低接触势垒ErSi_(2-x)和YSi_(2-x)薄膜的制备及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着集成电路器件尺寸的持续缩小,与Si超低接触电阻率的要求以及新型源漏结构器件的出现,迫切需要降低金属硅化物的接触势垒。因此能与n型Si形成低接触势垒的稀土金属硅化物(如ErSi_(2-x)、YSi_(2-x)等)日益引起研究者的关注。但是,薄膜的氧化问题及表面形貌缺陷问题阻碍了稀土金属硅化物在大规模生产工艺中的应用。本论文以ErSi_(2-x)和YSi_(2-x)为主要研究对象,利用蒸发、溅射和快速热退火等常规工艺手段和一系列物相、形貌、电学表征方法对上述两个问题进行了深入的研究,取得了以下主要结果:
     1.YSi_(2-x)薄膜的生长及性质表征
     Y/Si(100)在500℃至950℃快速热退火条件下,可生成非常稳定且具有较低薄层电阻的YSi_(2-x)薄膜,但存在氧化问题。硅化物形成的同时伴随着针孔的出现,其形状为方形或者长方形,尺寸在微米量级。YSi_(2-x)/p-Si(100)接触势垒高度随退火温度变化不大,在0.633 eV至0.686 eV之间。I-V-T测试表明,YSi_(2-x)/n-Si(100)接触的Schottky势垒存在微观不均匀性,该不均匀性可用高斯分布模型描述。500℃、600℃和900℃退火样品的平均势垒高度分别为0.460 eV、0.376eV和0.324 eV,而700℃和800℃退火形成的YSi_(2-x)/n-Si(100)二极管样品在低温时仍表现出“欧姆”特性(整流比较低,约为几十)。
     2.ErSi_(2-x)薄膜的生长及性质表征
     Er/Si(100)在500℃至1000℃退火条件下,也可生成非常稳定且薄层电阻较低的ErSi_(2-x)薄膜。分析表明,Er/Si(100)样品退火时的固相反应可以看作界面硅化反应与表面氧化反应的相互竞争过程。针孔现象在ErSi_(2-x)薄膜中同样存在,然而对于很薄的ErSi_(2-x)薄膜,则可能形成金字塔形缺陷结构。当金属Er层比较厚的时候,退火形成的ErSi_(2-x)/p-Si(100)接触受到氧化的影响较小,测得的接触势垒高度在0.783 eV至0.805 eV之间,且随退火温度变化不大。但对很薄的样品,氧化很容易造成接触特性的退化和破坏。I-V-T测试表明,ErSi_(2-x)/n-Si(100)接触的Schottky势垒也存在着微观不均匀性,该不均匀性也可用高斯分布模型描述,不同退火温度样品的平均势垒高度在0.343~0.427 eV之间,而700℃、800℃和900℃退火样品的势垒不均匀性相对较大,因此这三个退火温度的二极管样品在低温时仍呈现“欧姆”特性。
     3.利用W覆盖层制备ErSi_(2-x)薄膜及其性质表征
     将W覆盖层技术应用于自对准ErSi_(2-x)工艺,并用该方法成功地制备了自对准的ErSi_(2-x)/p-Si(100)二极管样品。实验表明,W覆盖层不仅能有效防止薄膜出现金字塔形缺陷,获得平整的ErSi_(2-x)薄膜,而且对抑制ErSi_(2-x)薄膜氧化、改善ErSi_(2-x)/p-Si(100)的接触特性也有促进作用。
     4.Er中间层对Ni/Si(100)固相反应、NiSi/Si(100)接触特性的影响
     对Ni/Er/Si(100)三元体系的研究发现,很薄中间层Er的加入,会提高NiSi形成温度,并抑制Ni_2Si等富Ni硅化物相的出现,在700℃及以上温度退火所形成的NiSi_2则有明显的(100)择优生长晶向。然而,退火之后发现Er大部分偏析到NiSi薄膜表层,因此Er的掺入并不能有效地调制NiSi/n-Si(100)的Schottky势垒高度。
     5.掺Pt对Si(100)上生长的NiSi薄膜应力影响研究
     原位应力测试表明,Si(100)衬底上生长的纯NiSi薄膜和纯PtSi薄膜的室温应力主要是热应力,且分别为775MPa和1.31GPa,而对于Ni_(1-x)Pt_xSi合金硅化物薄膜,室温应力则随着Pt含量的增加而逐渐增大,造成应力增大的主要原因是Pt的加入提高了薄膜的应力弛豫温度。
As the feature size of modern complementary metal-oxide-semiconductor devices is continuously scaling, the urgent demand for low contact resistivity with Si as well as the emerging of new source/drain structures requires the Schottky barriers of silicide contacts on Si to be very low. Rare earth (RE) silicides such as ErSi_(2-x) and YSi_(2-x) have aroused much research interest in recent years for their very low Schottky barriers on n-type Si. However, RE silicides suffer from oxidation problems and surface morphological defects. In this dissertation, a study has been carried out on ErSi_(2-x) and YSi_(2-x) prepared by evaporation, sputtering and rapid thermal annealing (RTA). Various characterization methods were employed to investigate the phase, morphology and electrical properties of the formed silicide layers on Si(100). The dissertation obtained the following results.
     1. Growth and properties of YSi_(2-x) on Si(100)
     By evaporation of Y on Si(100) substrate followed by RTA, YSi_(2-x) film can be formed at 500℃annealing and keep stable up to 950℃annealing. However, oxidation problems could not be avoided. As the silicide formed, pinholes were also observed to form in the silicide layers. The pinhole has a shape of either a square or a rectangle. The contact barrier of YSi_(2-x) on p-Si(100) was found to be between 0.633 eV and 0.686 eV which does not vary significantly with different annealing temperatures. The I-V-T characteristics of YSi_(2-x)/n-Si(100) Schottky diodes show that microscopic inhomogeneity of Schottky barrier height (SBH) exists in this contact system, which can be described by a Gaussian distribution model. The mean SBH of the YSi_(2-x)/n-Si(100) diode was shown to be 0.460, 0.376, 0.324 eV for annealing temperatures of 500, 600, 900℃, respectively, and possibly even lower for 700 and 800℃annealing temperatures. The diodes annealed at 700 and 800℃showed ohmic-like behaviour even when cooled down to temperature as low as 90 K.
     2. Growth and properties of ESi_(2-x) on Si(100)
     By sputter deposition of Er on Si(100) followed by RTA, ErSi_(2-x) film can be formed at 500℃annealing and keep stable up to 1000℃annealing. The solid phase reaction of the Er film on the Si substrate can be considered as a competition between the silicidation at the Er/Si interface and the oxidation at the film surface. Pinholes or pyramidal defects were observed to form in the formed ErSi_(2-x) film depending on the initial Er thickness. When the silicide layer is thick, the SBH of the ErSi_(2-x)/p-Si(100) contact was found to vary between 0.783 and 0.805 eV for annealing temperature ranging from 500 to 900℃. As the thickness of the ErSi_(2-x) layer is reduced, the contact properties of the ErSi_(2-x)/p-Si(100) diode are degraded due to severe oxidation problems. The SBH inhomogeneity also exists in ErSi_(2-x)/n-Si(100) contacts, which can also be well described by the Gaussian distribution model. The mean SBHs of the ErSi_(2-x)/n-Si(100) contacts were extracted to be 0.343-0.427 eV for different annealing temperatures. And the SBH inhomogeneity for the diodes annealed at 700, 800 and 900℃was found to be larger than for those annealed at 500 and 600℃, which explains well the ohmic-like behaviour at low temperatures for the diodes annealed at 700, 800 and 900℃.
     3. Formation of ErSi_(2-x) film with W capping layer
     A W capping technique was investigated to fabricate self-aligned ErSi_(2-x)/p-Si(100) diodes. With the W capping, the formed ErSi_(2-x) film was observed to be quite smooth without any pinhole or pyramidal defect. This technique also helps to suppress oxidation and to improve the contact properties of the ErSi_(2-x) on p-type Si.
     4. Effect of erbium interlayer on nickel silicide formation on Si(100)
     In the study of Ni/Er/Si(100) ternary system, the NiSi formation temperature was found to increase depending on the Er interlayer thickness (0.5-3.0 nm). With Er(2 nm) interlayer, the formed NiSi_2 after annealing at 700℃or above was observed to be highly textured with (100) preferred orientation. During the NiSi formation, Er segregates to the surface with little remaining at the NiSi/Si(100) interface. Therefore, no appreciable SBH modulation was observed in the NiSi/n-Si(100) contact by Er addition.
     5. Effect of Pt addition on the stress of NiSi film formed on Si(100)
     Systematic in-situ stress measurement on Ni_(1-x)Pt_xSi formed on Si(100) showed that the residual thermal stress at room temperature is 775 MPa and 1.31 GPa for NiSi and PtSi films grown on Si(100) substrates, respectively. For the Ni_(1-x)Pt_xSi alloy film, the residual stress was observed to increase steadily with Pt composition. The stress relaxation temperature, which also increases with the Pt composition, was found to be reason for such a law.
引文
[1] S. E. Thompson, and S. Parthasarathy. Moore's law: the future of Si microelectronics [J]. Materials Today, 2006,9(6): 20-25.
    
    [2] T. Mochizuki, T. Tsujimaru, M. Kashiwagi, and Y. Nishi. Film properties of MoSi_2 and their application to self-aligned MoSi_2 gate MOSFET [J]. IEEE Trans. Electron Devices, 1980, 27(8): 1431-1435.
    [3] M. Y. Tsai, H. H. Chao, L. M. Ephrath, B. L. Crowder, A. Cramer, R. S. Bennett, C. J. Lucchese, and M. R. Wordeman. One-micron polycide (WSi_2 on poly-Si) MOSFET technology [J]. J. Electrochem. Soc, 1981,128(10): 2207-2214.
    [4] M. Y. Tsai, F. M. d'Heurle, C. S. Petersson, and R. W. Johnson. Properties of tungsten silicide film on polycrystalline silicon [J]. J. Appl. Phys., 1981, 52(8): 5350-5355.
    [5] A. K. Sinha, W. S. Lindenberger, D. B. Fraser, S. P. Murarka, and E. N. Fuls. MOS compatibility of high-conductivity TaSi_2/n~+ poly-Si gates [J]. IEEE Trans. Electron Devices, 1980, 27(8): 1425-1430.
    [6] S. P. Murarka, D. B. Fraser, A. K. Sinha, and H. J. Levinstein. Refractory silicides of titanium and tantalum for low-resistivity gates and interconnects [J], IEEE Trans. Electron Devices, 1980, 27(8): 1409-1417.
    [7] A. Lauwers, J. A. Kittl, M. J. H. Van Dal, O. Chamirian, M. A. Pawlak, M. de Potter, R. Lindsay, T. Raymakers, X. Pages, B. Mebarki, T. Mandrekar, and K. Maex. Ni based silicides for 45 nm CMOS and beyond [J]. Mater. Sci. Eng. B, 2004, 114: 29-41.
    [8] J. A. Kittl, and Q. Z. Hong. Self-aligned Ti and Co silicides for high performance sub-0.18 urn CMOS technologies [J]. Thin Solid Films, 1998,320:110-121.
    [9] J. A. Kittl, A. Lauwers, O. Chamirian, M. Van Dal, A. Akheyar, M. De Potter, R. Lindsay, and K. Maex. Ni- and Co-based silicides for advanced CMOS applications [J]. Microelectron. Eng., 2003, 70: 158-165.
    [10] J. P. Gambino and E. G. Colgan. Silicides and ohmic contacts [J]. Mater. Chem. Phys., 1998, 52: 99-146.
    
    [11] S.-L. Zhang and M. Ostling. Metal silicides in CMOS technology: past, present, and future trends [J]. Critical Reviews in Solid State and Materials Sciences, 2003, 28(1): 1-129.
    
    [12] H. Iwai, T. Ohguro, and S.-i. Ohmi. NiSi salicide technology for scaled CMOS [J]. Microelectro. Eng., 2002, 60:157-169.
    [13] K. Maex and M. van Rossum. Properties of Metal Silicides [M], London: INSPEC, EMIS Data Reviews Series No. 14,1995: 4-10,18-23,165-166, 282-285.
    [14] D.-X. Xu, S. R. Das, C. J. Peters, and L. E. Erickson. Material aspects of nickel silicide for ULSI applications [J]. Thin Solid Films, 1998, 326:143-150.
    [15] C. Lavoie, F. M. d'Heurle, C. Detavernier, and C. Cabral Jr.. Towards implementation of a nickel silicide process for CMOS technologies [J]. Microelectron. Eng., 2003, 70: 144-157.
    [16] S. Zaima, O. Nakatsuka, A. Sakai, J. Murota, and Y. Yasuda. Interfacial reaction and electrical properties in Ni/Si and Ni/SiGe(C) contacts [J]. Appl. Surf. Sci., 2004, 224: 215-221.
    [17] D. Mangelinck, J. Y. Dai, J. S. Pan, and S. K. Lahiri. Enhancement of thermal stability of NiSi films on (100)Si and (111)Si by Pt addition [J]. Appl. Phys. Lett., 1999, 75(12): 1736-1738.
    [18] D. Z. Chi, D. Mangelinck, S. K. Lahiri, P. S. Lee, and K. L. Pey. Comparative study of current-voltage characteristics of Ni and Ni(Pt)-alloy silicided p~+/n diodes [J]. Appl. Phys. Lett., 2001, 78(21): 3256-3258.
    [19] J. F. Liu, H. B. Chen, J. Y. Feng, and J. Zhu. Improvement of the thermal stability of NiSi films by using a thin Pt interlayer [J]. Appl. Phys. Lett., 2000,77(14): 2177-2179.
    [20] C. Detavernier, X. P. Qu, R. L. Van Meirhaeghe, B. Z. Li, and K. Maex. Mixing entropy and the nucleation of silicides: Ni-Pd-Si and Co-Mn-Si ternary systems [J]. J. Mater. Res., 2003,18(7): 1668-1678.
    [21] R. N. Wang and J. Y. Feng. Comparison of the thermal stabilities of NiSi films in Ni/Si, Ni/Pd/Si and Ni/Pt/Si systems [J]. J. Phys: Condens. Matter, 2003,15: 1935-1942.
    [22] D. Deduytsche, C. Detavernier, R. L. Van Meirhaeghe, J. L. Jordan-Sweet, and C. Lavoie. Formation and morphological stability of NiSi in the presence of W, Ti, and Ta alloying elements [J]. J. Appl. Phys., 2007,101(4): 044508.
    [23] W. Huang, L.-C. Zhang, Y.-Z. Gao, and H.-Y. Jin. Effect of a thin W, Pt, Mo, and Zr interlayer on the thermal stability and electrical characteristics of NiSi [J]. Microelectron. Eng., 2007, 84: 678-683.
    [24] C. Lavoie, C. Detavernier, C. Cabral Jr., F. M. d'Heurle, A. J. Kellock, J. Jordan-Sweet, and J. M. E. Harper. Effects of additive elements on the phase formation and morphological stability of nickel monosilicide films [J]. Microelectron. Eng., 2006, 83: 2042-2054.
    [25] Y.-Z. Han, X.-P. Qu, Y.-L. Jiang, B.-L. Xu, Y.-F. Cao, G-P. Ru, B.-Z. Li, PK. Chu. Ni(Pt)Si thin film formation and its electrical characteristics with Si substrate [C]. 6* International Conference on Solid-State and Integrated-Circuit Technology, Shanghai, China, Oct 22-25, 2001:513-516.
    [26] H. H. Berger. Models for contacts to planar devices [J]. Solid-State Electron., 1972, 15(2): 145-158.
    [27] C. M. Osburn and K. R. Bellur. Low parasitic resistance contacts for scaled ULSI devices [J]. Thin Solid Films, 1998, 332: 428-436.
    [28] The International Technology Roadmap for Semiconductors (ITRS) [R], http://www.itrs.net/ Links/2006Update/2006UpdateFinal.htm.
    [29] P. R. Besser, P. King, E. Paton, and S. Robie. Ge effects on silicidation [J]. Microelectron. Eng., 2005, 82:467-473.
    [30] K. N. Tu, R. D. Thompson, and B. Y. Tsaur. Low Schotkky barrier of rare-earth silicide on n-Si [J]. Appl. Phys. Lett., 1981, 38(8): 626-628.
    [31] J. E. Baglin, F. M. d'Heurle, and C. S. Petersson. The formation of silicides from thin films of some rare-earth metals [J]. Appl. Phys. Lett., 1980, 36(7): 594-596.
    [32] R. D. Thompson, B. Y. Tsaur, and K. N. Tu. Contact reaction between Si and rare earth metals [J]. Appl. Phys. Lett., 1981,38(7): 535-537.
    [33] A. Vantomme, M. F. Wu, S. Hogg, U. Wahl, W. Deweerd, H. Pattyn, G. Langouche, S. Jin, and H. Bender. Stabilisation and phase transformation of hexagonal rare-earth silicides on Si(111) [J]. Nucl. Instrum. Methods Phys. Res. B, 1999,147: 261-266.
    [34] A. Falepin. Phase transformation in epitaxially stabilized silicides on Si(111) [D]. PhD dissertation, KULEUVEN, 2003.
    [35] K. Maex and M. van Rossum. Properties of Metal Silicides [M], London: INSPEC, EMIS Data Reviews Series No. 14,1995: 47-48.
    [36] T. L. Lee, L. J. Chen, and F. R. Chen. Evolution of vacancy ordering and defect structure in epitaxial YSi_(2-x) thin films on (111)Si [J]. J. Appl. Phys., 1992, 71(7): 3307-3312.
    [37] F. H. Kaatz, W. R. Graham, and J. Van der Spiegel. Modification of the microstructure inepitaxial erbium silicide [J]. Appl. Phys. Lett., 1993, 62(15): 1748-1750.
    [38] S. Jin, J. H. Lin, L. J. Chen, W. D. Shi, and Z. Zhang. Ion beam synthesis of yttrium silicides in (111)Si [J]. Nucl. Instr. Meth. Phys. Res. B, 1995,96:347-351.
    [39] C. H. Luo, G. H. Shen, and L. J. Chen. Vacancy ordering structures in epitaxial RESi_(2-x) thin films on (111)Si and (001)Si [J]. Appl. Surf. Sci., 1997,113/114:457-461.
    [40] V. M. Koleshko, V. F. Belitoky, A. A. Khodin. Thin films of rare earth metal silicides [J]. Thin solid films, 1986, 141: 277-285.
    [41] J. A. Knapp and S. T. Picraux. Epitaxial growth of rare-earth silicides on (111)Si [J]. Appl. Phys. Lett., 1986,48(7): 466-468.
    [42] S. S. Lau, C. S. Pai, C. S. Wu, T. F. Kuech, and B. X. Liu. Surface morphology of erbium silicides [J]. Appl. Phys. Lett., 1982,41(1): 77-80.
    [43] J.-Y. Duboz, P.-A. Badoz, A. Perio, J.-C. Oberlin, F. Arnaud d'Avitaya, Y. Campidelli, and J. A. Chroboczek. Epitaxial erbium silicides films on Si(111) surface: fabrication, structure, and electrical properties [J]. Appl. Surf. Sci., 1989, 38: 171-177.
    [44] M. P. Siegal, F. H. Kaatz, W. R. Graham, J. J. Santiago, J. Van der Spiegel. Formation of epitaxial yttrium and erbium silicides on Si(111) in ultra-high vacuum [J]. Appl. Surf. Sci., 1989, 38: 162-170.
    [45] M. F. Wu, A. Vantomme, H. Pattyn, and G. Langouche. Importance of channeled implantation to the synthesis of erbium silicide layers [J]. Appl. Phys. Lett., 1995, 67(26): 3886-3888.
    [46] M. F. Wu, S. Yao, A. Vantomme, S. Hogg, H. Pattyn, G. Langouche, Q. Yang, and Q. Wang. Structural study of YSi_(1.7) layers formed by channeled ion beam synthesis [J]. J. Vac. Sci. Technol. B, 1998,16(4): 1901-1906.
    [47] S. M. Hogg, A. Vantomme, and M. F. Wu. Growth and electrical characterization of GdSi_(1.7) epilayers formed by channeled ion beam synthesis [J]. J. Appl. Phys., 2002,91(6): 3664-3668.
    [48] S. M. Hogg, A. Vantomme, M. F. Wu, S. Yao, H. Pattyn, and G. Langouche. Epitaxial ternary Er_(0.5)Y_(0.5)Si_(1.7) silicide layers formed by channeled ion beam synthesis [J]. Nucl. Instr. Meth. Phys. Res. B, 1999, 148: 621-625.
    [49] S. Jin, H. Bender, M. F. Wu, A. Vantomme, S. Hogg, H. Pattyn, and G. Langouche. Growth of high-quality buried Y- and (Y, Nd)-silicide layers prepared by channeled ion implantation [J]. J. Crystal Growth, 1998,194: 189-194.
    [50] M. F. Wu, S. Yao, A. Vantomme, S. Hogg, H. Pattyn, G. Langouche, X. Ye, and J. P. Celis. Heteroepitaxial Er_(0.49)Gd_(0.51)Si_(1.7) layers formed by channeled ion beam synthesis [J]. Nucl. Instr. Meth. Phys. Res. B, 1998, 142: 355-360.
    [51] M. Gurvitch, A. F. J. Levi, R. T. Tung, and S. Nakahara. Epitaxial yttrium silicide on (111) silicon by vacuum annealing [J]. Appl. Phys. Lett., 1987, 51(5): 311-313.
    [52] G. Molnar, I. Gerocs, G. Peto, E. Zsoldos, J. Gyulai and E. Bugiel. Epitaxy of GdSi_(≈1.7) on <111>Si by solid phase reaction [J]. Appl. Phys. Lett., 1991, 58(3): 249-250.
    
    [53] F. H. Kaatz, J. Van der Spiegel, W. R. Graham. Fabrication and structure of epitaxial terbium silicide on Si(111) [J]. J. Appl. Phys., 1991, 69(1): 514-516.
    [54] G. H. Shen, J. C. Chen, and L. J. Chen. Planar defects in epitaxial DySi_(2-x) thin films on (111)Si [J]. Appl. Surf. Sci., 1999, 142: 332-335.
    [55] A. Travlos, N. Salamouras, and N. Boukos. Epitaxial dysprosium silicide films on silicon: growth, structure and electrical properties [J]. Thin Solid Films, 2001, 397:138-142.
    [56] A. Travlos, N. Salamouras, and N. Boukos. Growth, structure and electrical properties of epitaxial thulium silicide thin films on silicon [J]. J. Appl. Phys., 1997, 81(3): 1217-1221.
    [57] C. Wigren, J. N. Andersen, R. Nyholm, and U. O. Karlsson. Growth and Epitaxy of Yb silicides on Si(111) [J]. J. Vac. Sci. Technol. A, 1991,9(3): 1942-1945.
    [58] K. S. Chi and L. J. Chen. Formation of Ytterbium silicide on (111) and (100)Si by solid-state reactions [J]. Materials Science in Semiconductor processing, 2001,4:269-272.
    [59] I. Gerocs, G. Molnar, E. Jaroli, E. Zsoldos, G. Pet6, and J. Gyulai. Epitaxy of orthorhombic gadolinium silicide on <100> silicon [J]. Appl. Phys. Lett., 1987, 51(25): 2144-2145.
    [60] Y. K. Lee, N. Fujimura, and T. Ito. Epitaxial growth of yttrium silicide YSi_(2-x) on (100)Si [J]. J. Alloys Compounds, 1993,193: 289-291.
    [61] W. C. Tsai, K. S. Chi, and L. J. Chen. Planar defects and double-domain epitaxy in epitaxial YSi_(2-x) and ErSi_(2-x) thin films on Si substrates [J]. Journal of Electronic materials, 2003, 32(11): 1166-1170.
    [62] J. C. Chen, G. H. Shen, L. J. Chen. Interfacial reactions of Gd thin films on (111) and (100)Si [J]. Appl. Surf. Sci., 1999, 142: 291-294.
    [63] Y. K. Lee, N. Fujimura, T. Ito, and N. Itoh. Epitaxial growth and structural characterization of erbium silicide formed on (100)Si through a solid phase reaction. [J]. J. Crystal Growth, 1993,134:247-254.
    [64] Y. K. Lee, M. S. Lee, and J. S. Lee. Microstructure of epitaxial erbium-silicide films formed by solid phase reaction on vicinal Si(100) substrate [J]. J. Crystal Growth, 2002, 244:305-312.
    [65] K. S. Chi, W. C. Tsai, and L. J. Chen. Evolution of vacancy ordering structures in epitaxial YbSi_(2-x) thin films on (111) and (100)Si [J]. J. Appl. Phys., 2003,93(1): 153-158.
    [66] A. Travlos, P. Aloupogiannis, E. Rokofyllou, C. Papastaikoudis, G. Weber, and A. Traverse. Epitaxial lutetium silicide: growth, characterization and electrical properties [J]. J. Appl. Phys., 1992, 72(3): 948-952.
    [67] C. Preinesberger, S. Vandre, T. Kalka, and M. Dahne-Prietsch. Formation of dysprosium silicide wires on Si(001) [J]. J. Phys. D: Appl. Phys., 1998, 31: L43-L45.
    [68] Y. Chen, D. A. A. Ohlberg, G. Medeiros-Ribeiro, Y. A. Chang, and R. S. Williams. Self-assembled growth of epitaxial erbium disilicide nanowires on silicon (001) [J]. Appl. Phys. Lett., 2000, 76(26): 4004-4006.
    [69] J. Nogami, B. Z. Liu, M. V. Katkov, C. Ohbuchi, and N. O. Birge. Self-assembled rare-earth silicide nanowires on Si(001) [J]. Phys. Rev. B, 2001,63(23): 233305.
    [70] Y. Chen, D. A. A. Ohlberg, and R. S. Williams. Nanowires of four epitaxial hexagonal silicides grown on Si(001) [J]. J. Appl. Phys., 2002,91(5): 3213-3218.
    [71] J. E. E. Baglin, F. M. d'Heurle, and C. S. Petersson. Diffusion marker experiments with rare-earth silicides and germanides: relative mobilities of the two atom species [J]. J. Appl. Phys., 1981, 52(4): 2841-2846.
    [72] J. A. Knapp, S. T. Picraux, C. S. Wu, and S. S. Lau. Kinetics and morphology of erbium silicide formation [J]. J. Appl. Phys., 1985, 58(10): 3747-3757.
    [73] G. H. Shen, J. C. Chen, C. H. Lou, S. L. Cheng, and L. J. Chen. The growth of pinhole-free epitaxial DySi_(2-x) films on atomically clean Si(111) [J]. J. Appl. Phys., 1998, 84(7): 3630-3635.
    [74] K. S. Chi and L. J. Chen. Interfacial reactions of ultrahigh vacuum deposited ytterbium thin films on silicon [J]. Micron, 2002, 33: 549-553.
    [75] M. P. Siegal, W. R. Graham, and J. J. Santiago-Aviles. Growth of pinhole-free epitaxial yttrium silicide on Si(111) [J]. J. Appl. Phys., 1990,68(2): 574-580.
    [76] T. L. Lee and L. J. Chen. Interfacial reactions of ultrahigh vacuum deposited yttrium thin films on (111)Si at low temperatures [J]. J. Appl. Phys., 1993, 73(12):, 8258-8266.
    [77] C. H. Luo and L. J. Chen. Growth kinetics of amorphous interlayers and formation of crystalline silicide phases in ultrahigh vacuum deposited polycrystalline Er and Tb thin films on (001)Si [J]. J. Appl. Phys., 1997, 82(8): 3808-3814.
    [78] J. C. Chen, G. H. Shen, and L. J. Chen. Growth kinetics of amorphous interlayers by solid-phase diffusion in ultrahigh vacuum deposited polycrystalline Gd thin films on (001)Si [J]. J. Appl. Phys., 1998, 84(11): 6083-6087.
    [79] A. Travlos, N. Salamouras, and N. Boukos. Growth of rare earth silicides on silicon [J]. Journal of Physics and Chemistry of Solids, 2003, 64: 87-93.
    [80] L. J. Chen. Solid state amorphization in metal/Si systems [J]. Mater. Sci. Eng. R, 2000, 29: 115-152.
    [81] E. J. Tan, M. L. Kon, K. L. Pey, P. S. Lee, Y. W. Zhang, W. D. Wang, D. Z. Chi. Effects of Si(001) surface amorphization on ErSi_2 thin film [J]. Thin Solid Films, 2006, 504: 157-160.
    [82] E. J. Tan, M. Bouville, D. Z. Chi, K. L. Pey, P. S. Lee, D. J. Srolovitz, and C. H. Tung. Pyramidal structural defects in erbium silicide thin films [J]. Appl. Phys. Lett., 2006, 88(2): 021908.
    [83] S. M. Hogg, A. Vantomme, M. F. Wu, G. Langouche. Electrical properties of rare earth silicides produced by channeled ion beam synthesis [J]. Microelectron. Eng., 2000, 50: 211-215.
    [84] G. Guizzetti, E. Mazzega, M. Michelini, F. Nava, A. Borghesi, and A. Piaggi. Electrical and optical characterization of GdSi_2 and ErSi_2 alloy thin films [J]. J. Appl. Phys., 1990,67(7): 3393-3399.
    [85] F. H. Kaatz, W. R. Graham, J. Van der Spiegel, W. Joss, and J. A. Chroboczek. Anomalous magnetotransport in epitaxial TbSi_(2-x) [J]. J. Vac. Sci. Technol. A, 1991, 9(3): 426-429.
    [86] I. Sagnes, G. Vincent, and P. A. Badoz. Transport and near-infrared optical properties of ErSi_(2-x) thin films [J]. J. Appl. Phys., 1992, 72(9): 4295-4299.
    [87] H. Norde, J. de Sousa Pires, F. d'Heurle, F. Pesavento, S. Petersson, and P. A. Tove. The Schottky-barrier height of the contacts between some rare-earth metals (and silicides) and p-type silicon [J]. Appl. Phys. Lett., 1981, 38(11): 865-867.
    [88] M. H. Unewisse and J. W. V. Storey. Electrical and infrared investigation of erbium silicide [J]. J. Appl. Phys., 1992, 72(6): 2367-2371.
    [89] J. Y. Duboz, P. A. Badoz, F. Arnaud d'Avitaya, and J. A. Chroboczek. Electronic transport properties of epitaxial erbium silicide/silicon heterostructures [J]. Appl. Phys. Lett., 1989, 55(1): 84-86.
    [90] S. Zhu, J. Chen, M.-F. Li, S. J. Lee, J. Singh, C. X. Zhu, A. Du, C. H. Tung, A. Chin, and D. L. Kwong. N-type Schottky barrier source/drain MOSFET using ytterbium silicide [J]. IEEE Electron Device lett., 2004,25(8): 565-567.
    [91] C. S. Wu, D. M. Scott, and S. S. Lau. The effect of an interfacial oxide layer on the Schottky barrier height of Er-Si contact [J]. J. Appl. Phys., 1985,58(3): 1330-1334.
    [92] G. J. Campisi, A. J. Bevolo, and F. A. Schmidt. The Schottky barrier height and Auger studies of yttrium and yttrium silicide on silicon [J]. J. Appl. Phys., 1981, 52(11): 6647-6650.
    [93] J. Larson and J. Snyder. Schottky barrier CMOS, Technology overview [R]. Spinnaker Semiconductor, Inc. 2003.
    [94] J. Kedzierski, P. Xuan, E. H. Anderson, J. Boker, T. J. King, and C. Hu. Complementary silicide source/drain thin-body MOSFETs for the 20nm gate length regime [C]. IEEE. IEDM Tech. Dig., IEEE: IEEE, 2000: 57-60.
    [95] M. Fritze, C. L. Chen, S. Calawa, D. Yost, B. Wheeler, P. Wyatt, C. L. Keast, J. Snyder, and J. Larson. High-speed Schottky-barrier pMOSFET with f_T = 280 GHz [J]. IEEE Electron Device lett., 2004,25(4): 220-222.
    [96] S. Zhu, H. Y. Yu, S. J. Whang, J. H. Chen, C. Shen, C. Zhu, S. J. Lee, M. F. Li, D. S. H. Chan, W. J. Yoo, A. Du, C. H. Tung, J. Singh, A. Chin, and D. L. Kwong. Schottky-barrier S/D MOSFETs with high-K gate dielectrics and metal-gate electrode [J]. IEEE Electron Device lett., 2004, 25(5): 268-270.
    [97] E. H. Rhoderick and R. H. Williams. Metal-Semiconductor Contacts [M]. 2nd ed. Clarendon: Oxford, 1988: 99.
    [98] R. T. Tung. Schottky-barrier formation at single-crystal metal-semiconductor interfaces [J]. Phys. Rev. Lett., 1984, 52(6): 461-464.
    [99] S. Zhu, X.-P. Qu, R. L. Van Meirhaeghe, C. Detavernier, G-P. Ru, F. Cardon, B.-Z. Li. Ballistic electron emission microscopy studies of the temperature dependence of Schottky barrier-height distribution in CoSi2/n-Si(100) diodes formed by solid phase reaction [J]. Solid-State Electron., 2000,44(12): 2217-2223.
    [100] C. Detavenier, R. L. Van Meirhaeghe, R. Donaton, K. Maex, F. Cardon. Ballistic electron emission microscopy study of barrier height inhomogeneities introduced in Au/n-Si Schottky contacts by a HF pretreatment [J]. J. Appl. Phys., 1998, 84(6), 3226-3231.
    [101] Y. P. Song, R. L. Van Meirhaeghe, W. H. Laflere, F. Cardon. On the difference in apparent barrier height as obtained from capacitance-voltage and current-voltage-temperature measurements on Al/p-InP Schottky barriers [J]. Solid-State Electron., 1986, 29(6): 633-638.
    [102] R. T. Tung. Electron transport at metal-semiconductor interfaces: General theory [J]. Phys. Rev. B, 1992,45(23): 13509-13523.
    [103] J. H. Werner, H. H. Guttler. Barrier inhomogeneities at Schottky contacts [J]. J. Appl. Phys., 1991,69(3): 1522-1533.
    [104] S. Chand and J. Kumar. Electron transport and barrier inhomogeneities in palladium silicide Schottky diodes [J]. Appl. Phys. A, 1997, 65(4-5): 497-503.
    [105] V. W. L. Chin, M. A. Green, J. W. V. Storey. Evidence for multiple barrier heights in p-type PtSi Schottky-barrier diodes from I-V-T and photoresponse measurements [J]. Solid-State Electron., 1990,33(2): 299-308.
    [106] S. Zhu, C. Detavernier, R. L. Van Meirhaeghe, F. Cardon, G-P. Ru, X.-P. Qu, and B.-Z. Li. Electrical characteristics of CoSi_2/n-Si(100) Schottky barrier contacts formed by solid state reaction [J]. Solid-State Electron., 2000, 44(10): 1807-1818.
    [107] M. P. Siegal, F. H. Kaatz, W. R. Graham, J. J. Santiago, and J. Van der Siegal. Formation of epitaxial yttrium silicide on (111) silicon [J]. J. Appl. Phys., 1989,66(7): 2999-3006.
    [108] M. Jang, Y. Kim, J. Shin, and S. Lee. Formation of erbium-silicide as source and drain for decananometer-scale Schottky barrier metal-oxide- semiconductor field-effect transistors [J]. Mater. Sci. Eng. B, 2004,114-115: 51-55.
    [109] Y.-L. Jiang, Q. Xie, C. Detavernier, R. L. Van Meirhaeghe, G.-P. Ru, X.-P. Qu, B.-Z. Li, A. Huang, and P. K. Chu. Oxidation suppression in ytterbium silicidation by Ti/TiN bicapping layer [J]. J. Vac. Sci. Technol. A, 2007,25(2): 285-289.
    [110] S. Zhu, C. Detavernier, R. L. Van Meirhaeghe, F. Cardon, A. Blondeel, P. Clauws, G.-P. Ru, and B.-Z. Li. Electrical characterization of Ar-ion-bombardment-induced damage in Au/Si and PtSi/Si Schottky barrier contacts [J]. Semicond. Sci. Technol., 2001, 16: 83-90.
    [111] G.-P. Ru, R. L. Van Meirhaeghe, S. Forment, Y.-L. Jiang, X.-P. Qu, S. Zhu, and B.-Z Li. Voltage dependence of effective barrier height reduction in inhomogeneous Schottky diodes [J]. Solid-State Electron., 2005, 49(4): 606-611.
    [112] W. C. Tsai, K. S. Chi, and L. J. Chen. Growth of pinhole-free epitaxial Yb and Er silicide thin films on atomically clean (111)Si [J]. J. Appl. Phys., 2004, 96(9): 5353-5356.
    [113] X. Tang, J. Katchi, E. Dubois, N. Reckinger, J. Ratajczak, G. Larrieu, P. Loumaye, O. Nisole, and V. Bayot. Very low Schottky barrier to n-type silicon with PtEr-stack silicide [J]. Solid-State Electron., 2003,47(11): 2105-2111.
    [114] P. L. Janega, J. McCaffrey, and D. Landheer. Extremely low resistivity erbium ohmic contacts to n-type silicon [J]. Appl. Phys. Lett., 1989, 55(14): 1415-1417.
    [115] Y. Tsuchiya, T. Irisawa, A. Yagishita, J. Koga. Formation of atomically flat interface and effect of silicidation condition on Schottky contact characteristics in ErSi_(1.7)/Si(100) system [C]. Extended Abstracts of the Fifth International Workshop on Junction Technology, Osaka, Japan, June 7-8, 2005: 97-98.
    [116] L. D. Locker and C. D. Capio. Reaction kinetics of tungsten thin films on silicon (100) surfaces [J]. J. Appl. Phys., 1973,44(10): 4366-4369.
    [117] M. P. Siegal, W. R. Graham, J. J. Santiago. The formation of thin-film tungsten silicide annnealed in ultrahigh vacuum [J]. J. Appl. Phys., 1989, 66(12): 6073-6076.
    [118] M. P. Siegal and J. J. Santiago. Effects of rapid thermal processing on the formation of uniform tetragonal tungsten disilicide films on Si(100) substrates [J]. J. Appl. Phys., 1987, 63(2): 525-529.
    [119] T. Nanba, S. Takano, I. Yasui, and T. Kudo. Structural study of peroxopolytungstic acid prepared from metallic tungsten and hydrogen peroxide [J]. Journal of Solid State Chemistry, 1991,90(1): 47-53.
    [120] E. H. Rhoderick and R. H. Williams. Metal-Semiconductor Contacts [M]. 2nd ed. Clarendon: Oxford, 1988: 55.
    [121] J. A. Kittl, A. Lauwers, M. A. Pawlak, M. J. H. Van Dal, A Veloso, K. G Anil, G Pourtois, C. Demeurisse, T. Schram, B. Brijs, M. de Potter, C. Vrancken, and K. Maex. Ni fully silicided gates for 45 nm CMOS applications [J]. Microelectron. Eng., 2005, 82: 441-448.
    
    [122] J. A. Kittl, A. Lauwers, M. A. Pawlak, A. Veloso, H. Y. Yu, S. Z. Chang, T. Hoffmann, G Pourtois, S. Brus, C. Demeurisse, C. Vranchen, P. P. Absil, and S. Biesemans. Modulation of the effective work function of fully-silicided (FUSI) gate stacks [J]. Microelectron. Eng., 2007,84:1857-1860.
    [123] Y.-C. Yeo. Metal gate technology for nanoscale transistors - material selection and process integration issues [J]. Thin Solid Films, 2004,462-463: 34-41.
    [124] J. D. Chen, H. Y. Yu, M. F. Li, D.-L. Kwong, M. J. H. van Dal, J. A. Kittl, A. Lauwers, P. Absil, M. Jurczak, and S. Biesemans. Yb-doped Ni FUSI for the n-MOSFETs gate electrode application [J]. IEEE Electron Device Lett., 2006,27(3): 160-162.
    [125] R. T. Tung, J. M. Gibson, and J. M. Poate. Growth of single crystal epitaxial silicides on silicon by the use of template layers [J]. Appl. Phys. Lett., 1983,42(10): 888-890.
    [126] M. Ronay and R.G. Schad. New insight into silicide formation: the creation of silicon self-interstitials [J]. Phys. Rev. Lett., 1990,64(17): 2042-2045.
    [127] A. Steegen, K. Maex, and I. De Wolf. Local mechanical stress induced defects for Ti and Co/Ti silicidation in sub-0.25μm MOS-technologies [C]. IEEE. Symp. VLSI Tech., IEEE: IEEE, 1998:200-201.
    [128] A. Steegen, A. Lauwers, M. de Potter, G. Badenes, R. Rooyackers and K. Maex. Silicide and shallow trench isolation line width dependent stress induced junction leakage [C]. IEEE. Symp. VLSI Tech., IEEE: IEEE, 2000: 180-181.
    [129] J.-H. Lee, S.-H. Park, K.-M. Lee, K.-S. Youn, Y.-J. Park, C.-J. Choi, T.-Y. Seong, and H.-D. Lee. A study of stress-induced p~+/n SALICIDE junction leakage failure and optimized process conditions for sub-0.15-μn CMOS technology [J]. IEEE Trans. Electron Devices, 2002,49(11): 1985-1992.
    [130] A. Steegen and K. Maex. Silicide-induced stress in Si: Origin and consequences for MOS technologies [J]. Mater. Sci. Eng. R, 2002,38: 1-53.
    [131] S.-L. Zhang, F. M. d'Heurle. Stresses from solid state reactions: a simple model, silicides [J]. Thin Solid Films, 1992,213:34-39.
    [132] F. M. d'Heurle and O. Thomas. Stresses during silicides formation: a review [J]. Defect and Diffusion Forum, 1996, 129-130: 137-150.
    [133] W. D. Nix. Mechanical properties of thin films [J]. Metall. Trans. A, 1989, 20(11): 2217-2245.
    [134] O. Milton. The materials science of thin films [M]. San Diego: Academic Press, 1992: 416-420.
    [135] K. Maex and M. van Rossum. Properties of Metal Silicides [M], London: INSPEC, EMIS Data Reviews Series No. 14,1995: 20-21.
    [136] C. Rivero, P. Gergaud, O. Thomas, B. Fronment, and H. Jaouen. In situ study of stress evolution during the reaction of a nickel film with a silicon substrate [J]. Microelectron. Eng., 2004, 76: 318-323.
    [137] J. T. Pan and I. A. Blech. In situ study of film stress and kinetics of platinum silicide formation on silicon [J]. Thin Solid Films, 1984,113:129-134.
    [138] S. Kennou, S. Ladas, M. G Grimaldi, T. A. Nguyen Tan, and J. Y. Veuillen. Oxidation of thin erbium and erbium silicide overlayers in contact with silicon oxide films thermally grown on silicon [J]. Appl. Surf. Sci., 1996,102: 142-146.
    [139] M.-H. Cho, D.-H. Ko, Y. G Choi, I. W. Lyo, K. Jeong, and C. N. Whang. YSi_(2-x) formation in the presence of interfacial SiO_2 layer [J]. J. Appl. Phys., 2002,92(9): 5555-5559.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700