闪速磁化焙烧法处理大冶铁矿强磁选低品位铁精矿
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿产资源是人类社会文明必须的物质基础,同时,矿产资源也是一种不可再生的自然资源,随着社会对矿产资源的需求量日益增大,矿产资源的开发、加工和使用过程不可避免地要破坏和改变自然环境,产生各种各样的废物和污染物质,造成大气、水体和土壤的污染,并给生态环境和人体健康带来直接和间接、近期或远期的、急性或慢性的不利影响。
     我国是矿业生产大国,矿产资源总量比较丰富,但人均占有量不足世界平均水平的一半。经济发展与矿产资源供给之间的矛盾日益突出。目前,我国矿山排放的尾矿堆存量已达50余亿吨,并且每年以2~3亿吨的速度增长。因此,开展矿山固体废物的二次资源利用,实现固体废物资源化,将是解决资源短缺矛盾的有效途径。
     目前,对矿山固体废物实现资源化尚处于探索时期,要真正在实际中得到应用,还需对之进行比较系统的研究。本文旨在将铁矿山尾矿资源化,针对铁矿山尾矿含铁量高,共生脉石复杂,经过强磁选后只可将铁品位富集到30%左右,采用目前已有的选矿工艺也无法将其铁品位再得到有效提高。根据该矿石粒细,主要成分为赤铁矿易于还原的特点,拟开发闪速还原焙烧新工艺对选矿厂低品位铁矿石进行铁金属的二次回收再利用,探索其回收利用的一般规律,以期为这一课题的进一步深入充奠基础。
     本文对大冶铁矿低品位铁精矿进行了马弗炉、回转窑和沸腾炉的磁化焙烧试验研究,考查了磨矿细度、磁场强度、空气鼓入流量、焙烧温度、焙烧时间、煤粉粒度、煤粉含量以及煤种对铁精矿指标的影响。同时本文对磁化焙烧过程机理进行了探讨。
     试验研究表明:通过马弗炉和回转窑进行磁化焙烧可以获得优质的铁精矿(TFe60%左右)。通过沸腾炉进行磁化焙烧,在磨矿细度为—0.074mm占90.48%,磁场强度为1.2A,空气鼓入流量为3m~3/h,煤粉粒度为—1mm,煤粉含量为13.04%,焙烧温度为850℃左右,焙烧时间为8min,以及选用固定碳含量高的煤种可以获得优质的铁精矿(TFe63%左右)。
     本文对低品位铁精矿品位的提高进行了较系统的研究,取得了良好的试验结果。为低品位铁矿石的有效利用提供了新的技术路线,同时为我国钢铁企业的技术改造提供了依据,并能为矿山企业带来巨大的经济和社会效益。
Mineral resource is the necessary material base of human social civilization. Meanwhile, it is not a kind of reborn natural resource. With the increasing of requirement for mineral resource by society, the exploitation, processing and use of mineral resource will destroy and alter natural environment inevitably and produce various waste and pollution, which pollutes atmosphere, water and soil and bring direct or indirect, present or future, acute or chronic effects to ecological environment and human health.
    China is a main mineral production nation. Although the gross of mineral resource is abundant in the world, the individual possessing is lower than half of world average. The conflict between economic development and supply of mineral resource is becoming more and more seriously. Presently, the amount of mine tailing has exceeded 5 billion ton in our country and the increasing speed is 20~30 million ton each year. Therefore, we should develop the recycling utilization of mine solid waste and turn it into resource radically, which will be an effective approach for the badly shortage of resource.
    At present, the work of turning mine solid waste into resource is being exploited. If it is applied in practice, the research should be done systematically. In this program, we aim.to turn iron mine tailing into resource due to its high content of iron and intricate commensal gangue, so it can only be enriched to 30% or so by high intensity magnetic separation. Moreover, the total content of iron can not be improved effectively by nowaday mineral processing technology. Because the particle size is extremely fine and the main content is hematite which can be reduced easily, the low grade iron of concentrate mill can be recycled and utilized by flash reduction roasting technology. We are seeking after its general law and looking forwarding to building up the base for the further research of the task.
    Using Daye Iron Mine low grade iron concentrate as test specimen, study on magnetization roasting was made systematically in Mafu furnace, rotary kiln and fluidized furnace. All kinds of factors affect iron concentrate index such as grinding granularity, magnetic field density, air flux, roasting temperature,
    
    
    
    roasting time, coal powder size, coal powder content and coal category was examined. The mechanism of magnetization roasting was also discussed in this paper.
    Study shows that excellent iron concentrate(TFe60% or so)can be obtained through magnetization roasting by Mafu furnace and rotary kiln. By fluidized furnace, when the grinding size(-0.074mm) is 90.48%, magnetic field density is 1.2A, air flux is 3m3/h, coal powder size is -1mm, coal powder content is 13.04%, roasting temperature is 850 C or so, roasting time is 8min and fixed carbon content of coal powder is high, we can obtained excellent iron concentrate(TFe63% or so).
    This paper studied systemically low grade concentrate and achieved good experimental results. The technology will provide new technological routine for making use of low grade iron and gist for technological modifying of iron and steel enterprise, which also can bring enormous economic and social benefit.
引文
[1] 古德生,胡家国,王新民.加入WTO后对我国矿山企业环境保护问题的思考.金属矿山增刊,2003,15(8):1~4
    [2] 辛明印.本钢矿山有效利用矿产资源实践与思考.金属矿山增刊,2003,15(8):16~19
    [3] 常前发.矿山固体废物处理与处置是当前矿业面临的主要任务.金属矿山增刊,2003,15(8):5~9
    [4] 吉兆宁.我国矿山固体废弃物的利用,金属矿山增刊,2003,15(8):232~234
    [5] Simeonova. VP. Pilot study for arsenic removal. Water Supply, 2000,18(1): 636~640
    [6] R.E.威廉斯.采矿选矿冶金工业废物的产生和处理(唐建文译).北京:冶金工业出版社,1985
    [7] Yalcin. Nevin. Utilization of bauxite waste in ceramic glazes. Ceramics International, 2000, 26(5): 485~493
    [8] 张建忠,董运樵,刘慧纳.南芬选矿尾矿回收铁金属的初步研究.中国矿业,1994,3(6):67~70
    [9] 熊大和.应用Slon磁选机从尾矿中回收有价矿产品.金属矿山增刊,2003,15(8):269~272
    [10] 陈永贵,张可能,魏中超等.我国矿山固体废物综合治理及应用探讨.金属矿山增刊,2003,15(8):314~317
    [11] 黄礼煌.化学选矿.北京:冶金工业出版社,1990
    [12] 黎海雁,韩勇.化学选矿.长沙:中南工业大学出版社,1989
    [13] Singh. DB. Adsorption technique for the treatment of As(V)-rich effluents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 111(1): 49~56
    [14] 张振宇.斜坡炉磁化焙烧生产实践浅议.湖南冶金,1997,7(4):37~41
    [15] 张洪恩.红铁矿选矿.北京:冶金工业出版社,1983
    [16] 潘永信,林缅,郝锦倚.菱铁矿热转变过程中岩石磁学性质基本特征.地球物理学报,1999,42(6):756~761
    [17] Kretzschmar. Ruben. Transport of humic-coated iron oxide colloids
    
    in a sandy soil: Influence of Ca~2+ and trace metals. Environmental Science & Technology, 1997, 31(12): 3497~3504
    [18] 谭英秀,龙秀岩.赤铁矿磁化焙烧过程中增磁剂量的确定.中国矿业,1994,14(5):65~68
    [19] Xia DK, Pickles CA. Caustic roasting and leaching of electric arc furnace dust. Canadian Metallurgical Quarterly, 1999, 38(3): 175~186
    [20] Turner Laurie J, Kramer James R. Irreversibility of sulfate sorption on goethite and hematite. Water Air Soil Pollut, 1992, 63(1): 23~32
    [21] Singh DB. Use of hematite for chromium(Ⅵ) removal. Journal of Environmental Science Health Part A, 1993, 28(8): 1813~1826
    [22] Solymar. Karoly. Characteristics and separability of red mud. Minerals, (USA), 1991, 18(3): 209~223
    [23] 陈述文,曾永振,陈启平.贵州赫章鲕状赤铁矿直接还原磁选试验研究.金属矿山,1997,25(11):13~17
    [24] 梅贤恭,袁明亮,左文亮等.难选赤铁矿内配煤团块直接还原制备海绵铁.中南工业大学学报,1996,27(5):530—533
    [25] L.X.Yang.BHP-PRC矿石混合料的烧结性能.钢铁增刊,2000,35(9):191~196
    [26] D.J.米勒.采用湿式高强度磁选机回收—100μm赤铁矿.国外金属矿山,1994,18(4):51~60
    [27] 《黑色金属矿石选矿试验》编写组.黑色金属矿石选矿试验.北京:冶金工业出版社,1978
    [28] 王棣华.Slon-2000立环脉动高梯度磁选机分选弓长岭贫赤铁矿的工业试验.金属矿山,1995,23(9):30~33
    [29] H.D.瓦斯穆斯.新型中磁场筒式帕莫斯(PERMOS)永磁磁选机及其在干式和湿式条件下选矿的实际应用.国外金属矿选矿,1997,2(2):14~18
    [30] Caporali L.铁矿石烧结反应性的概念.钢铁增刊,1999,34(10):111~117
    [31] 吕振英,张资松.延迪铁矿的烧结性能.钢铁,1994,29(2):1~7
    [32] 苏成德,张锦瑞,蒋振铭.用赤铁矿生产天然氧化铁红颜料的研究.国外金属矿选矿,1997,18(10):42~45
    
    
    [33] 汪建.联合流程在铁矿石选矿厂改造中的应用.矿物加工,2002,3(1):52~57
    [34] 王力军,邹宗树,肖泽强.二步法熔融还原生产铬铁合金流程的数学模型(Ⅰ).东北大学学报,1998,19(5):208~211
    [35] 马鞍山矿山研究院.用粉煤作燃料和还原剂进行氧化铁矿石沸腾磁化焙烧的研究报告,1978
    [36] B.M.卡尔马金.黑色金属矿石的现代磁选法(于广泉译).北京:中国工业出版社,1965
    [37] 陈耀明,王黎光.配加澳矿烧结矿矿物组成及显微结构的研究.烧结球团,2000,25(4):4~7
    [38] 戴和武,杜铭华,谢可玉等.我国低灰分褐煤资源及其优化利用.中国煤炭,2001,27(2):14~18
    [39] Kuys. K. Surface characterisation, iron removal and enrichment of bauxite ultrafines. Mineral Engineering, 1990, 3(5): 421~435
    [40] V. Suckal. Bulk density as method of evaluating reducibility of hard hematite ore in direct reduction process. Mineral Processing and Extractive Metallurgy, 2003, 112(4): 52~53
    [41] M.I. Pownceby, J.M.F. Clout. Importance of fine ore chemical composition and high temperature phase reltions: applications to iron ore sintering and pelletising. Mineral Processing and Extractive Metallurgy, 2003, 112(4): 44~50
    [42] Pelino. M, Colella. C, Cantalini. C. Microstructure and electrical properties of an alpha-hematite ceramic humidity sensor. Sensation Actuators, 1992, 7(2): 464~469
    [43] Waite. TD. Effects of adsorbed organic matter on size, structure and filterability of iron oxyhydroxide flocs. Water Science and Technology, 1993, 27(11): 133~142
    [44] Haynes, Douglas. W. Olympic Dam ore genesis: a fluid-mixing model. Economic Geology and the Bulletin of the Society of Economic Geologists, 1995, 90(2): 281~307
    [45] Ye Xisheng, Lin Dongsheng, Jiao Zhengkuan etal. Thermal stability of nanocrystalline maghemite Fe_2O_3. Journal of Physics D: Applied Physics, 1998, 31(20): 2739~2744
    
    
    [46] Gudenau, Heinrich Wilhelm, Lukat etal. Recycling of agglomerated dusts of the iron and steel industry with embedded carbon. Steel Research, 1998, 69 (10): 391~397

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700