,Ag)-TCNQ有机薄膜的EB CL像[J].物理化学学报,1994,10(11):1040-1044
    [150] H. Wachtel, M. Ohnmacht, J. U. von Schutz, H. C. Wolf. Nanostructured organic materials: Cu-TCNQ and Ag-TCNQ radical salts[J]. Nanostructured Materials, 1995, 6(1-4): 291-295
    [151] Qun Zhang, Weijun Wang, Gangfeng Ye, Xuejian Yan, ZHuangjian Zhang, Zhongyi Hua. The preparation of nanograin Ag-TCNQ thin films by vacuum evaporation with post-heat treatment[J]. Synthetic Metals, 2004, 144(3): 285-289
    [152] E. I. Kamitsos, W. M. Risen, Jr.. Optically induced transformations of metal TCNQ materials[J]. Solid State Communications, 1983, 45(2): 165-169
    [153] E. I. Kamitsos, C. H. Tzinis, W. M. Risen, Jr.. Raman study of the mechanism of electrical switching in Cu TCNQ films[J]. Solid State Communications, 1982, 42(8): 561-565
    [154] Fulong Tang, Congshan Zhu, Fuxi Gan. Preparation and photochromic behavior of ormosil containing encapsulated AgTCNQ molecules[J]. Journal of Sol-Gel Science and Technology, 1997, 9: 279-283
    [155] Mark Harris, J. J. Hoagland, Ursula Mazur, K. W. Hipps. Raman and infrared spectra of metal salts of α, α-dicyano-p-toluoylcyanide: non-resonant Raman scattering in TCNQ[J]. Vibrational Spectroscopy, 1995, 9(3): 273-277
    [156] Robert A. Heinta, Hanhua Zhao, Xiang Quyang, Giulio Grandinetti, Jerry Cowen Kim R. Dunbar. New insight into the nature of Cu(TCNQ): Solution routines to two distinct polymorphs and their relationship to crystalline films that display bistable switching behavior[J]. Inorg. Chem., 1999, 38(1): 144-156
    [157] Qun Zhang, Lingzhu Kong, Qiangji Zhang, Weijun Wang, Zhongyi Hua. The effect of heat treatment on bistable Ag-TCNQ thin films[J]. Solid State Communicatiuons, 2004, 130(12): 799-802
    [158] Chun-wei Yuan, Chang-Ru Wu, Yu Wei, Wei-Yi Yang. Insertion of AgTCNQcomplexes into Langmuir-Blodgett multilayers[J]. Thin Solid Films, 1994, 243(1-2): 679-682
    [159] 张群,孔令柱,张强基,王伟军,华中一.Ag-TCNQ薄膜电双稳态特性的XPS研究[J].真空科学与技术,2003,23(3):169-172
    [160] Shannon A. O'Kane, Rodolphe Clerac, Hanhua Zhao, Xiang Ouyang, Jose Ramon Galan-Mascar os, Robert Heintz, Kim R. Dunbar. New Crystalline Polymers of Ag(TCNQ) and Ag(TCNQF4): Structures and Magnetic Properties[J]. Journal of Solid State Chemistry, 2000, 152: 159-173
    [161] P. G. Gucciardi, S. Trusso, C. Vasi S. Patane, M. Allegrini. Near-field Raman imaging of morphological and chemical defects in organic crystals with subdiffraction resolution[J]. Journal of Microscopy, 2002, 2090:228-235
    [162] P. G. Gucciardi, S. Trusso, C. Vasi S. Patane, M. Allegrini. Optical near-field Raman imaging with subdiffraction resolution[J]. Applied Optics, 2003, 42(15): 2724-2729
    [163] Chiaki Sato, Seiichi Wakamatsu, Kaorn Tadokoro, Kikujiro Ishii. Polarized memory effect in the device including the organic charge-transfer complex, copper-TCNQ[J]. J. Appl. Phys., 1990, 68(12): 6535-6537
    [164] Jianping Gong, Yoshihito Osada. Preparation of polymeric metal-TCNQ film and its bistable switching[J]. Appl. Phys. Lett. 1992, 61(23): 2787-2789
    [165] H. Wachtel, J. Ferger, J. U. yon Schutz, H. C. Wolf. Electron beam lithography of two-component radical ion salt films: Reversible charge transfer in Cu-and Ag-TCNQ[J]. Synthetic Metals, 1995, 71(1-3): 2103-2104
    [166] Z. Y. Hua, G. R. Chen. A new material for optical, electrical and. Electronic thin film materials[J]. Vacuum, 1992, 43(11): 1019-1023
    [167] N. Gu, W. Lu, S. M. Pang, C. W. Yuan, Y. Wei. Photovoltaic effect in CuTCNQ organic thin films[J]. Thin Solid Films, 1994, 243(1-2): 468-471
    [168] R. C. Benson, R. C. Hoffman, R. S. Potember, E. Bourkoff, T. O. Poehler. Spectral dependence of reversible optically induced transitions in organometallic compound[J]. Appl. Phys. Lett. 1983, 42(10): 855-857
    [169] 华中一.真空实验技术[M].上海科学技术出版社,1986
    [170] 陈国荣,范智勇,陈殿勇,莫晓亮.多探头微机膜厚测控装置[P].CN99240231.X,2000.07.28
    [171] L. Tian, R. Dieckmann. Sodium tracer diffusion in a glass-ceramic containing nano-sized spinel crystals [J]. Journal of Non-Crystalline Solids, 2001, 281(1-3): 55-60
    [172] M. M. Abou-Mesalam, I. M. Ei-Naggar. Diffusion mechanism of Cs~+, Zn~(2+) and Eu~(3+) ions in the particles of zirconium titanate ion exchanger using radioactive tracers[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2003, 215: 205-211
    [173] H. D. Witte, T. Conard, W. Vandervorst, R. Gijbels. Ion-bombardment artifact in TOF-SIMS analysis of ZrO2/SiO2/Si stacks[J]. Applied Surface Science, 2003, 203-204: 523-526
    [174] C. W. T. Bulle-Lieuwma, W. J. H. van Gennip, J. K. J. van Duren, P. Jonkheijm, R. A. J. Janssen, J. W. Niemantsverdrit. Characterization of polymer solar cells by TOF-SIMS depth profiling[J]. Applied Surface Science, 2003, 203-204: 547-550
    [175] K. Mayerhofer, H. Foisner, K. Piplits, G. Hobler, L. Palmetshofer, H. Hurter. Range evaluation in SIMS depth profiles of Er-implantations in silicon[J]. Applied Surface Science, 2005, 252(1): 271-277
    [176] A. V. Berenov, S. R. Foltyn, C. W. Schneider, P. A. Warburton, J. L. MacManus-Driscoll. Determination of Ca diffusion in YBCO films by secondary ion mass spectroscopy[J]. Solid State lonics, 2003, 164: 149-158
    [177] 陈国珍,黄贤智,刘文远,郑朱梓,王尊本编著.紫外-可见光分光光度法(上册)[M].北京:原子能出版社,1987:3
    [178] 杨国山,蔡反攻,薛永库,周红梅,郭勇.正电子发射扫描仪和回旋加速器建设中的防护评价[J].中 国辐射卫生,1999,8(1):21-23
    [179] 卢宁,汪静,乔宏庆,周谊,邓敬兰,李国权.~(18)F-FDG PET显像中受检者周围人员的辐射剂量监测[J].中华核医学杂志,2004,24(3):186-188
    [180] Ava Bixler, Greg Springer, Richard Lovas. Practical aspects of radiation safety for using fluorine-18[J]. J. Nucl. Med. Technol., 1999, 27(1): 14-16
    [181] 徐四大编著.核物理学[M].北京:清华大学出版社,1992:3
    [182] 林祥通.对国内发展正电子放射性药物的建议[J].中华核医学杂志,2005,25:136-137
    [183] RDS111 Operation Manual
    [184] 张锦明,田嘉禾,周丹,陈英茂.快速自动化合成2-~(18)F-β-D-脱氧葡萄耱[J].中华核医学杂志,2003,23(1):52-54
    [185] K. Hamacher, H. H. Coenen, G. Stocklin. Efficient sterospecific synthesis of no-carrier-added 2-~(18)F-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution[J]. J. Nucl. Med.. 1986, 27(2): 235-238
    [186] B. H. Mock, M. T. Vaverk, G. K. Mulholland. Back-to-back one-pot ~(18)F-FDG synthesis in a single Siemens-CTI chemistry process control unit[J]. Nucl. Med. Biol., 1996, 23: 497-501
    [187] A. Blovher, M. Kuntasch, R. Wei. Synthesis and labeling of 5'-O-(4, 4'-dimethoxytrithl)-2, 3'-anhydrothymidine for ~(18)F-FLT preparation[J]. J. Radiochem Nucl. Chem., 2002, 251: 55-58
    [188] H. J. Weater, W. Herz, W. Weber. Synthesis and radiopharmacology of O-(2-~(18)F-fluoroethyl)-L-tyrosine for tumor imaging[J]. J. Nucl. Med., 1999, 40(1): 205-212
    [189] T. Hara, M. Yuasa. Automated synthesis of ~(11)C-choline, a positron emitting tracer for tumor imaging [J]. Appl. Radiat. Isot., 1999, 50(3): 531-533
    [190] C. Pascali, A. Bogni, R. Iwata, M. Cambie, E. Bombardieri. ~(11)C-methylation on a C18 Sep-Pak cartridge: a convenient way to produce N-methyl-~(11)C-choline[J]. J. Labelled Compd. Radiopharm., 2000, 43: 195-203
    [191] C. Pascali, A. Bogni, R. Iwata, D. Decise, F. Crippa, E. Bombardieri. High efficiency preparation of L-[S-methyl-~(11)C]methionine by on-column [~(11)C]methylation on a C18 Sep-Pak[J]. J. Labelled Compd. Radiopharm., 1999, 42: 715-724
    [192] M. Mitterhauser, W. Wadsak, A. Krcal, J. Schmaljohann, E. Bartosch, H. Eidher, H. Viemstein, K. Kletter. New aspects on the preparation of [~(11)C]acetate——a simple and fast approach via distillation[J]. Appl. Radiat. Isot., 2004, 61(6): 1147-1150
    [193] Kazunori Kawamura, Kiichi Ishiwata, Masami Futatsubashi, Shin-Ichi, Yasuomi Ouchi, Yoshio Homma, Michio Senda. Efficient HPLC separation of [~(11)C] β-CFT or[~(11)C] β-CIT from an N-desmethyl precursor on a semipreparative reversed phase ODS column[J]. Appl. Radiat. Isot., 2000, 52(2): 225-228
    [194] United States Pharmaceutical Convention, Inc., USP 24[S], 2000
    [195] 唐刚华,王明芳,唐小兰,高晓,吴湖炳,李志,黄祖汉.~(18)F-FDG和~(13)N-NH_3的质量控制研究[J].中华核医学杂志,2001,21(4):246-248
    [196] 李军.李广义,高铎.新型~(18)F-脱氧葡萄糖注射液的制备和质量控制[J].华西药学杂志,2004,19(1):8-10
    [197] Ronald Nutt. The history of positron emission tomography[J]. Molecular Imaging and Biology, 2002, 4(1): 11-26
    [198] Johannes Czernin, Heinrich Schelbert. PET/CT Imaging: Facts, Opinions, Hopes, and Questions[J]. J. Nucl. Med., 2004, 45(suppl.): 1S-3S
    [199] 戴光曦编著.实验原子核物理学[M].北京:原子能出版社,1995:250
    [200] 复旦大学,清华大学,北京大学合编.原子核实验方法[M].北京:原子能出版社,1985:37
    [20l] 潘自强编.辐射剂量学[M].北京:原子能出版社,1992:162
    [202] S.W.S.McKeever 著,蔡干钢,吴方,王所亭译.固体热释光[M].北京:原子能出版社,1985:69
    [203] R. G. O'Donnell, L. Leon Vintro, G. J. Duffy, P. I. Mitchell. Measurement of the residual radioactivity induced in the front of foil of a target assembly in a modem medical cyclotron[J]. Appl. Radiat. Isot., 2004, 60(2-4): 539-542
    [204] Charles L. Melcher. Scintillation crystals for PET[J]. J. Nucl. Med., 2000, 41(6): 1051-1055
    [205] David J. Brenner, Carl D. Elliston. Estimated radiation risks potentially associated with full-body CT screening[J]. Radiology, 2004, 232(3): 735-738
    [206] GB 4792.放射卫生防护基本标准[S].1984
    [207] GB/T 14325-93.辐射防护最优化纲要[S].1993
    [208] 郑钧正.研制我国统一的辐射防护基本标准[J].中华放射医学与防护杂志,1995,15(4):286-288
    [209] GB 18871.电离辐射防护与辐射安全基本标准[S].2002
    [210] D. E. Paulsen. Dose to the Staff in the Center for Positron Emission Tomography at the University Hospital in Copenhagen[D]. Denmark: Technical University of Denmark, 1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700