碱性体系中铝钒钼的溶液化学性质及分离技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界上每年产生含钒、钼的废铝基催化剂大约有50~70万吨,为制造这些催化剂耗用了大量贵金属、有色金属或其氧化物,催化剂中有用金属的含量并不低于矿石中相应金属的含量,甚至远远高于矿石中金属的含量。因此对废催化剂进行综合回收,具有很大的经济效益和环境效益。
     废铝基钒钼催化剂是一种以氧化铝为载体,富含钒钼的失效催化剂。就目前来看,国内外对废催化剂中有价金属元素的回收进行过一些研究,但主要是针对一种或两种金属进行回收,对其综合回收的研究较少,废铝基钒钼催化剂的综合回收的难点在于液相中两性金属铝、钒和钼的有效分离。本文系统地评述了废铝基催化剂综合回收的现状,在大量的理论分析、试验研究及前人思路的基础上,通过对铝、钒、钼体系溶液化学、热力学计算、分子动力学模拟及各种测试手段,对碱性体系中铝、钒、钼的溶液化学性质及分离技术进行详细的研究,对废铝基钒钼催化剂综合利用的基础理论及工艺技术进行了研究。研究内容与结果如下:
     1.铝、钒、钼水溶液化学性质的研究:
     采用溶液化学计算方法对铝、钒、钼体系进行了计算,从理论上分析了铝钒钼在酸性和碱性溶液中的存在状态和溶解性能,绘制了不同浓度及pH条件下铝、钒、钼水体系的优势组分图,分析了离子浓度和pH值对体系中各离子分布的影响,为水溶液中铝、钒、钼的分离技术的选择提供了基础。
     测定了钒钼在氢氧化钠及铝酸钠溶液中的溶解度,结果表明在铝酸钠溶液中,钼的溶解度受温度影响不大,而钒在铝酸钠溶液中的溶解度受温度影响很大;20℃时钒在铝酸钠溶液中的溶解度为1g/l左右,80℃时其溶解度可达50g/l。为结晶法分离铝酸钠溶液中的钒提供了理论数据。
     根据已有的电化学数据,绘制了铝钒钼水体系的电位-pH图,并探讨了不同电位下,体系中不同价态离子间的相互转化。其研究结果为废催化剂钒钼提取工艺条件的选择与控制提供重要的参考依据。
     采用Material Studio中的Discover模块对铝钒钼水溶液体系进行了分子动力学模拟研究。结果表明:Al(OH)_4~-单体形成的“分子簇”有利于聚合铝酸根分子的形成,Na~+控制聚合铝酸根分子的稳定存在,从而影响铝酸钠溶液中Al(OH)_3的析出。对三种不同pH值下钒钼水溶液体系进行了分子动力学模拟,模拟结果表明不同pH下,体系中钒钼的存在形式与溶液化学研究结果及已有的光谱学测试结果有很好的对应关系。
     2.论文对Ca(Ba)-V(Mo)-H_2O体系的浓度对数图及电位—pH图进行了研究,有以下研究结果:
     Ca-V(Mo)-H_2O体系的浓度对数图研究结果表明,Ca(OH)_2须在一定的pH下才能有效地与溶液中的VO_4~(3-)或MoO_4~(2-)反应,随着温度的升高,钒酸钙和钼酸钙的稳定区间增大,溶液体系中残余的VO_4~(3-)和MoO_4~(2-)离子浓度降低。
     Ba-V(Mo)-H_2O体系的浓度对数图研究结果表明,温度升高,钒酸钡和钼酸钡的稳定区间增大,溶液体系中残余的VO_4~(3-)和MoO_4~(2-)离子浓度降低。与Ca-V(Mo)-H_2O体系的浓度对数图的对比表明,在V(Mo)-H_2O体系中,氢氧化钡比氢氧化钙具有更好沉淀分离钒和钼的效果,当温度为100℃时,体系中的钒和钼的浓度可分别降至10~(-7.3)和10~(-7.0)mol/l。
     Ca(Ba)-V(Mo)-H_2O体系的电位—pH图的研究结果表明,钒的化合物(钒酸钙和钒酸钡)比钼的化合物(钼酸钙和钼酸钡)有更大的稳定区域。在钒钼共存混合体系中,氢氧化钙和氢氧化钡将有可能优先与钒酸根反应,后与钼酸根反应。
     3.模拟体系中铝钒钼的化学沉淀分离试验结果表明:
     在V(Mo)-H_2O体系中,试剂CaO、Ba(OH)_2及CaCl_2对溶液中的钒钼都有很好的沉淀效果。在合适的反应条件下,钒和钼的沉淀率可达98%。
     在V(Mo)-Al-H_2O体系中,CaO和CaCl_2对钒钼的沉淀效果很差,而Ba(OH)_2对钒钼的沉淀效果很好。热力学计算表明,CaO和CaCl_2对钒钼的沉淀效果变差的原因是由于钙与溶液中的大量的铝酸根离子反应,生成了各种形式的铝酸钙,从而使得效果变差,而Ba(OH)_2不会与溶液中铝酸根离子反应。
     提出了用Ba(OH)_2从含有钒和钼的铝酸钠溶液中分步分离钒、钼的新技术,在合适的反应条件下钒钼的沉淀率分别可达92%和98%,并使铝酸钠溶液得到净化。
     热力学计算表明:当温度升高时,Ba(OH)_2与VO_4~(3-)反应的Gibbs自由能略微升高,而Ba(OH)_2与MoO_4~(2-)反应的Gibbs自由能△G更低,反应平衡常数增大,有利于反应的进一步进行。从而在热力学解释了Ba(OH)_2分离钒钼的作用机理。
     4.对废催化剂焙烧预处理后的镍钴渣进行了酸浸动力学研究
     采用硫酸作为浸出剂对镍钴渣进行了酸浸动力学研究,通过对实验数据进行线性回归,得出了钴的酸浸反应动力学方程式,镍钴渣中钴的硫酸浸出属扩散控制,该浸出反应的活化能为10.0kJ/mol。采用30%(w/w)H_2SO_4,反应温度为80℃,反应时间240min,粒度为-0.098mm+0.074mm,搅拌速度为800rpm,固液比为1:8g/ml(1g固体采用8mL浸出液)的浸出条件下,镍钴的浸出率分别可达99.0%和98.5%。
     5.在理论研究基础上,开发了一种废铝基催化剂综合回收的新技术:
     对载体氧化铝为刚玉型氧化铝的废铝基钒钼催化剂(V 0.55%、Mo 1.19%、Al_2O_370.95%)进行了综合回收,在合适的工艺条件下,全流程氧化铝的回收率可达90.6%,纯度为99.9%;钒、钼的回收率不低于92%,分别制得钒酸钡和钼酸钡化工产品。镍、钴的回收率大于95%,可以制备硫酸镍和硫酸钴等化工产品。
About 500,000~700,000 tons of spent catalysts are produced each year in the world,large amounts of precious metal,nonferrous metal or its' oxides are used to the preparation of catalyst, the metal content of spent catalyst is not lower,even higher than the content of raw ore.Recovery of valuable metals from spent catalyst shows great economic benefit and environmental benefit.
     Spent Al_2O_3-based catalyst is a kind of catalyst using Al_2O_3 as the carder and vanadium/ molybdenum as active constitutent but can not be regenerated again.To date,some investigations had been conducted to recover valuable metals in spent catalyst,but the main difficulty was the efficient separation of valuable metals in solution.This dissertation had made comments on the status of comprehensive utilization of spent catalyst,carded out a great deal of theoretical analyses and experiments with the reference of literature.By the calculation of solution chemistry of Al-V-Mo system,thermodynamic calculation,molecular dynamic simulation and some testing methods,the solution chemisty of Al-V-Mo system in alkaline solution and the separation technology had been studied detalledly,the basic theory and process engineering for the comprehensive utilization of spent catalyst had been researched systematacially.Main conclusions are obtained as follows:
     1.Research on the solution chemistry of Al-V-Mo system in aquous solution
     According to the calculation of solution chemistry,the solubility and existing status of Al,V and Mo in acidic and alkalic solution had been analysed in theory.The concentration logarithmic diagram of Al-V-Mo in aquous solution with different concentration and pH had been plotted,the concentration and pH on the distribution of three elements had been analysed.The concentration logarithmic diagram provides some basic data for the separation of Al,V and Mo.
     The solubility of V and Mo in NaOH and sodium aluminate solution had been determined, which indicated that temperature had little effect on the solubility of Mo in sodium aluminate solution,but showed great effect on the solubility of V.The solubility of V in sodium aluminate solution is about 1g/l at 20℃but 50g/l at 80℃.
     The potential-pH equilibrium diagram of three kinds of system had been figured according to the data in literatures,the transformation of different valent state ions had been discussed.The diagrams provided theoretical foundation for the comprehensive utilization of spent catalyst.
     Material Studio was firstly used to molecular dynamic simulation of Al-V-Mo in aqueous solution.The results indicate that the formation of clustering of aluminates in solution,and the clusters are stabilized by sodium ions.Furthermore,the clusters make a contribution to the formation of polyaluminate.The molecular dynamic simulation results of V and Mo at three kinds of pH are in good accordance with spectroscopy results reported in the literatures.
     2.The concentration logarithmic diagram and potential-pH diagram of Ca(Ba)-V(Mo)-H_2O was firstly studied,the following are the results:
     The concentration logarithmic diagram of Ca-V(Mo)-H_2O indicated that the stable region of calcium vanadate and calcium molybdate enlarged,the residual concentration of V and Mo in soulution lowered with the increasing of temperature.
     The concentration logarithmic diagram of Ba-V(Mo)-H_2O indicated that the stable region of barium vanadate and barium molybdate enlarged,the residual concentration of V and Mo in soulution lowered with the increasing of temperature.In constrast to the diagram of Ca-V(Mo)-H_2O,barium showed better effect on the precipitation of V and Mo than calcium under the same condition,the residual concentration of V and Mo in soulution can be down to 10~(-7.3)and 10~(-7.0)mol/l in the system of Ba-V(Mo)-H_2O when temperature is 100℃.
     The potential-pH diagram of Ca(Ba)-V(Mo)-H_2O indicates that the stable region of calcium vanadate and barium vanadate are larger than that of calcium molybdate and barium molybdate. When vanadium and molybdenum coexist in the solution,calcium and barium will be inclined to react with vanadium firstly.
     3.The precipitation separation of alumina,vanadium and molybdenum had been conducted in the simulated solution,results are listed in the following:
     CaO,Ba(OH)_2 and CaCl_2 showed good effect on the precipitation of vanadium and molybdenum in the solution of V(Mo)-H_2O,the precipitation of vanadium and molybdenum can be 98%under suitable reaction conditions.
     In the solution of V(Mo)-Al-H_2O,the effect of CaO and CaCl_2 on the precipitation of vanadium and molybdenum was bad,however,Ba(OH)_2 still showed good effect on the precipitation of vanadium and molybdenum.Thermodynamic calculation indicated that the bad effect of CaO and CaCl_2 was ascribed to the formation of many kinds of calcium aluminate which was formed by calcium and large amounts of aluminate ion in the solution,but Ba(OH)_2 can not react with aluminate ion in solution.
     Ba(OH)_2 was firstly brought forward and used to separate vanadium,molybdenum and alumina successively in the sodium alumination solution.Under optimum condition,the precipitation of V and Mo can be 92%and 98%respectively,at the same time sodium aluminate solution was purified.
     Thermodynamic calculation indicated,with the increasing of temperature,the Gibbs free energy of reaction between Ba(OH)_2 and VO_4~(3-)slightly rose.However,the Gibbs free energy of reaction between Ba(OH)_2 and MoO_4~(2-)lowered to a more negative value,equilibrium constant of reaction between Ba(OH)_2 and MoO_4~(2-)enlarged.Hence,increasing temperature was good to the reaction between Ba(OH)_2 and MoO_4~(2-).That is why Ba(OH)_2 can be used to separate vanadium and molybdenum successively in the sodium aluminate solution.
     4.Research on the kinetics of cobalt leaching from spent catalyst
     Kinetics of cobalt leaching from spent catalyst was investigated.A kinetic model was suggested to describe the leaching process of cobalt from spent catalyst,leaching kinetics indicated that diffusion through the product layer is the rate controlling process during the reaction. The activation energy was determined to be about 10.0kJ/mol.Leaching rate of about 98.5%of cobalt and 99.0%of nickel were achieved using -150+200 mesh particle size at a reaction temperature of 80℃for 240min reaction time with 30%(w/w)sulfuric acid concentration and the solid/liquid ratio of 1:8g/ml.
     5.New technology had been developed to recover valuable metals from one kind of spent catalyst on the basis of theoretical research,the results are listed as follows:
     With regard to a kind of a-Al_2O_3 based spent catalyst(V 0.55%、Mo 0.48%、Al_2O_370.95%), the purity of alumina is 99.9%produced with carbonation decomposition process,the recovery of alumina can reach 90.6%in the whole process,the recovery of vanadium and molybdenum is 94.8%and 92.6%,respectively.
引文
[1]管永诗,张云.我国铝土矿总资源及氧化铝工业的现状.矿产保护与利用,1998,(12):42-44
    [2]国土资源部矿产开发管理司编.中国矿产资源主要矿种开发利用水平与政策建议,2002,(9):183-189
    [3]赵祖德.世界铝土矿和氧化铝工业.北京:科学技术出版社,1994.10-25
    [4]沈镭,魏秀鸿.区域矿产资源开发概论.北京:气象出版社,1998.293-301
    [5]李章存.铝的能耗分析.轻金属,1998,(5):3-5
    [6]廖世明,柏谈论.国外钒冶金.北京:冶金工业出版社,1985.45-60
    [7]伯恩斯.晶体场理论的矿物学应用.北京:科学出版社,1977.25-40
    [8]米歇尔.世界钒的生产与使用.英国Kent TN16 1AQ,国际钒技术委员会,2000.2-5
    [9]傅文章.攀西钒钛磁铁矿资源特征及综合利用问题的基本分析.矿产综合利用,1996,(1):27-34
    [10]刘早春.石煤的综合利用.化学世界,1994,(4):213-214
    [11]文友.钒的资源、应用、开发与展望.稀有金属与硬质合金,1996,(124):51-55
    [12]向铁根.钼冶金.长沙:中南大学出版社,2002.1-15
    [13]刘世界.钼矿石选矿技术.北京:中国选矿科技情报网,1989.1-27
    [14]吴爱祥.我国钼资源的分布与特征.中国钼业,1994,(4):5-9
    [15]彭涛,彭如清.中国钼工业现状及发展战略.有色金属工业,1998,(10):14-17
    [16]王海宁.有色金属矿山二次资源的综合利用.矿产保护与利用,1995,(6):43-46
    [17]曹异生.中国有色金属二次资源再生利用.世界有色金属,2005,(6):12-17
    [18]胡岳华,王淀佐.矿物加工学科的发展-历史、现状与未来.矿冶工程,1999,(1):3-6
    [19]张华,胡德文.我国二次矿产资源回收利用分析与对策.中国矿业,2003,(2):48-51
    [20]陈扬,汪德,赖锡军.固体废弃物资源化的现状和前瞻.国土与自然资源研究,2003,(3):9-71
    [21]周学清.钒的萃取.湿法冶金,1993,(2):30-37
    [22]杨守春.钒.现代材料动态,2002,(12):14
    [23]娄世松.石油中镍钒存在形态及脱除方法.石油化工腐蚀与防护,1996,(4):199-201
    [24]孟宪红,李悦,李英.催化剂中金属的回收.化工环保,1996,(4):199-201
    [25]Toyabe,Keiji,Kirishima,et al.Process for recovering valuable metal from waste catalyst.US Patent,5431892,1995-07-11
    [26]Katashi.Recovery of vanadium from spent catalyst.JP Patent,10-8157,1998-05-08
    [27]顾珩,李洪桂,刘茂盛.热球磨苏打法处理钼渣新工艺研究.中国钼业,1997,(4):16-18
    [28]彭泽田.从钼氨浸渣中回收钼.中国钼业,1996,(4):24-26
    [29]乐颂光,鲁君乐.再生有色金属生产.长沙:中南工业大学出版社,1994.25-30
    [30]洪丕基.发展再生有色金属的生产具有重要意义.有色金属(冶炼),1983,(5):7-11
    [31]陈家镛,杨守志.湿法冶金的研究与发展.北京:冶金工业出版社,1998.466-472
    [32]徐承坤.NiCd,NiMH废电池回收工艺及其过程的物理化学:[博士学位论文].沈阳:东北大学,2000
    [33]赵骧.废催化剂回收技术与现状.中氮肥,1989,(9):1-16
    [34]拉钦科.炼油工业加工业加氢催化剂.北京:中国石化出版社,1992.41-45
    [35]李小定.钴-钼-钾系催化剂失活研究.湖北化工,1992,(4):11-15
    [36]张香平.钴钼催化剂中钼的流失研究.工业催化,1999,(4):32-37
    [37]钟点益.从石油化学工业产生的废催化剂中回收贵金属.有色冶炼,1998,(1):35-40
    [38]黄又明.废银催化剂的回收工艺.现代化工,2001,(4):36-38
    [39]孙锦宜.废银催化剂的再生及回收利用.化工时刊,1994,(4):14-16
    [40]Wu Kun-ying,Amanda.Process to recover valuable metal in spent catalyst.Precious Metals,1993,(3):25-29
    [41]吴冠民,周正根.从废催化剂回收铂的方法,中国专利91104386 1
    [42]高立钧.废铂催化剂的综合回收利用研究.全国贵金属二次资源综合回收 学术研讨会论文集,黄山,1992.25-31
    [43]张方宇.铂族金属催化剂及回收工艺.中国物资再生,1996,(8):15-18
    [44]吴国元,戴永年.失效贵金属催化剂中贵金属的富集.稀有金属,2002,(3):231-234
    [45]Ralph L,Meitz.A novel process for recovering metal in waste catalyst.EP,512959,1992-08-06
    [46]张骥,吴贤.废催化剂中铂族金属的回收.贵金属,1998,(1):39-42
    [47]黄又明.从废催化剂中回收镍的技术经济分析.江苏化工,2002,(5):51-54
    [48]汪夏燕,易雯.废触媒回收钴生产氧化钻工艺的研究.无机盐工业,1998,(5):33-34
    [49]李建军,李小云,刘润静等.废钴钼低变催化剂中回收钴的一种新工艺.矿产综合利用,2001,(1):41-43
    [50]周长祥,张荣斌.废镍触媒的综合利用工艺研究.山东化工,2001,(6):12-14
    [51]崔燕,胡宝兰,王雄等.钴-钼废催化剂综合利用研究.无机盐工业,2002,(1):36-39
    [52]任世伟,谷裕,殷恒波.以镍铝失活催化剂生产硫酸镍.辽宁化工,1996,(4):41-43
    [53]Lai Y.D.,Liu J.C.Leaching behaviors of Ni and V from spent catalyst.Journal of Hazardous Materials,1997,53(1-3):213-224
    [54]Al-Mansi N.M,Abdel Monem N.M.Recovery of nickel oxide from spent catalyst.Waste Management,2002,22(1):85-90
    [55]Gaballah,Djona.Recovery of Co,Ni,Mo,and V from unroasted spent hydrorefining catalysts by selective chlorination.Metallurgical Materials Transaction,1995,26(3):41-50
    [56]Hyatt,David E.Value recovery from spent alumina-base catalyst.US Patent,4657745,1987-04-14
    [57]Llanos Z.R.,Deering W.G.Processing for the recovery of metals from spent hydroprocessing catalysts.Third international symposium recycling of metals &engineered materials,edited by P.B.Queneau,R.D.Peterson,TMS,1995:425-447
    [58]Andrew Case,Cary Garretson Edawar Wiewiorowski.Ten years of catalyst recycling.Third international symposium recycling of metals & engineered materials,edited by P.B.Queneau,R.D.Peterson,TMS,1995.449-466
    [59]刘公召,隋智通.从HDS废催化剂中提取钒和钼的研究.矿产综合利用,2002,(2):39-41
    [60]李培佑,张能成,林喜斌.从废催化剂中回收钼的工艺流程研究.中国钼业,1999,(1):16-21
    [61]肖飞燕.从废催化剂中回收钼的研究.中国钼业,2000,(2):42-44
    [62]王江胜.废触媒回收钼制取氧化钼试验研究.再生资源研究,1999,(6):25-27
    [63]户田正作,吴继宝.含钼和钒废催化剂的碱性焙烧.钒钛,1990,(1):28-31
    [64]刘波,童庆云,李国良.氧化焙烧法回收废钒触媒中的钒.四川大学学报(工程科学版),2002,(2):112-115
    [65]LOZANO L.J.,JUAN D.Leaching of vanadium from spent sulphuric acid catalysts.Minerals Engineering,2001,14(5):543-546
    [66]Kar B.B.,Datta P.,Misra V.N.Spent catalyst:secondary source for molybdenum recovery.Hydrometallurgy,2004,72(1):87-92
    [67]Marafi M.,Stanislaus A.Studies on rejuvenation of spent residue hydroprocessing catalysts by leaching of metal foulants.Journal of Molecular Catalysis A:Chemical,2003,202(3):117-125
    [68]Luo L.,Miyazaki T.,Shibayama A.,et al.A novel process for recovery of tungsten and vanadium from a leach solution of tungsten alloy scrap.Minerals Engineering,2003,16(2):665-670
    [69]朝阳,春晖.从废催化剂中提取钒、钼、镍的试验.铁合金,2001,(2):29-31
    [70]刘公召,隋智通.萃取法从废催化剂中提取V_2O_5的研究.矿产综合利用,2001,(6):41-44
    [71]Katsutoshi Inoue.Symposium on Regeneration,Reaction and Reworking of Spent Catalysts Presented before the Division of Petroleum Chemistry,Inc 205National Meeting,American Chemical Society.Denver.1993.256-268
    [72]Toyabe,Keiji,Kirishima,et al.Process for recovering valuable metal from waste catalyst.US Patent,5431892,1995-07-11
    [73]傅绍漯.从铝酸盐溶液中析出钒化合物.轻金属,1980,(4):31-34
    [74]廖世明,柏谈论.国外钒冶金.北京:冶金工业出版社,1985.244-256
    [75]Wilson.Preparation of vanadium.US Patent,3876386,1975-04-08
    [76]Nasyrov;Gakif Zakirovich.Method of preparing vanadium pentoxide.US Patent,4039582,1977-08-02
    [77]Gerisch Von S.,Chemistry of vanadium.Neue Hutte,1969,4,204-210
    [78]刘波,童庆云,李国良.氧化焙烧法回收废钒触媒中的钒,四川大学学报,2002,(2):112-115
    [79]Yun chen,Qiming Feng,Yanhai Shao,et al.Investigation on the extraction of molybdenum and vanadium from ammonia leaching residue of spent catalyst.International Journal of Mineral Processing,2006,79(4):42-48
    [80]龚明生.从废钒催化剂中回收钒的理论与实践.氮肥设计,1995,(4):32-35
    [81]Shigendo Akita.Recovery of vanadium and nickel in fly ash from heavy oil.J.Chem.Tech.Biotechnol,1995,62(3):345-350
    [82]Chmielewski A.G.,Urbanski T.S.,Migdal W.Separation technologies for metals recovery from industrial wastes.Hydrometallurgy,1997,45(3):333-344
    [83]向铁根.钼冶金.长沙:中南大学出版社,2002.98-101
    [84]Juneja J.M.,Sohan Singh,Bose D.K.Investigations on the extraction of molybdenum and rhenium values from low grade molybdenite concentrate.Hydrometallurgy,1996,41(2-3):201-209
    [85]Kar B.B.Carbothermic reduction of hydro-refining spent catalyst to extract molybdenum.International Journal of Mineral processing,2005,75(3-4):249-253
    [86]Kar B.B.,Murthy B.V.R,Misra V.N Extraction of molybdenum from spent catalyst by salt-roasting.International Journal of Mineral processing,2005,76(3):143-147
    [87]Kar B.B.,Datta P.,Misra V.N.Spent catalyst:secondary source for molybdenum recovery.International Journal of Mineral processing,2004,72(1-2):87-92
    [88]林世雄.石油炼制过程(下).北京:石油工业出版社,1988.661-665
    [89]Toyabe,Keiji,Kirishima,et al.Process for recovering valuable metal from waste catalyst.US Patent,5431892,1995-07-11
    [90]Zhang P.W.,Inoue K.,Yoshizuka K.,et al.Extraction and selective stripping of molybdenum(Ⅵ)and vanadium(Ⅳ)from sulfuric acid solution containing aluminum(Ⅲ),cobalt(Ⅱ),niceel(Ⅱ)and iron(Ⅲ)by LIX63 in Exxsol D80.Hydrometallurgy,1996,41(1):45-53
    [91]Cosar T.Separation of Molybdenum,Vanadium and Nickel by Liquid-Liquid Extraction.Turk J Chem,1998,22(2):379-386
    [92]Saily A.,Khurana U.,Yadav S.K.,et al.Thiophosphinic acids as selective extractants for molybdenum recovery from a low grade ore and spent catalysts.Hydrometallurgy,1996,41(1):99-105
    [93]Tilley;George L Recovery of metal values from spent catalysts.US Patent,4721606,1988-01-26
    [94]罗发应,邓小东,李敏等.用湿法从废铝基钼触媒中提取钒、钼的生产工艺.中国专利,CN1557978A,2004-12-29
    [95]齐牧,刘长河,白凤仁等.从废触媒中湿法提取钒和/或钼的工艺.中国专利,CN1453379A,2003-05-08
    [96]维尔J.T.,安德森K.A.,克瓦来斯基R.M.通过碱浸法从废催化剂中回收钼和钒金属的方法.中国专利,CN1305537A,2001-07-25
    [97]刘公召.从HDS废催化剂中提取钒和钼的研究.矿产综合利用,2002,(2):39-41
    [98]户田正作.含钼和钒废催化剂的碱性焙烧.资源素材学会志,1989,(3):261-264
    [99]Naganori Rokukawa.Resources Recycling Technology,(Earth'S 93),1993.14-16
    [100]《有色金属提取冶金手册》编辑委员会.稀有高熔点金属(下).北京:冶金工业出版社,1999.337-355
    [101]户田正作.含钼和钒废催化剂的综合处理.资源素材学会志,1989,(3):265-269
    [102]Yun chen,Qiming Feng,Yanhai Shao,et al.Research on the recycling of valuable metals in spent Al_2O_3-based catalyst.Mineral Engineering,2006,19(1):94-97
    [103]Sebenik.Recovery of metal values from spent hydrodesulfurization catalysts.US Patent,4495157,1985-01-22
    [104]Takayuki Hirai,Isao Komasawa.Electro-reductive stripping of vanadium in solvent extraction process for separation of vanadium and molybdenum using trin-octylmethylammonium chloride.Hydrometallurgy,1993,33:73-82
    [105]Marchese J.Transport of molybdenum with Alamine 336 using supported liquid membrane.Hydrometallurgy,2004,72:309-317
    [106]刘焕群.国外废催化剂回收利用.中国资源综合利用,2000,(12):35-37
    [107]孟宪红,李悦,李英.废催化剂中金属的回收.化工环保,1996,(4):199-202
    [108]Jin S.Y.Metal recovery and rejuvenation of metal-loaded spent catalysts. Catalysis Today.1998,44(1-4):27-46
    [109]Marafi,Stanislaus.Options and processes for spent catalyst handling and utilization.Journal of Hazardous Materials,2003,101(2):123-132
    [110]罗守宽.磷钼钒杂多酸光度法测定钒.理化检验-化学分册,1995,31(6):41-44
    [111]中华人民共和国国家标准,GB223.26-89钢铁及合金化学分析方法硫氰酸盐直接光度法测定钼量.北京:中国标准出版社,1989-06-08
    [112]Chen N.Y.,Liu M.X.Studies on the anionic species of sodium aluminate solutions.Science in China,Series B,1993,36(2):32-38
    [113]Watling H.,Spectroscopy of concentrated sodium aluminate solution.Applied Spectroscopy,1998,52(2):250-258
    [114]梁英教,车荫昌.无机物热力学数据手册.东北大学出版社,沈阳:1993.256-472
    [115]叶大伦,胡建华.实用无机物热力学数据手册.北京:冶金工业出版社,2002.146-586
    [116]杨显万,何蔼平,袁宝州.高温水溶液热力学数据计算手册.北京:冶金工业出版社,1983.125-168
    [117]傅崇说.冶金溶液热力学原理与计算.北京:冶金工业出版社,1979.46-62
    [118]伊赫桑·巴伦主编,程乃良,牛四通,徐桂英,等译.纯物质热化学数据手册.北京:科学出版社,2003.208-312
    [119]迪安,尚久方.兰氏化学手册.北京:科学出版社,1991.115-263
    [120]Pourbaix M.Atlas of Electrochemical Equilibria in Aqueous Solution.London:Oxford Pergamon Press,1996.25-448
    [121]向铁根.钼冶金.长沙:中南大学出版社,2002.7-8
    [122]杨重愚.氧化铝生产工艺学.北京:冶金工业出版社,1992,25
    [123]李自强,何良惠.水溶液化学位图及其应用.成都:成都科技大学出版社,1991.52-58
    [124]Clark R.J.H.,Brown D.The Chemistry of Vanadium,Niobium and Tantalum.London:Oxford Pergamon Press.,1975.261-302
    [125]Bert M.Weckhuysen,Daphne E.Keller.Chemistry,spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis.Catalysis Today,2003,78:25-46
    [126]Kepert D.L.The Early Transition Elements.London:Academic Press,1972. 162-180
    [127]SUNGWOOK KIM.Characterization of molybdenum compounds in aqueous solution.Master of Science,Texas A&M University-Kingsville,1999.10-18
    [128]Bert M.Weckhuysen,Daphne E.Keller.Chemistry.spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis.Catalysis Today,2003,78:25-46
    [129]Pe'ter Buglyo.Aqueous Chemistry of the VanadiumⅢ(Ⅷ)and the Ⅷ-Dipicolinate Systems and a Comparison of the Effect of Three Oxidation States of Vanadium Compounds on Diabetic Hyperglycemia in Rats.Inorg.Chem,2005,44:5416-5427
    [130]Meier R.,Boddin M.,Mitzenheim,S,et al.K.Met.Ions Biol.Syst.1995,31(2):45-88.
    [131]Gamelins Handbuck der Anorganischen Chemic,Verlag Chemic,Gmbh,1967.138-195
    [132]Pourbaix M.Atlas of Electrochemical Equilibria in Aqueous Solution.London:Oxford Pergamon Press.,1966.46-85
    [133]Frenkel D.,Smit B.Understanding molecular simulation:from algorithms to applications.San Diego:Academic Press,1996.106-152
    [134]Ohtaki H.,Radnai T.Structure and dynamics of hydrated ions.Chem.Rev.1993,93:1157-1204
    [135]Alder B.J.,Wainwright T.E.Phase transition for a hard sphere system.J.Chem.Phys.1957,27:1208-1209
    [136]Forcefield based simulations,User guides of Cerius2 software.2001.1-65
    [137]杨小震.分子模拟与高分子材料.北京:科学出版社,2002.54-58
    [138]Fleming S.D,Rohl A.L,Bronswijk.Molecular dynamics simulation-key to the interpretation of aluminate solution spectra.3rd Australian Conference on Vibrational Spectroscopy,Melbourne,1998:145-146
    [139]Watling H.R.,Fleming S.D,BronswijkIonic,et al.Ion structure in caustic aluminate solutions and the precipitation of gibbsite.J.Chem.Soc.Dalton Trans,1998:3911-3917
    [140]Allen MP,Tildesley TD.Computer Simulation of Liquids.London:Oxford University Press,1997.15-28
    [141]Moolneaar,Evans.The structure of the aluminate ion in solutions at high pH.J.Phys.Chemistry,1970,74(2):3629-3636
    [142]Chen N.Y.,Liu M.X.Studies on the anionic species of sodium aluminate solutions.Science in China(series B),1993,36(2):32-38
    [143]Watling H.Spectroscopy of concentrated sodium aluminate solution.Applied Spectroscopy,1998,52(3):250-258
    [144]Chen Qiyuan,Li Jie,Yin Zhoulan,et al.Decomposition of supersaturated sodium aluminate solution.Transactions of Nonferrous Metals Society of China,2003,(3):649-655
    [145]Fleming SD,Rohl AL,Bronswijk.3rd Australian Conference on Vibrational Spectroscopy,Melbourne,1998.145-146
    [146]廖世明,柏淡论.国外钒冶金.长沙:冶金工业出版社,1985.238
    [147]Griffith W.P,Wickine T.D.Raman studies on species in Aqueous solutions,Part Ⅰ The Vanadates,J.Chem.Soc.(A),1966,58:1087-1090
    [148]Griffith W.P,Wickine T.D,Raman studies on species in Aqueous solutions,Part Ⅱ Oxy-species of Metals of Groups Ⅵ_A,Ⅴ_A,and Ⅳ_A,J.Chem.Soc.(A),1967,67(4):675-679
    [149]Griffith W.P,Lesniak P.J.B,Raman studies on species in Aqueous solutions,Part Ⅲ Vanadates,Molybdates,and Tungstates,J.Chem.Soc.(A),1969,86(3):1066-1071
    [150]Griffith W.P,Vibrational Spectra of Metaphosphates,Meta-arsenates,and Meta-vanadates,J.Chem.Soc.(A),1967,69(2):905-909
    [151]向铁根.钼冶金.长沙:中南大学出版社,2002.8-15
    [152]傅崇说.冶金溶液热力学原理与计算.北京:冶金工业出版社,1989.25-50
    [153]叶大伦,胡建华.实用无机物热力学数据手册.北京:冶金工业出版社,2002.268-291
    [154]杨显万,何蔼平,袁宝州.高温水溶液热力学数据计算手册.北京:冶金工业出版社,1983.158-214
    [155]伊赫桑·巴伦主编;程乃良,牛四通,徐桂英,等译.纯物质热化学数据手册.北京:科学出版社,2003.561
    [156]迪安,尚久方.兰氏化学手册.北京:科学出版社,1991.59-105
    [157]李自强,何良惠.水溶液化学位图及其应用.成都,成都科技大学出版社,52-65
    [158]钟竹前,梅光贵.化学位图在湿法冶金和废水净化中的应用.长沙,中南工业大学出版社,1986.18-32
    [159]何璞睿,车蓉,田忠良等.从工业铝酸钠溶液中湿法除硫工艺研究.湿 法冶金,2001,(2):186-190
    [160]何润德.工业铝酸钠溶液氢氧化钡除硫.有色金属.1996,(4):63-66
    [161]程立,刘定富,黎嫂.铝酸钠溶液净化的物理化学研究.贵州工学院学报.1991,(2):77-87
    [162]何润德,胡四春,黎志英等.用高硫型铝土矿生产氧化铝过程中湿法除硫方法讨论.湿法冶金,2004,(2):66-68
    [163]何璞睿,田忠良,何润德.用铝酸钡净化工业铝酸钠溶液除硫研究.轻金属,2002,(5):10-15
    [164]符智,高新录,张郁华.用氢氧化钡净化工业铝酸钠溶液.轻金属,1985,(3):9-12
    [165]傅崇说.有色冶金原理.北京,冶金工业出版社,1984.177
    [166]杨显万.热力学计算方法.有色金属,1979(6):27-37
    [167]Criss C.M.,et al,J.Amer.Chem.Soc.1964,V86,(24):5385
    [168]拉钦科,涅费多夫,阿里耶夫.炼油工业加氢催化剂.北京:中国石化出版社,1993.45-50
    [169]拉钦科,涅费多夫,阿里耶夫.原油深度加工过程催化剂.北京:中国石化出版社,1998:215-218
    [170]刘公召,隋智通.从HDS废催化剂中提取钒和钼的研究.矿产综合利用,2002,(2):39-41
    [171]刘承科.大学化学.长沙:中南工业大学出版社,1994.121
    [172]Yun chen,Qiming Feng,Yanhai Shao,et al..Research on the recycling of valuable metals in spent Al_2O_3-based catalyst.Mineral Engineering,2006,19(1):94-97
    [173]向铁根.钼冶金.长沙:中南大学出版社,2002.152-153
    [174]杨重愚.氧化铝生产工艺学.北京:冶金工业出版社,1992.268-280
    [175]Yoo J.M.,Lee J.C.,Kim B.S.,et al..Leaching of Nickel from a Hydrodesulphurization spent catalyst with ammonium sulfate.Journal of Chemical Engineering of Japan,2004,37(2):1129-1134
    [176]Mulak W.,Miazga B.,Szymczycha A..Kinetics of nickel leaching from spent catalyst in sulphuric acid solution.International Journal of Mineral processing,2005,77(4):231-235
    [177]Abdel-Aal E.A.,Rashad M.M.Kinetic study on the leaching of spnet nickel oxide catalyst with sulfuric acid.Hydrometallurgy,2004,74(2):189-194
    [178]Levenspiel O.,Chemical Reaction Engineering.New York:Wiley,1972. 367-383
    [179]Habashi F.Principles of Extractive Metallurgy.New York:Gordon and Breach,1969.153-163
    [180]Wadsworth M.E.Hydrometallurgical Processes:Rate Processes of Extractive Metallurgy.New York:Plenum Press,1979.133-186
    [181]Anand S,Das S C,Das R P,et al.Leaching of manganese nodules at elevated temperature and pressure in the presence of oxygen.Hydrometallurgy,1988,20:155-167
    [182]Romankiw LT.,Bruyn De.Kinetics of dissolution of zinc sulfide in aqueous sulfuric acid.In:Wadsworth,Unit Process in Hydrometallurgy,Dallas TX,1963.62-85
    [183]Kryukova V.N,Lobanova G.L,Investigation of the reaction of germanium disulphide with ferric chloride solution.In:Soviet Nonferrous Metals Research,1975.62-64
    [184]Wladyslawa M.,Beata M.,Anna S.Kinetics of nickel leaching from spent catalyst in sulphuric acid solution.international Journal of Mineral Processing,2005,77(4):231-235
    [185]Soldenhoff K,Hayward N,Wilkins D.Direct solvent extraction of cobalt and nickel from laterite-acid pressure leach liquors,EPD Congress.The Minerals,Metals and Materials Society.1998.153-165
    [186]Cheng C.H.Purification of synthetic laterite leach solution by solvent extraction using D2EHPA.Hydrometallurgy,2000,56(3):369-386
    [187]Tsakiridis PE,Agatzini S.L.Process for the recovery of cobalt and nickel in the presence of magnesium and calcium from sulphate solutions by Versatic 10 and Cyanex 272.Minerals Engineering,2004,17(4):535-543

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700