红景天苷对神经元损伤的保护作用及机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
兴奋性氨基酸尤其是谷氨酸(Glutamate, Glu)引发的神经兴奋毒性在缺血性脑损伤中占有相当重要的地位,因而减轻Glu兴奋性毒性,保护神经元成为缺血性脑损伤的重要治疗策略之一。本研究探讨了红景天苷对兴奋性毒性损伤神经元的保护作用及可能的作用机制。
     第一部分红景天苷对Glu损伤的保护作用及机制的研究
     目的:观察红景天苷对原代培养海马神经元Glu兴奋性毒性损伤的保护作用及作用机制。
     方法:
     1.通过镜下形态分析和MTT比色法,观察红景天苷对原代培养海马神经元形态和活力的影响。
     2.通过镜下形态观察和MTT比色法检测细胞活力,摸索诱导Glu兴奋性毒性的适当浓度及时间,建立原代培养海马神经元谷氨酸兴奋性毒性损伤模型。
     3.通过形态学分析、细胞活力的MTT检测、LDH释放量的检测,观察红景天苷预处理对谷氨酸损伤后海马神经元形态和细胞活力的影响。
     4.通过Hoechst染色、TUNEL标记和Annexin V+PI的流式分析,观察红景天苷预处理对Glu损伤的海马神经元凋亡的影响。
     5.通过western blotting检测,观察红景天苷预处理对Glu损伤海马神经元凋亡相关蛋白Bcl-2和Bax蛋白表达的影响。6.通过使用Caspase-3抑制剂Z-DEVD-FMK预处理,MTT检测Glu损伤后海马神经元活力,观察凋亡执行分子Caspase-3是否参与Glu诱导的兴奋性毒性。7.通过比色法检测Caspase3活性,评价Glu损伤后不同时间细胞凋亡的程度及红景天苷预处理对Glu诱导的Caspase-3活性的影响。
     8.钙离子荧光探针Fluo-4/AM标记海马神经元,激光共聚焦显微镜下检测红景天苷对Glu诱导的[Ca~(2+)]_i变化的影响。
     结果:
     1.不同浓度的红景天苷与海马神经元共培养24h,海马神经元生长状态良好,随着红景天苷浓度的增加,神经元活力呈增加趋势,但与空白对照相比无明显统计学差异。
     2.细胞活力检测、Hoechst染色、TUNEL染色和caspase-3活性测定结果一致表明,Glu诱导了神经元凋亡;红景天苷预处理可抑制Glu诱导的神经元凋亡,呈现良好的量效关系。
     3.125μmol/LGlu损伤15min不影响Bcl-2和Bax蛋白的表达,红景天苷预处理24h也不影响这两个蛋白的表达。
     4.红景天苷预处理24h能显著降低Glu诱导的胞浆Ca~(2+)超载。结论:红景天苷预处理24h可明显改善Glu损伤后细胞活力,减少LDH的释放,抑制Glu诱导的细胞凋亡,对Glu损伤的海马神经元有明显的保护作用,其机制与抑制Glu损伤后的caspase-3活性增加和Ca~(2+)超载有关。
     第二部分红景天苷对NMDA损伤的保护作用及机制的研究
     目的:观察红景天苷对原代培养海马神经元NMDA兴奋性毒性损伤的保护作用及作用机制。
     方法:
     1.通过MTT检测,观察不同浓度NMDA对海马神经元细胞活力的影响,建立原代培养海马神经元NMDA兴奋性毒性损伤模型。
     2.通过形态学分析、细胞活力的MTT检测、LDH释放的检测,观察红景天苷预处理对NMDA损伤后海马神经元形态和细胞活力的影响。
     3.通过NF染色、TUNEL标记和Caspase-3活性的检测,观察红景天苷预处理对NMDA诱导的海马神经元凋亡的影响。
     4.RT-PCR检测红景天苷对海马神经元NR2A、NR2B、NR2C和NR2D mRNA表达的影响。
     5.Western blotting分析红景天苷对NMDA损伤海马神经元PSD-95蛋白表达的影响。
     6.Western blotting分析红景天苷对NMDA损伤海马神经元p38蛋白表达的影响。
     7.全细胞膜片钳技术检测红景天苷对NMDA诱发电流(INMDA)的影响。
     8.通过比色法检测培养上清中NO含量和NOS活性,探讨红景天苷对NMDA损伤海马神经元保护作用机制。
     9.通过MTT比色法检测细胞活力,观察红景天苷对SNP(NO供体)损伤海马神经元的保护作用。
     结果:
     1.细胞活力检测、NF染色、TUNEL染色和caspase-3活性测定结果一致表明,不同浓度NMDA均显著降低海马神经元的活力,诱导了神经元凋亡,红景天苷可抑制NMDA诱导的神经元凋亡,呈现良好的量效关系。
     2.红景天苷不影响NR2各亚单位的mRNA表达和PSD95蛋白的表达。
     3.红景天苷预处理可显著抑制NMDA诱导的NO产生和NOS活性增加。
     4.红景天苷预处理可显著抑制SNP(NO供体)诱导的神经元活力的下降。
     5.NMDA诱导的细胞凋亡性损伤与p38MAPK磷酸化相关,红景天苷可显著抑制p38MAPK蛋白的磷酸化。
     结论:红景天苷预处理24h可显著增加NMDA损伤的细胞活力,减少NMDA损伤导致的LDH的释放,且呈明显的剂量相关性,对NMDA损伤的海马神经元有明显的保护作用。其保护作用机制与抑制NMDA诱导的caspase-3活性的升高,NOS活性增加、NO生成和损伤以及p38MAPK蛋白的磷酸化有关。
     综上研究表明,红景天苷对Glu兴奋性毒性损伤的神经元有明显的保护作用,其保护作用可能与其抑制NMDA受体过度激活介导的兴奋性毒性有关(表现为抑制NMDA受体-Ca~(2+)-NO路径的激活和p38MAPK蛋白的磷酸化),为其用于脑缺血等损伤的研究和应用打下了实验基础。
During ischemic brain damage, excitatory amino acids, glutamate (Glu)-induced excitotoxicity in neurons play a rather important role. Thereby protecting neurons from the Glu-induced excitotoxicity in ischemic brain damage has become one of the important treatment strategies. This study aimed to evaluate the neuroprotective effects of salidroside on excitotoxicity and investigate the possible mechanism involved in the neuroprotection.
     Part I Protective effects and mechanism of salidroside on primary hippocampal neurons damage induced by Glu
     Objective: To investigate the protective effects and underlying mechanism of salidroside on primary rat hippocampal neurons damage induced by Glu.
     Methods:
     1. Phase contrast microscope and MTT assay were used to observe the effects of salidroside on morphology and viability of primary cultured hippocampal neurons.
     2. To build an excitatory neurotoxic model of hippocampal neurons, MTT colorimetric assay and LDH (in medium) release assay were applied to detect cell viability after incubation with different concentrations of Glu for different periods.
     3. Phase contrast microscope observation and MTT assay were used to identify the effect of salidroside against Glu-induced cell damage.
     4. Hoechst staining, TUNEL assay and flow cytometry analysis, were applied to detect the effect of salidroside against Glu-induced apoptosis of hippocampal neurons.
     5. Western blotting analysis were used to observe the effect of salidroside on the total amount of anti-apoptotic protein Bcl-2 or pro-apoptotic protein Bax in cultured hippocampal neurons after exposure to Glu.
     6. To investigate whether caspase-3-like enzymes involved in Glu-induced excitotoxicity, we detect cell viability of Glu-injuried hippocampal neurons after preincubation with Z-DEVD-FMK, a cell-permeable irreversible inhibitor of caspase-3-like enzymes.
     7. Caspase-3 activity assay were performed to examine the effect of salidroside on Caspase-3 activity after exposure to Glu.
     8. Cultured hippocampal neurons labeled with fluo-4/AM were collected and quantified by confocal laserscanning microscope to determine whether NRF could protect the neurons against Glu-induced excitotoxicity by attenuating Glu-induced rise in [Ca~(2+)]_i.
     Results:
     1. Co-incubition with different concentrations of salidroside resulted in neither cell viability loss nor morphological alteration of hippocampal neurons.
     2. The results of MTT, Hoechst staining, TUNEL assay, flow cytometry analysis and detection of caspase-3 activity indicated that Glu could evoke neurotoxicity in cultured hippocampal neurons, with the concentrations of Glu and the incubation time increased, the neurotoxicity augmented. Salidroside could significantly prevent cultured hippocampal neurons from Glu-induced neuronal apoptosis, showing an excellent dose-effect relationship.
     3. Neither treatment with 125μmol/L Glu for 15min nor pretreatment with salidroside affected the expressions of Bcl-2 and Bax protein.
     4. Salidroside could significantly inhibit the up-regulation of [Ca~(2+)]_i induced by Glu. Conclusion: salidroside efficiently protects hippocampal neurons against Glu-induced apoptosis. The protective effects are mediated by inhibiting the increased caspase-3-like activity and excessive Ca~(2+) influx triggered by Glu. Further studies need to be done to explore the underlying mechanisms.
     Part II Protective effects and mechanism of salidroside on primary hippocampal neurons damage induced by NMDA
     Objective: To investigate the protective effects and underlying mechanism of salidroside on primary rat hippocampal neurons damage induced by NMDA.
     Methods:
     1. To build an excitatory neurotoxic model of hippocampal neurons, MTT colorimetric assay and LDH (in medium) release assay were applied to detect cell viability after incubation with different concentrations of NMDA.
     2. Phase contrast microscope observation and MTT assay were used to identify the effect of salidroside against NMDA-induced injury.
     3. NF staining and TUNEL assay were applied to detect the effect of salidroside against NMDA-induced apoptosis of hippocampal neurons.
     4. RT-PCR were used to observe the effect of salidroside on mRNA expressions of NR2A、NR2B、NR2C and NR2D.
     5. Western blotting analysis was used to observe the effect of salidroside on protein expression of PSD-95 in cultured hippocampal neurons after exposure to NMDA.
     6. Western blotting analysis were used to observe the effect of salidroside on protein expressions of phosphorylated p38 MAPK and p38 MAPK.
     7. Whole-cell patch-clamp technique was applied to detect the effect of salidroside on NMDA-induced current (INMDA).
     8. NO production and NOS activity were measured by the NO2/3 assay kit and the NOS assay kit according to the instructions provided with.
     9. MTT colorimetric assay cell viability was used to observe the effect of salidroside on SNP (NO donor)-induced cell viability in hippocampal neurons.
     Results:
     1. MTT and LDH assays, together with NF staining and TUNEL assay, flow cytometric analysis and dictation of caspase-3 activity indicated that NMDA induced the dose-dependent excitotoxicity in cultured hippocampal neurons. Salidroside pretreatment attenuated NMDA-induced apoptosis in primary cultured hippocampal neurons, showing a dose-dependent pattern.
     2. Salidroside pretreatment does not affect the mRNA expression of NR2 subunit and protein expression of PSD95.
     3. Salidroside pretreatment significantly inhibited the NMDA-induced NO production and NOS activity.
     4. Salidroside pretreatment significantly inhibited the SNP-induced increase of cell viability.
     5. NMDA-induced apoptosis is associated with p38MAPK phosphorylation. Salidroside significantly inhibited p38MAPK protein phosphorylation.
     Conclusion: Salidroside efficiently protected hippocampal neurons against NMDA-induced apoptotic cell death. Its protective mechanism related to the inhibition of NMDA-induced caspase-3 activity and NOS activity increased NO production and NO-induced damage, and expression of phosphorylation of p38MAPK protein.
     Togather, salidroside could efficiently protect hippocampal neurons against Glu-induced excitotoxicity. The protective effects may be related to the inhibition of NMDA receptor mediated excitotoxicity which is related to the activiation of the NMDA receptor-Ca~(2+)-NO pathway and phosphorylation of p38MAPK protein. Its neuroprotection may be used to develop a potential therapeutic approach for preventing and/or treating ischemic brain damage.
引文
1.李敏,黎海蒂,汪涛,等.谷氨酸及其N-甲基-D-天冬氨酸受体在大鼠前额叶执行控制中的作用机制.中国临床康复, 2003, 7(31):4202-4203.
    2.郝玉曼,罗祖明,周东.脑缺血耐受中亲代谢型谷氨酸受体1α下调的意义.中国临床康复, 2003, 7(25):3416-3417.
    3. Almeida RD, Manadas BJ, Melo CV, et al. Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Differ, 2005, 12(10):1329-1343.
    4.徐伟.脑缺血兴奋神经毒性损伤的中医药实验研究进展.中医药导报, 2007, 13(5):97-99.
    5.陈亚东,贾秀兰,田长有,等.高山红景天对小鼠耐缺氧、抗疲劳及耐低温作用的影响.中国中医药科技, 2002, 9(3):157-158.
    6.张慧,朱伟,汪家春,等.复方红景天对不同运动负荷量下小鼠物质代谢的影响.海军医学杂志, 2000, 21(1):29-31.
    7.刘孟华,李沛波,苏薇薇.红景天化学成分及其药理作用研究进展.中南药学, 2006, 4(6): 463-466.
    8.李莉,孔乐凯,陈融,等.红景天苷对脑缺血再灌注脑组织NO代谢的影响.山东医药, 2001, 41(19):17-18.
    9.宋月英,齐刚,韩景田.红景天对全脑缺血再灌注大鼠海马区及齿状回的保护作用.中国临床康复, 2005, (9)320:232-233.
    10. Yu S, Liu M, Gu X, Ding F. Neuroprotective effects of salidroside in the PC12 cell model exposed to hypoglycemia and serum limitation. Cell Mol Neurobiol, 2008, 28(8):1067-1078.
    11. Bogaert L, Scheller D, MoonenJ, et al. Neurochemical changes and laser Doppler flowmetry in the endothelin-1 rat model for focal cerebral ischemia. Brain Res, 2000, 887(2):266-275.
    12. Fermri R, Ceeoni C, Curello S, et al. Oxygen-mediated myocardial damage during ischaemia and reperfusion: role of the cellular defences against oxygen toxicity. J Mol Cell Cardiol, 1985, 17(10):937-945.
    13. Benveniste H, Drejer J, Sehousboe A, et al. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neuroehem, 1984, 43(5):1369-1374.
    14. Sharp CD, Hinesl, Houghton J, et al. Glutamate causes a loss in human cerebral endothelial barrier integrity through aetivation of NMDA receptor. Am J Physiol Heart Circ Physiol, 2003, 285(6):H2592-H2598.
    15. Jiang H, Guo W, Liang X, et al. Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3beta and its upstream regulators. Cell, 2005, 120(1), 123-135.
    16. Pennypacker K, Fischer I, Levitt P. Early in vitro genesis and differentiation of axons and dendrites by hippocampal neurons analyzed quantitatively with neurofilament-H and microtubule-associated protein-2 antibodies. Exp Neurol, 1991, 111(1):25-35.
    17. Peng YP, Qiu YH, Lu JH, et al. Interleukin-6 protects cultured cerebellar granule neurons against glutamate-induced neurotoxicity. Neurosci Lett, 2005, 374(3):192-196.
    18. Xu X, Zheng X. Potential involvement of calcium and nitric oxide in protective effects of puerarin on oxygen-glucose deprivation in cultured hippocampal neurons. J Ethnopharmacol, 2007, 113(3):421-426.
    19. Wang WP, Iyo AH, Miguel-Hidalgo J, et al. Agmatine protects against cell damage induced by NMDA and glutamate in cultured hippocampal neurons. Brain Res, 2006, 1084(1):210-216.
    20.徐慧君.神经生物学.苏州大学出版社, 2004.
    21. Almli LM, Hamrick SE, Koshy AA, et al.Multiple pathways of neuroprotection against oxidative stress and excitotoxic injury in immature primary hippocampal neurons. Brain Res Dev Brain Res, 2001, 132(2):121-129.
    22. Degterev A, Boyce M, Yuan J. A decade of caspases. Oncogene, 2003, 22(53), 8543-8567.
    23. Antonsson B. Mitochondria and the Bcl-2 family proteins in apoptosis signaling pathways. Mol Cell Biochem, 2004, 256-257(1-2):141-155.
    24. Choi DW, Rothman SM. The role of glutamate neurotoxicity in hypoxic–ischemic neuronal death. Annu. Rev of Neurosci, 1990, 13:171-182.
    25. Kristian T, Siesjo BK. Calcium-related damage in ischemia. Life Sci, 1996 ,59(5-6):357-367.
    26. Nishizawa Y. Glutamate release and neuronal damage in ischemia. Life Sci, 2001, 69(4):369-381.
    27. Beilharz EJ, Williams CE, Dragunow M, et al. Mechanisms of delayed cell death following hypoxic-ischemic injury in the immature rat: evidence for apoptosis during selective neuronal loss. Brain Res Mol Brain Res, 1995, 29(1):1-14.
    28. Koh JY and Choi DW. Vulnerability of cultured cortical neurons to damage by exeitotoxins: differeniial suseeptibility of neurons containing NADPH-diaphorase. J Neurosci, 1988, 8(6):2153-2163.
    29. Yuan J, iPinski M, Degterev A. Diversity in the mechanisms of neuronal cell death Neuron, 2003, 40(2):401-413.
    30. Benn SC and Woolf CJ. Adult neuron survival strategies-slamming on the brakes. Nat ReV Neurosci, 2004, 5(9):686-700.
    31. Nieotera P, Leist M, Manzo L. Neuronal cell death: a demise with di.ereni shapes. Trends Pharmaeol Sci, 1999, 20(2):46-51.
    32. Nishi M, Hinds H, Lu HP, et a1. Motoneuron-specific expression of NR3B, a novel NMDA-type glutamate receptor subtmit that works in a dominant-negative manner. J Neurosci, 2001, 2l(23):RC185.
    33.侯筱宇,张光毅. NMDA受体信号复合体中蛋白质的相互作用生命科学. 2003, 15(5):274-278.
    34. Martone ME, Jones YZ, Young SJ, et a1. Modification of postsynaptic densities after transient ischemia: a quantitative and three-dimensional ultra structural study. J Neuresci, 1999, 19(6):1988-1997.
    35. Takagi N, Cheung HH, Bissoon N, et al. The effect of transient global ischemia on the interaction of Src and Fyn with the N-methyl-D-aspartate receptor and postsynaptic densities: possible involvement of Src homology 2 domains. J Cereb Blood Flow Metab, 1999, 19(8):880-888.
    36. Meng F, Zhang G. Autophosphorylated calcium/calmodulin-dependent protein kinaseⅡalpha induced by cerebral ischemia immediately targets and phosphorylates NMDAR subunit2B(NR2B) in hippocampus of rats. Neurosci Lett, 2002, 333(1):59-63.
    37. Koeslin D, Russwurm M, Merdia E, et al. Nitric oxide-sensitive guanylyl cyclase: structure and regulation. Neurochem Int, 2004, 45(6): 813-819.
    38. Ledo A, Frade J, Brbosa RM, et al. Nitric oxide in brain: diffusion, targets and concentration dynamics in hippocampal subregions. Mol Aspects Med, 2004, 25(1-2):75-89.
    39. Keynes RG, Garthwaite J. Nitric oxide and its role in ischaemic brain injury. Curr Mol Med, 2004, 4(2): 179-191.
    40. Kurata K, Takebayashi M, Morinobu S, Yamawaki S.β-Estradiol, dehydroepiandrosterone, and dehydroepiandrosterone sulfate protect against N-Methyl-Daspartate-induced neurotoxicity in rat hippocampal neurons. J Pharmacol Exp Ther, 2004, 311(1):237-245.
    41. Robinson MJ, Cobb MH. Mitogen-activated protein kinase path-ways. Curr Opin Cell Bio, 1997, 9(2):180-186.
    42. Ferrer I, Friguls B, Dalfo E, et al. Early modifications in the ex-pression of mitogen-activated protein kinase (MAPK/ERK), stress-activated kinases SAPK/JNK and p38, and their phosphorylated substrates following focal cerebral ischemia. Acta Neuropathol, 2003, 105(5):425-437.
    43. Walton KM, DiRocco R, Bartlett BA, et al. Activation of p38MAPK in microglia after ischemia[J]. J Neurochem, 1998, 70(4):1764-1767.
    1.徐慧君,神经生物学,苏州大学出版社, 2004.
    2.许绍芬,神经生物学,上海医科大学出版社, 1999.
    3. Hansen HH, Briem T, Dzietko M, et al. Mechanisms leading to disseminated apoptosis following NMDA receptor blockade in the developing rat brain. Neurobiol Dis, 2004, 16(2):440-53.
    4.李宁,吴建中,蒋京生.脑缺血时海马细胞外液中兴奋性氨基酸的变化.中国病理生理杂志, 1993, 9(6) :70-74.
    5. Nicholls D, Attwell D. The release and uptake of excitatory amino acids. Trends Pharmacol Sci, 1990, 11(11):462-468.
    6. Chan PH, Fishman RA, Lee JL, Candelise L. Effects of excitatory neurotransmitter amino acids on swelling of rat brain cortical slices. J Neurochem, 1979, 33(6):1309-1315.
    7.郭伟莉,赵英贤,张巧俊.促红细胞生成素对缺血性脑损伤的神经保护作用.中国临床康复, 2003, 7(5): 80-81.
    8.费舟,章翔,白红民.大鼠二次脑损伤后兴奋性谷氨酸与环核甘酸改变意义.现代康复, 2001, 5(14):61-62.
    9. Faden AI, Simon RP. A potential role for excitotoxins in the pathophysiology of spinal cord injury. Ann Neurol, 1988, 23(6):623-626.
    10. Garthwaite J, Garthwaite G, Hajós F. Amino acid neurotoxicity: relationship to neuronal depolarization in rat cerebellar slices. Neurosci, 1986, 18(2):449-460.
    11. Vornov JJ, Coyle JT. Glutamate neurotoxicity and the inhibition of protein synthesis in the hippocampal slice. J Neurochem. 1991, 56(3):996-1006.
    12. Newell DW, Barth A, Papermaster V, et al. Glutamate and non-glutamate receptor mediated toxicity caused by oxygen and glucose deprivation in organotypic hippocampal cultures. J Neurosci, 1995, 15(11):7702-7711.
    13. Zaezek R, Balm M, Ailis S, et al. Quisqualate-sensitive, chloride-dependent transport of glutamate into rat brain synaptosomes. J neurosci Res, 1987, 18(3):425-431.
    14. Han D, Sen CK, Roy S, et al. Protection against glutamate-induced cytotoxicity in C6 glial cells by thiol antioxidants. Am J Physiol, 1997, 273(5 Pt 2):R1771-R1778.
    15. Simonian NA, Coyle JT. Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol toxicol, 1996, 36:83-106.
    16. Fonnum F. Glutamate: a neurotransmitter in mammalian brain. J Neurochem, 1984, 42(1):1-11.
    17.韩太真,李延海. NMDA受体的结构与药理学特性.心理科学进展, 2008, 16(3):464-474.
    18. Canmell J, Schoepp DD. Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem, 2000, 75(3):889-907.
    19. Kontro P, Oja SS, Taurine and GABA release from mouse cerebral cortex slices: effects of structural analogues and drugs. Neurochem Res, 1987, 12(5):475-482.
    20. Izumi Y, Hammerman SB, Kirby CO, et al. Involvement of glutamate in ischemic neurodegeneration in isolated retina. Vis Neurosci, 2003, 20(2):97-107.
    21. Danbolt NC. Glutamate uptake. Prog Neurobiol, 2001, 65(1):1-105.
    22. Auger C, Attwell D. Fast removal of synaptic glutamate by postsynaptic transporters. Neuron, 2000, 28(2):547-558.
    23. Pow DV, Barnett NL. Developmental expression of excitatory amino acid transporter 5: a photoreceptor and bipolar cell glutamate transporter in rat retina. Neurosci Lett, 2000, 280(1):21-24.
    24. Had-Aissouni L, Re DB, Nieoullon A, et al. Importance of astrocytic inactivation of synaptically released glutamate for cell survival in the central nervous system-are astrocytes vulnerable to low intracellular glutamate concentrations? J Physiol Paris, 2002, 96(3-4):317-322.
    25. Garthwaite G, Williams GD, Garthwaite J. Glutamate Toxicity: An Experimental and Theoretical Analysis. Eur J Neurosci, 1992, 4(4):353-360.
    26.杨彦玲,胡刚. Glu转运体与神经退行性疾病.中国临床药理学与治疗学, 2003, 8(2): 111-115.
    27. Yan YP, Yin KJ, Sun FY. Effect of glutamate transporter on neuronal damage induced by photochemical thrombotic brain ischemia. Neuroreport. 1998, 9(3):441-446.
    28. Bruhn T, Levy LM, Nielsen M, et al, Ischemia induced changes in expression of the astrocyte glutamate transporter GLT1 in hippocampus of the rat. Neurochem Int, 2000, 37(2-3):277-285.
    29. Fujita H, Sato K, Wen TC, et al, Differential expressions of glycine transporter 1 and three glutamate transporter mRNA in the hippocampus of gerbils with transient forebrain ischemia. J Cereb Blood Flow Metab, 1999, 19(6):604-615.
    30. Ottersen OP, Laake JH, Reichelt W, et al, Ischemic disruption of glutamate homeostasis in brain: quantitative immunocytochemical analyses. J Chem Neuroanat, 1996, 12(1):1-14.
    31. Mennerick S and Zorumski CF. Glial contributions to excitatory neurotransmission in cultured hippocampal cells. Nature, 1994, 368(6466):59-62.
    32. Raghavendra Rao VL, Rao AM, Dogan A, et al, Glial glutamate transporter GLT-1 down-regulation precedes delayed neuronal death in gerbil hippocampus following transient global cerebral ischemia. Neurochem Int, 2000, 36(6):531-537.
    33. Szatkowski M, Barbour B, Attwell D. Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature, 1990, 348(6300):443-446.
    34. Rothstein JD, Dykes-Hoberg M, Pardo CA, et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron, 1996, 16(3):675-686.
    35. Rossi DJ, Oshima T, Attwell D. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature, 2000, 403(6767):316-321.
    36. Foley TD and Rhoads DE. Effects of ethanol on Na(+)-dependent amino acid uptake:dependence on rat age and Na+/ K+-ATPase activity. Brain Res, 1992, 593(1):39-44.
    37. Alexander GM, Deitch JS, Seeburger JL, et al. Elevated cortical extracellular fluid glutamate in transgenic mice expressing human mutant (G93A) Cu/Zn superoxide dismutase. J Neurochem, 2000, 74(4):1666-1673.
    38. Pellegrini-Giampietro DE, Gorter JA, Bennett MV, et al, The GluR2 (GluR-B) hypothesis: Ca(2+)-permeable AMPA receptors in neurological disorders. Trends Neurosci, 1997, 20(10):464-470.
    39. Siemkowicz E and Hansen AJ. Brain extracellular ion composition and EEG activity following 10 minutes ischemia in normo- and hyperglycemic rats. Stroke, 1981, 12(2):236-240.
    40. Matsumoto M, Scheller MS, Zornow MH, et al. Effect of S-emopamil, nimodipine, and mild hypothermia on hippocampal glutamate concentrations after repeated cerebral ischemia in rabbits. Stroke, 1993, 24(8):1228-1234.
    41. Leblond J and Krnjevic K. Hypoxic changes in hippocampal neurons. J Neurophysiol, 1989, 62(1):1-14.
    42. MacDermott AB, Mayer ML, Westbrook GL, et al. NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature, 1986, 321(6069):519-522.
    43. Sugiyama H, Ito I, and Hirono C. A new type of glutamate receptor linked to inositol phospholipid metabolism. Nature, 1987, 325(6104):531-533.
    44. Regehr WG and Tank DW, Calcium concentration dynamics produced by synaptic activation of CA1 hippocampal pyramidal cells. J Neurosci, 1992, 12(11):4202-4223.
    45. Lipton P and Lobner D. Mechanisms of intracellular calcium accumulation in the CA1 region of rat hippocampus during anoxia in vitro. Stroke, 1990, 21(11 Suppl):III60-64.
    46. Khodorov B, Pinelis V, Golovina V, et al. On the origin of a sustained increase in cytosolic Ca2+ concentration after a toxic glutamate treatment of the nerve cell culture. FEBS Lett, 1993, 324(3):271-273.
    47. Hakamata Y, Nakai J, Takeshima H, et al. Primary structure and distribution of a novel ryanodine receptor/calcium release channel from rabbit brain. FEBS Lett, 1992, 312(2-3):229-235.
    48. Siesjo BK and Wieloch T. Cerebral metabolism in ischaemia: neurochemical basis for therapy. Br J Anaesth, 1985, 57(1):47-62.
    49. Schanne FA, Kane AB, Young EE, et al. Calcium dependence of toxic cell death: a final common pathway. Science, 1979, 206(4419):700-702.
    50. Dawson VL, Dawson TM, London ED, et al. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci USA, 1991, 88(14):6368-6371.
    51. Pelligrino DA, Koenig HM, Albrecht RF. Nitric oxide synthesis and regional cerebral blood flow responses to hypercapnia and hypoxia in the rat. J Cereb Blood Flow Metab, 1993, 13(1):80-87.
    52. Cazevieille C, Muller A, Meynier F, et al. Superoxide and nitric oxide cooperation in hypoxia/reoxygenation-induced neuron injury. Free Radic Biol Med, 1993, 14(4):389-395.
    53. Bonne C, Muller A, Villain M. Free radicals in retinal ischemia. Gen Pharmacol, 1998, 30(3):275-280.
    54. Herin GA, Du S, Aizenman E. The neuroprotective agent ebselen modifies NMDA receptor function via the redox modulatory site. J Neurochem, 2001, 78(6):1307-14.
    55. Rossato JI, Zeni G, Mello CF, et al. Ebselen blocks the quinolinic acid-induced production of thiobarbituric acid reactive species but does not prevent the behavioral alterations produced by intra-striatal quinolinic acid administration in the rat. Neurosci Lett, 2002, 318(3):137-140.
    56. Block F and Schwarz M. The b-wave of the electroretinogram as an index of retinal ischemia. Gen Pharmacol, 1998, 30(3):281-287.
    57. Reisel D, Bannerman DM, Schmitt WB, et al. Spatial memory dissociations in mice lacking GluR1. Nat Neurosci, 2002, 5(9):868-873.
    58. Gao J, Duan B, Wang DG, et al. Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death. Neuron, 2005, 48(4):635-646.
    59. Zipfel GJ, Babcock DJ, Lee JM, et al. Neuronal apoptosis after CNS injury:the roles of glutamate and calcium. J Neurotrauma, 2000, 17(10):857-869.
    60. Whestell WOJr. Current concepts of excitotoxicity. J Neuropath Exp Neurol, 1996, 55(1):1-13.
    61. Beilharz EJ, Williams CE, Dragunow M, et al. Mechanisms of delayed cell death following hypoxic-ischemic injury in the immature rat: evidence for apoptosis during selective neuronal loss. Brain Res Mol Brain Res, 1995, 29(1):1-14.
    62. Dingledine R, Conn PJ. Peripheral glutamate receptors: molecuar biology and role in taste sensation. J Nutr, 2000, 130(4s Supp1):1039s-1042s.
    63. Hardingham GE, Fukunaga Y, Bading H. Exteasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nature Neurosci, 2002, 5(5):405-414.
    64. Riccio A, Ginty DD. What a privilege to reside at the synapse: NMDA receptor signaling to CREB. Nature Neurosci, 2002, 5(5):389-390.
    65. Sattler R, Xiong Z, Lu WY, et a1. Distinct roles of synaptic and extrasynaptic NMDA receptors in excitotoxicitv. J Neurosci, 2000, 20(1):22-33.
    66. Tovar KR and Wesbrook GL. The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J Neurosci, 1999, 19(10):4180-4188.
    67. Rumbaugh G, Vicini S. Distinct synaptic an extrasynaptic NMDA receptors in developing cerebellar granule neurons. J Neurosci, 1999, 1(24)9:10603-10610.
    68.徐铁军,樊红彬,张凤真,等.前脑缺血再灌流后大鼠海马NMDA受体亚单位NR2A和NR2B蛋白质表达的变化.神经解剖学杂志, 2002, 18(2):110-103.
    69. Cheung HH, Takagi N, Teves L, et a1. Altered association of protein tyrosine kinases with postsynaptic densities after transient cerebral ischemia in the rat brain. J Cereb blood Flow Metab, 2000(3):505-512.
    70. Small DL, Poulter Mo, Buchan AM, et a1. Alteration in NMDAR subunit Mrna expression in vulnerable and resistant regions of in vitro ischemic rat hippocampal slices.Neurosci Lett, 1997, 232(2):87-90.
    71. Cai Z and Rhodes PG. Intrauterine hypoxia-ischemia alters expression of NMDA receptor in the young rat brain.Neurechem Res, 2001, 26(5):487- 495.
    72. Curd JW, Bissoon N, Beesley PW, et a1. Differential effects of hypoxia-ischemia on subunit expression and tyrosine phosphorylation of the NMDA receptor in 7-and 21-day·old rats. J Neurechemi, 82(4):848-856.
    73. Hu BR, Park M, Marton ME, et a1. Assembly of proteins to postsynaptic densities after transient cerebral ischemia. J Neurosci, 1998, 18(2):625-633.
    74. Martone ME, Jones YZ, Young SJ, et a1. Modification of postsynaptic densities after transient ischemia: a quantitative and three-dimensional ultra structural study. J Neuresci, 1999, 19(6):1988-1997.
    75. Takagi N, Cheung HH, Bissoon N, et al. The effect of transient global ischemia on the interaction of Src and Fyn with the N-methyl-D-aspartate receptor and postsynaptic densities: possible involvement of Src homology 2 domains. J Cereb Blood Flow Metab, 1999, 19(8):880-888.
    76. Meng F, Zhang G. Autophosphorylated calcium/calmodulin-dependent protein kinaseⅡalpha induced by cerebral ischemia immediately targets and phosphorylates NMDAR subunit2B (NR2B) in hippocampus of rats. Neurosci Lett, 2002, 333(1):59-63.
    77. Ali DW and Salter MW. NMDA receptor regulation by kinase signaling in excitatory synaptic transmission and plasticity. Curr Opin Neurobiol, 2001, 11(3):336-342.
    78. Huang Y, Lu W, Ali DW, et a1. CAKbeta/PyK2 kinase is a signaling link for induction of long-term potentiation in CA1 hippocampus. Neuron, 2001, 29(2):485-496.
    79. Cullen PJ and Lockyer PJ. Integration of calcium and Ras signaling. Nat Rev Mol Cell Biol, 2002, 3(5):339-348.
    80. Dais SM, Lees KR, Albers GW, et a1. Selfotel in acute ischemic stroke: possible neurotoxic effects of all NMDA antagonists. Stroke, 2000, 31(2):347-354.
    81. Shapira Y, Lam AM, Eng CC, et a1. Therapeutic time window anti dose response of the beneficial effects of ketamine in experimental head injury. Stroke, 1994, 25(8):1637-1643.
    82. Spandou E, Karkavelas G, Soubasi V, el a1. Effect of ketamine on hypoxic-ischemic brain damage in newborn rats. Brain Res, 1999, 819(1-2):1-7.
    83. Orser BA, Pennefather PS, MacDonald JF.Multiple mechanisms of ketamine blockade of N-methyl-D-aspartate receptors. Anesthesiology, 1997, 86(4):903-917.
    84. Reeker W, Wemer C, Mollenberg O, et a1. High-dose S (+)-Ketamineamine improves neurological outcome following incomplete cerebral ischemia in rats. Can J Anaesth, 2000, 47(6):572-578.
    85.薛庆生,夏梦,于布为.氯胺酮对不同性质脑损伤影响的实验研究.临床麻醉学杂志, 2003, 19(12):24-27.
    86. Engelhard K, Werner C, Ebersp?cher E, et a1. The effect of the alpha-agonist dexmedetomidine and the N-methyl-D-aspartate antagomst S(+)-keiamine on the expression of apoptosis-regulating proteins after incomplete cerebral ischemia and reperfusion in rats. Anesth Analg, 2003, 96(2):524-531.
    87. Olney JW, Labruyere J, Price MT. Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science, 1989, 244(4910):1360-1362.
    88. Nishizawa N, Nakao S, Nagata A, et a1. The effect of ketamine isomers on both mice behavioral responses and c-Fos expression in the posterior cingulated and retrosplenial cortices Brain Res, 2000, 857(122):188-192.
    89. Zhu HD, Martin R, Meloni B, et a1. Magnesium sulfate fails to reduce infarct volume following transient al cerebral ischemia in rats. Neurosci Res, 2004, 49(3):347-353.
    90. Muir KW, Lees KR, Ford I,et al. Magnesium for acute stroke (Intravenous Magnesium Efficacy in Stroke trial): randomised controlled trial. Lancet. 2004, 363(9407):439-445.
    91. Gorelick PB and Ruland S. IMAGES and FAST-MAG: magnesium for acute ischemia stroke. Lancet Neurol, 2004, 3(6):330.
    92. Rao VL, Dogan A, Todd KG, et a1. Neuropretection by memantine,a non-competitive NMDA receptor antagonist after traumatic brain injury in rats. Brain Res, 2001, 911(1):96-100.
    93. Sullivan BL, Leu D, Taylor DM, et al. Isoflurane prevents delayed cell death in an organotypic slice culture model of cerebral ischemia. Anesthesiology, 2002, 96(1):189-195.
    94. Martin DC, Plagermoef M, Abraham J, et al. Volatile anesthetics and glutamate activation of N-methyl-D-asparate receptors. Biochem Pharmocol, 1995, 49(6):809-817.
    95. Larsen M, Hegstad E, Berg-Johnsen J, et al. Isoflurane increases the uptake of glutamate in synaptosomes from rat cerebral cortex. Br J Anaesth, 1997, 78(1):55-59.
    96. Ma D, Wilhelm S, Maze M, et a1. Neuropretective and neurotoxic properties of the“inert”gas, xenon. Br J Ansesth, 2002, 89(5):739-746.
    97. Nagata A, Nakao Si S, Nishizawa N, et al. Xenon inhibits but N(2)O enhances ketamine-induced c-Fos expression in the rat posterior cingulate and retrosplenial cortices. Anesth Analg, 2001, 92(2):362-368.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700