光学非球面坐标测量关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非球面光学零件具有校正像差、改善像质、扩大视场和增大作用距离的优点,同时还能够减轻系统重量、减小占用空间,因此在现代光学系统中得到了广泛应用。随着光学系统性能要求的不断提高,对非球面光学零件口径、相对口径、加工精度、轻量化程度、加工效率和生产成本等方面都提出了更高要求。坐标测量技术作为光学非球面研磨与抛光前期阶段面形误差的主要检测手段,是决定非球面加工效率的关键因素。目前,坐标测量技术在解决大口径、大相对口径和高陡度非球面镜的检测方面仍有一些问题需要解决,例如测量精度与效率较低、镜面的高陡度特征给测量带来一定困难等,这些问题的存在严重影响了光学非球面的加工精度和效率。本论文研究工作的主要任务就是要有效解决坐标测量技术目前存在的问题,使坐标测量技术得以完善,提高我国非球面光学零件的加工检测能力。论文的研究工作包括以下几个部分:
     1.针对大口径非球面的检测问题,研究了直角坐标测量方法的基本原理、精度分析与建模。系统分析了直角坐标测量系统的关键部件——长气浮导轨6自由度误差对测量结果的影响模型,并据此开发了高精度测量实验系统。针对其中长气浮导轨直线度误差的高精度测量问题,建立了使用短基准的高精度测量方法,分析研究了测量过程中测量误差、采样频率、重叠区域长度等因素对测量精度的影响规律,实现了导轨直线度误差的高精度测量与校正。最后对口径500mm、相对口径1:3的抛物面镜进行了测量实验。
     2.针对大口径、大相对口径非球面镜的检测问题,分析仿真了摆臂式测量方法的基本测量原理。建立了测量臂的挠性变形、回转轴系的跳动误差等因素对测量精度的影响模型,并开发了摆臂式测量实验系统。通过对测量原理的深入研究,利用被测非球面名义面形与测量数据建立了测量参考球面半径优化算法,在获得非球面面形误差的同时以较高精度得到了被测非球面顶点曲率半径的最优估计值。最后对口径500mm、相对口径1:1的深型镜面进行了测量实验。
     3.针对高陡度非球面的检测问题,提出了基于多段拼接的高陡度光学非球面坐标测量方法。建立了基于多段拼接的高陡度光学非球面坐标测量方法的数学模型。分析仿真了重叠区域二次采样点匹配误差对测量结果的影响规律。针对重叠区域二次采样点匹配误差对测量精度具有较大影响的问题,提出了基于向量空间压缩映射原理的迭代收敛算法。分析研究了工件面形轮廓的自动划分方法并在Matlab下对测量算法进行了仿真。通过对现有测量系统的改进,建立了高精度的测量实验系统,并对口径120mm,长径比1.2的加工样件进行了测量实验。
     4.分析建立了测量系统与被测工件之间相对位姿误差的数学模型,并在Matlab下进行了仿真分析。利用模型参数估计的方法,建立了截线测量位姿误差的优化分离算法,消除了测量过程中位姿误差等因素的影响,提高了测量结果的精度。在此基础上,建立了以截线测量结果为基础,综合截线位姿误差优化参数以及各截线相互平移量为参数的三维面形优化方法,得到了合理的三维面形误差分布结果,为CCOS的局部修形提供了可靠的测量数据。
     5.分析研究了直角坐标测量和高陡度非球面测量过程中测量力对接触式测头测量不确定度的影响模型;分析研究了摆臂式测量过程中扫描速度对测量不确定度的影响;对实际测量过程中的温度、振动等环境误差因素对测量不确定度的影响进行了分析实测。在综合上述分析结果的基础上,对测量结果的合成标准不确定度进行了估算。最后,作为一个应用实例,介绍了与实验室自行研制的加工机床AOCMT合作完成的0500mm,f/3,K9玻璃抛物面镜的加工过程,在233小时内成功加工出抛物面反射镜,加工后的面形精度达到9.4nm RMS (λ/67 RMS,λ2=632.8nm ),表面粗糙度为1.5nm RMS,顶点曲率半径偏差控制在1.2mm(0.4‰),其结果符合预期要求。
Aspheric optics are being used more and more widely in modern optical systems, since they can correct aberrations, enhance the image quality, enlarge the field of view and extend the range of effect, at the same time of reducing the weight and volume of the optical systems. With the ever-increasing demands on optical system performances, requirements for aspheric optical components are more and more critical, which involve aperture, relative aperture, accuracy, lightweight extent, manufacturing efficiency and cost. As the main measurement method of aspherics in grinding and pre-polishing process, the coordinate measurement technique is the key factor affecting the manufacturing efficiency. However, there are still some problems about the coordinate measurement technique, such as the relatively low accuracy and efficiency, the difficulty to test steep aspherics, which have blocked the application of aspherics seriously. This thesis is dedicated to solving the problems mentioned above, in order to perfect the coordinate measurement technique and improve the capability for manufacturing large and steep aspheric surfaces. The major research efforts include the following aspects.
     1. For the measurement of aspherics with a large aperture, the basic measurement principle and the accuracy analysis of a right-angle coordinate measurement technique is introduced. The effect of the 6 DOF errors of a long air guide-way, which is the critical component of a right-angle coordinate measurement system, on the measurement accuracy is analyzed, and an experimental set-up is built. For the ultra-precise measurement of the straightness error of the long air guide-way, the measurement method with a short benchmark is put forward. The effect of such factors as the testing errors, the sampling frequency and the overlap length, on the measurement accuracy is studied. With this method, we can measure and correct the straightness error of a long air guide-way accurately. Finally, a concave paraboloid with aperture= 500 mm and relative aperture= 1:3 is tested.
     2. For the measurement of aspherics with a large aperture and a large numerical aperture, the measurement principle of a swing-arm profilometer is researched and simulated. The effects of the bending of the measurement arm and the runouts of the air-bearing on the accuracy are analyzed and an experimental set-up is built. With the nominal figure and the measured data, the nonlinear optimal model of the radius of the measuring reference circle is built, and the convergence error of the model is analyzed. With this method, we can get the value of the vertex radius of an asphere, at the same time of getting the surface error. Finally, a concave sphere with aperture= 500 mm and relative aperture=1:1 is tested.
     3. For the measurement of steep aspherics, the coordinate measurement technique using profile matching method is put forward. The mathematical model of the profile matching technique is built, and the effect of the consistent errors of the dual-sampled points in the overlaps is analyzed and simulated. Since these errors affect the measurement accuracy quite seriously, an iteration algorithm with the compression mapping principle of the vector space is put forward. After that, the dividing method of the global profile is researched and the algorithm is simulated with Matlab. With the existed equipments, an experimental set-up is built and a steep conformal optics (diameter= 120mm, length/diameter=1.2) is tested.
     4. The effect of the relative posture errors in 6 DOF between the measurement system and the workpiece is researched and simulated. With the method of model parameter estimation, the optimization and separation algorithm of the relative posture errors of a meridian is put forward, with which the effects of the relative posture errors on the result are eliminated and the accuracy of the result is improved. After that, since sometimes the distribution of the 3D surface error is needed, the reconstruction method of the 3D surface error with several meridians is researched, with which the relative posture errors and the relative translations of the meridians are the optimal parameters. Simulations and experiments indicate that, with this method, we can get the reasonable distribution of the 3D surface error and provide the reliable data for CCOS.
     5. The effect of the measuring force on the uncertainty of the right-angle coordinate measurement method, and the effect of the scanning velocity of a contacting probe on the uncertainty of the swing-arm profilometer are analyzed and simulated. The effect of the environmental factors such as the temperature and the vibration is researched and tested too. With these results, we calculated the combined standard uncertainty of the right-angle coordinate measurement method and the swing-arm profilometer. Finally, as a practical example, the manufacturing process of a paraboloid (0500mm,f/3, K9) is introduced. During 233 hours, the workpiece is manufactured successfully, with the surface error 9.4nm rms, the roughness 1.5nm rms, the error of the vertex radius 1.2mm (0.4‰), which has satisfied the expected requirements.
引文
[1]杨力.先进光学制造技术.北京:科学出版社,2001
    [2]辛企明.近代光学制造技术.北京:国防工业出版社,1997
    [3]潘君骅.光学非球面检测技术.国防工业出版社,2000
    [4]Endelman L L, Enterprises E, Jose S. Hubble Space Telescope:now and then. Proc. SPIE,1997,2869:44~57
    [5]J.M.Hill, P.Salinari. The Large Binocular Telescope. Proc.SPIE,2000,6267:36~46
    [6]Torben Andersen, Arne Ardeberg, Jaques Beckers, et al. The Euro50 extremely large telescope. Proc. SPIE,2003,4840:214~225
    [7]J.H.Burge, H.M.Martin. Optical issues for giant telescopes with extremely fast primary mirrors. Proc. SPIE,2003, 4840:.226~237
    [8]郝云彩.空间详查相机光学系统研究.学位论文.上海:、中国科学院上海药物研究所,2000
    [9]Barakat R. The influence of random wavefront errors on the imaging characteristics of an optical system. Optica Acta,1971(18):683-694
    [10]Harvey J E, Kotha A. Scattering effects from residual optical fabrication errors. Proc. SPIE,1995,2576:155~174
    [11]D.D.Walker, A.T.H.Beaucamp, R.G.Bingham, et al. The precessions process for efficient production of aspheric optics for large telescopes and their instrumentation. Proc. SPIE,2003,4842:73~84
    [12]Paul Shore, Philip Parr-Burman. Manufacture of large mirrors for ELTs:a fresh perspective. Proc. SPIE,2004,5252:55~62
    [13]Lawson J K, Auerbach J M, English R E, et al. NIF optical specifications:the importance of the RMS gradient. LLNL Report, UCRL-JC-130032,1998:7-12
    [14]J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, et al. NIF optical materials and fabrication technologies:an overview. Proc.SPIE,2004,5341:84~101
    [15]Marcia J.Rieke, Douglas Kelly, Scott Horner. Overview of James Webb Space Telescope and NIRCam's Role. Proc. SPIE,2005,5904:1-8
    [16]Craig W.McMurtry, William J.Forrest, Andrew C.Moore, et al. James Webb Space Telescope:characterization of flight candidate NIR InSb arrays. Proc.SPIE,2004,5167:144~158
    [17]H.Philip Stahl. Optics needs for future space telescope. Proc.SPIE,2003,5180: 1-5
    [18]Kenneth Garrard, Thomas Bruegge, Jeff Hoffman, et al. Design tools for freeform optics. Proc. SPIE,2005,58740A:1~11
    [19]Ian J.Saunders, Leo Ploeg, Michiel Dorrepaal, et al. Fabrication and metrology of freeform aluminum mirrors for the SCUBA-2 instrument. Proc.SPIE,2005, 586905:1-12
    [20]Cornelis M.Dubbeldam, David J.Robertson. Freeform diamond machining of complex monolithic metal optics for innovative astronomical applications. Proc. SPIE,2006,61490R:1~11
    [21]Uwe Birnhaum, Roland Schreiner. Machining and measuring of an off-axis paraboloid. Proc.SPIE,2005,5965,59650T:1~5
    [22]Mark Craig Gerchman.A description of off-axis conic surfaces for non-axisymmetric surface generation.Proc.SPIE,1990,1266:262~267
    [23]Alignment of two paraboloid off-axis sections by measuring the sagitta. Proc. SPIE,2004,5252:487-495
    [24]常军,翁志成,姜会林等.宽覆盖、离轴空间相机光学系统的设计.光学精密工程,2003,11(1):55~58
    [25]郑立功,张学军,张峰.矩形离轴非球面反射镜的数控加工.光学精密工程,2004,12(1):113~117
    [26]胡明勇,王鹏,郝沛明等.大口径、离轴凸双曲面反射镜的补偿检验.光学技术,2004,30(2):240~244
    [27]Jan G.Dil, Peter F.Greve, Wichert Mesman. Measurement of steep aspheric surfaces. Applied Optics,1978(17):553-557
    [28]R.R.Shannon. Overview of conformal optics. Proc.SPIE,1999,3705:180~188
    [29]John P.Schaefer, Richard A.Eichholtz, Frank Sulzbach. Fabrication challenges associated with conformal optics. Proc.SPIE,2001,4375:128~137
    [30]何玉兰,刘钧,焦明印等.利用CODE V设计含有自由曲面的光学系统.应用光学,2006,27(2):120~123
    [31]谷正气,贺平.自由曲面前照灯近光配光的计算机仿真分析.计算机仿真,2005,22(8):253~255
    [32]陆永贵,杨建东.光学非球面先进制造关键技术的探讨.长春理工大学学报,2006,29(2):31~33
    [33]周旭升.大中型非球面计算机控制研抛工艺方法研究.博士学位论文.长沙:国防科技大学,2007
    [34]乔玉晶,吕宁.非球面及非球面测量技术.哈尔滨商业大学学报,2005,21(3):
    357~361
    [35]Mike Conroy, Joe Armstrong. A comparison of surface metrology techniques. Proc. SPIE,2006,6188:1-7
    [36]陈善勇.非球面子孔径拼接干涉测量的几何方法研究.博士学位论文.长沙:国防科技大学,2006
    [37]James.C.Wyant. Advances in interferometric surface measurement.Proc.SPIE, 2005,6024:1-11
    [38]谢高容.非球面镜片面形检测技术综述.光学仪器,2007,29(2):87~90
    [39]张均,董军,张艳.数字刀口检测技术.光电工程,2005,32(5):65~68
    [40]Wenhan Jiang, Xuejun Rao, Zeping Yang, et al. Applications of Hartmann-Shack wavefront sensors. Proc.SPIE,2005,6018:1-9
    [41]John E.Greivenkamp, Daniel G.Smith, Robert O.Gappinger, et al. Aspheric metrology with a Shack-Hartmann wavefront sensor.Proc.SPIE,2001,4419:1~4
    [42]Min Wang, Daniel Asselina, Patrice Toparta, et al. CGH null test design and fabrication for off-axis aspherical mirror tests. Proc.SPIE,2006,6342:1~12
    [43]Marc Tricard, Aric Shorey, Bob Hallock, et al. Cost-effective, subaperture approaches to finishing and testing astronomical optics. Proc.SPIE,2006,62730L: 1-10
    [44]Marc Tricard, Paul Dumas, Greg Forbes, et al. Recent advanced in sub-aperture approaches to finishing and metrology. Proc. SPIE,2006,6149:1~19
    [45]http://optics.nasa.gov/tech_days/
    [46]张国雄.三坐标测量机.天津大学出版社,1999
    [47]J.F.Song, Theodore V.Vorburger. Stylus profiling at high resolution and low force. Applied Optics,1991,30(1):42~50
    [48]R.Thalmann, D.M.Brouwer, H.Haitjema, et al. Novel design of a one-dimensional measurement probe. Proc.SPIE,2001,4401:168~174
    [49]William J.Wills-Moren, Peter B.Leadbeater. Stylus profilometry of large optics. Proc.SPIE,1990,1333:183~194
    [50]A.Weckenmann, T.Estler, G.Peggs, et al. Probing system in dimensional metrology. CIRP,2003:1-28
    [51]罗秋凤,王海涛,崔向群等.红外移相干涉仪中移相器的非线性校正.仪器仪表学报,2001,22(2):1-2
    [52]Graham Peggs. The dimensional metrology of large refractive optical components using non-optical techniques.Proc.SPIE,2002,4411:171~176
    [53]R. Breidenthal. Measurement of large optical surfaces for fabrication using a non-optical technique.Proc.SPIE,1992,1618:97~103
    [54]Sug-whan Kim, David Walker, David Brooks. Active profiling and polishing for efficient control of material removal from large precision surfaces with moderate asphericity. Mechatronics,2003,13:295~312
    [55]D. Cocco, A. Bianco, G. Sostero. A second optic head for the ELETTRA Long Trace Profiler. Proc.SPIE,2005,5921:1~10
    [56]S.C.Irick, W.R.McKinney. Advancements in one-dimensional profiling with a long trace profiler. Proc.SPIE,1992,1720:162~168
    [57]Peter Z. Takacs.Cylinder lens alignment in the LTP. Proc.SPIE,2005,5921:1-8
    [58]Xiao Tiqiao, Xia Shaojian. A new long trace profiler for aspheric optical surface metrology. Proc.SPIE,2002,4927:208~213
    [59]Amparo Rommeveaux,Muriel Thomasset, Daniele Cocco First report on a European Round Robin for slope measuring profilers.Proc.SPIE,2005,5921:1~12
    [60]Peter.Z.Takacs.Shinan Qian, Thomas kester, et al.Large-mirror figure measurement by optical profilometry techniques.Proc.SPIE,1999,3782:266~274
    [61]Shinan Qian, Qiuping Wang, Yilin Hong, et al.Multiple functions Long Trace Profiler (LTP-MF) for Nationalynchrotron Radiation Laboratory of China. Proc.SPIE,2005,592104:1-7
    [62]Sei Moriyasu,Peter Z.Takacs,Jun-ichi Kato,et al.On-machine Metrology with LTP (Long Trace Profiler), Proc.SPIE,2003,5180:385~392
    [63]刘斌,王秋平,傅绍军.长程大型非球面轮廓测量仪的研究.激光与光电子学进展,2006,43(2):46~53
    [64]Ulf Griesmann, Nadia Machkour-Deshayes, Johannes Soons. Uncertainties in aspheric profile measurements with the geometry measuring machine at NIST.Proc.SPIE,2005,5878:1~13
    [65]P. E. Glenn. Angstrom level profilometry for submillimeter-to meter-scale surface errors. Proc. SPIE,1990,1333:326~336
    [66]P. E. Glenn. Lambda-over-one-thousand metrology results for steep aspheres using a curvature profiling technique.Proc. SPIE,1992,1531:64~61
    [67]I. Weingartner, M. Schulz, P. Thomsen-Schmidt, et al.Measurement of steep aspheres:a step forward to nanometer accuracy.Proc. SPIE,2001,4449:195-204
    [68]M. Schulz. Topography measurement by a reliable large-area curvature sensor. Optik,2001,112:86~90
    [69]M. Schulz, I. Weingartner.Measurement of steep aspheres by curvature scanning: an uncertainty budget. Proc.of 2nd Euspen International Conference,2001,478-
    481
    [70]I. Weingartner, M. Schulz, C. Elster, et al.Simultaneous distance, slope, curvature, and shape measurement with a multi-purpose interferometer.Proc. SPIE,2002, 4778:198~205
    [71]C. Elster, J. Gerhardt, P. Thomsen-Schmidt, et al.Reconstructing surface profiles from curvature measurements.Optik,2002,113:154~158
    [72]M. Schulz, I. Weingartner, C. Elster, et al. Low-and mid-spatial frequency components measurement for aspheres.Proc. SPIE,2003,5188:287-295
    [73]Michael Schulz, Peter Thomsen-Schmidt, Ingolf Weignartner.Reliable curvature sensor for measuring the topography of complex surfaces. Proc. SPIE,2000, 4098:84~93
    [74]Peter Thomson-Schmidt, Michael Schulz, Ingolf Weingartner. A facility for the curvature-based measurement of the nanotopography of complex surfaces. Proc. SPIE,2000,4098:94~101
    [75]Ingolf Weingartner, Michael Schulz,Ralf D.Gecheler.Tracing back radius of curvature and topography to the base unit of length with ultra-precision. Proc.SPIE, 2001,4401:175~183
    [76]Michael Schulz, Ingolf Weingartner. Avoidance and elimination of errors in optical scanning.Proc.SPIE,1999,3823:133~141
    [77]Ingolf Weingartner,Michael Schulz, Clemens Elster.Novel scanning technique for ultra-precise measurement of topography.Proc.SPIE,1999,3782:306-317
    [78]Ingolf Weingartner,Michael Schulz, Peter Thomsen-Schmidt.Methods,error influences and limits for the ultra-precise measurement of slope and figure for large, slightly non-flat or steep complex surfaces.Proc.SPIE,2000,4099:142~153
    [79]Ingolf Weingartner, Michael Schulz. Novel scanning technique for ultraprecise measurement of slope and topography of flats, aspheres, and complex surfaces. Proc.SPIE,1999,4041:274-282
    [80]M.Schulz, R.D.Geckeler, J.Illemann. High accuracy form measurement of large optical surfaces. Proc.SPIE,2003,5190:211-220
    [81]Mahito Negishi,Manabu Ando,Masahumi Takimoto.A super-smooth polishing for aspherical surfaces(Ⅰ)—high-precision coordinate measuring and polishing systems.Proc.SPIE,1995,2576:336~347
    [82]Manabu Ando, Mahito Negishi, Masahumi Takimoto. Super-smooth polishing on aspherical surfaces (Ⅱ)—achievement of a super-smooth polishing. Proc.SPIE, 1995,2576:348~356
    [83]Ho Soon Yang, David Walker. Progress on development of prototype laser reference system for stylus profilometry of large optics.Proc.SPIE,2002,4411: 161~170
    [84]The Primary and Secondary Mirrors for the Proposed Euro50 Telescope. EURO50 Report,2002
    [85]余景池,张学军,孙侠菲等.计算机控制非球面加工精磨阶段的检测技术.光学技术,1998,3:38~40
    [86]唐建冠,伍凡,吴时彬.大口经非球面精磨表面形状检测技术研究.光学技术,2001,6:509~511
    [87]万勇建,范斌,袁家虎等.大型非球面主镜细磨中的一种在线检测技术.光电工程,2005,1:1-4
    [88]张学军,张云峰,余景池等.FSG-1非球面自动加工及在线检测系统.光学精密工程,1997,5:70~76
    [89]宋开臣,张国雄.空间自由曲面的非接触扫描测量.中国机械工程,1999,6:661~664
    [90]谭久彬.超精密测量技术与仪器工程研究中的几个热点问题.中国机械工程,2000,3:257~261
    [91]倪颖,余景池,郭培基等.小型非球面轮廓测量仪的原理及应用.光学精密工程,2003,12:612~616
    [92]David S.Anderson, James H.Burge.Swing-arm profilometry of aspherics. Proc. SPIE,1995,2536:169~179
    [93]Terry S.Mast, Jerry E.Nelson, Gary E.Sommargren.Primary mirror segment fabrication for CELT. Proc. SPIE,2000,4003:43-58
    [94]M.J.Callender, A.Efstathiou, C.W.King, et al.A swing arm profilometer for large telescope mirror element metrology. Proc. SPIE,2006,6273R:1~12
    [95]H.M.Martin, J.H.Burge, C.Del Vecchio, et al.Optical fabrication of the MMT adaptive, secondary mirror. Proc.SPIE,2000,4007:502~507
    [96]P.Dierickx.Optical fabrication in the large. Proc.SPIE,1999:1~13
    [97]Bryan K.Smith, J.H.Burge, H.M.Martin. Fabrication of large secondary mirrors for astronomical telescopes. Proc. SPIE,1997,3134:51~61
    [98]http://www.loh:de.
    [99]贾立德,郑子文,李圣怡.摆臂式非球面轮廓仪的原理与试验.光学精密工程,2007,4:499~504
    [100]Michael Schulz, Ralf D.Geckeler.Scanning form measurement for curved surfaces. Proc. SPIE,2005,5921:1~10
    [101]Michael Schulz, Joachiim Gerhardt, Ralf D.Geckeler, et al.Traceable multiple sensor system for absolute form measurement. Proc. SPIE,2005,5878:1-8
    [102]Paul Glenn, Greg Hull-Allen. Self-referencing, motion-insensitive approach for absolute aspheric profiling of large optics to the nanometer level and beyond. Proc. SPIE,2000,4451:313~324
    [103]Gerd Jakob, Matthias Meyer, Thomas Fries, et al.A new optical metrology tool for
    measuring aspheres. Proc. SPIE,2005,5965Z:1-7
    [104]J.H.Burge, L.B.Kot, H.M.Martin, et al. Alternate surface measurements for GMT primary mirror segments. Proc. SPIE,2006,62732T:1~12
    [105]张晓青,祝连庆.一种测量非球面光学零件面形的新方法.工具技术,2001,35(4):24~27
    [106]Jing Hongwei, Kuang Long, Fan Tianquan, et al.Measurement of large aspherical mirrors using coordinate measurement machine during the grinding process. Proc. SPIE,2006,61481:1-6
    [107]Larry Stepp, Gary Poczulp, Earl Pearson, el al. NOAO testing procedures for large optics. Proc. SPIE,1618:78~88
    [108]Hongyu Liu, Benjamin Bard, Guowen Lu, et al.Absolute measurement of surface profiles in phase-shifting projected fringe profilometry. Proc.SPIE,1999,3782: 283~290
    [109]John Stoup,Ted Doiron.The accuracy and versatility of the NIST M48 coordinate measuring machine.Proc.SPIE, 2001,4401:136~146
    [110]Paul Glenn. Angstrom level profilometry for sub-millimeter to meter scale surface errors. Proc. SPIE,1990,1333:326~336
    [111]H.Philip Stahl.Aspheric surface testing techniques. Proc. SPIE,1990,1332:66-76
    [112]Dennis A.Swyt, Steven D.Phillips, John Palmateer.Developments at NIST on traceability in dimensional measurements. Proc. SPIE,2001,4401:245~252
    [113]Valentina Azarova, Igor Dronov, Aleksandr Karcev, et al.Metrology of precision optical surfaces and laser mirrors. Proc. SPIE,1999,3739:377~385
    [114]Stephan Reichelt, Christof Prus, Hans J.Tiziani.Absolute testing of aspheric surfaces. Proc. SPIE,2004,5252:252~263
    [115]Roland Geyl, Marc Cayrel, Michel Tarreau. Gran telescope canarias optics manufacture:progress report No.2. Proc. SPIE,2004,5252:63~68
    [116]Joseph Ellison, Steven Vankerkhove.Characterization of symmetric aberrations in aspheric surfaces using non-contact profilometry. Proc.SPIE,2003,5180:347~354
    [117]Rolf Freimann, Bernd Dorhand, Frank Holler. Absolute measurement of non-comatic aspheric surface errors. Optics Communications,1999,161:106~114
    [118]Wolfgang Otto, Axel Matthes, Heinz Schiehle.Measuring large aspherics using a commercially available 3D-coordinate measuring machine. Proc. SPIE,2000,4003: 91~96
    [119]Marc Tricard, Paul Dumas, Greg Forbes, et al.Recent advances in sub-aperture approaches to finishing and metrology. Proc. SPIE,2006,614903:1~19
    [120]Marc Tricard, Aric Shorey, Bob Hallock,et al.Cost-effective,subaperture approaches to finishing and testing astronomical optics.Proc.SPIE,2006,62730L: 1-10
    [121]Aric Shorey, William Kordonski, Marc Tricard.Deterministic, precision finishing of domes and conformal optics. Proc. SPIE,2005,5786:310~318
    [122]William Kordonski, Aric Shorey, Marc Tricard.Jet-induced high-precision finishing of challenging optics. Proc. SPIE,2005,586909:1-8
    [123]Scott A.Lerner, Jose M.Sasian, John E.Greivenkamp.Interferometric metrology of conformal domes. Proc. SPIE,1999,3705:221-226
    [124]Ronald G.Hegg, C.Bill Chen. Testing and analyzing conformal windows with null optics, Proc. SPIE,2001,4375:138~145
    [125]http://www.taylor-hobson.com
    [126]张晓玲,林玉池,吴波等.实现物体360°轮廓测量的新型轮廓拼接方法.机械工程学报,2006,42(5):182~185
    [127]郭红卫.多孔径拼接技术实现360°面形测量:博士学位论文.上海:上海大学,2001
    [128]任潇潇,邓善熙,杨永跃.曲线拼接在炎车车轮轮廓几何参数检测中的应用.国外电子测量技术,2003.2:21~23
    [129]熊洪允,曾绍标,毛云英.应用数学基础(上).天津:天津大学出版社,1998
    [130]H.J.Pahk, J.S.Park and I. Yeo.Development of straightness measurement technique using the profile matching method.Int. J. Mach. Tools Manufact.1997,37(2): 135~147
    [131]侯溪,伍凡,杨力.子孔径拼接干涉测试技术现状及发展趋势.光学与光电技术,2005,3:50~53
    [132]何海涛,郭红卫,于赢洁等.基于虚拟圆柱的曲面拼接方法.光学学报,2004,24(7):978~982
    [133]王孝坤,张学军.子孔径拼接检测非球面的初步研究.光学技术,2006,5:673~677
    [134]李新南,张明意.大口径光学平面的子孔径拼接检验研究.光学技术, 2006,4:514~517
    [135]Robert Edgeworth, Robert G.Wilhelm. Adaptive sampling for coordinate metrology. Precision Engineering,1999,23:144~154.
    [136]B.C.Park,Y.W.Lee,C.Lee,et al.Algorithm for stylus instruments to measure aspheric surfaces.Proc.SPIE,2005,5638:309~318
    [137]W.B.Lee, C.F.Cheung, W.M.Chiu.An investigation of residual form error compensation in the ultra-precision machining of aspheric surfaces. Journal of Materials Processing Technology,2000,99:129~134
    [138]M.Hill, M.Jung.J.W.McBride.Separation of form from orientation in 3D measurements of aspheric surfaces with no datum. Machine Tools and Manufacture,2002,42:457~466
    [139]Timothy Webber, Saeid Motavalli, Behrooz Fallahi.A unified approach to form error evaluation. Precision Engineering,2002,26:269-278
    [140]H.J.Tiziani,S.Reichelt,C.Prub,et al.Testing of aspheric surfaces.Proc.SPIE,2001, 4440:109~119
    [141]Bernd Dorband.Evaluation of rotational symmetric surface deviations by means of average radial profile.Proc.SPIE,1999,474-479
    [142]Gabor Erdei,Gabor Szarvas,Emoke Lorincz.Tolerancing surface accuracy of aspheric lenses used for imaging purposes.Proc.SPIE,2004,5249:718-728
    [143]Jing Hongwei, Kuang Long, Fan Tianquan,et al. Measurement of large aspherical mirrors using coordinate measurement machine during the grinding process.Proc.SPIE,2006,61481:1-6
    [144]Eleanor F. Howick. An investigation into applying self-calibration techniques to measuring large optical components on a CMM.Proc.SPIE,2003,5190:232~241
    [145]Maria A.Saenz-Nuno.Contact model of the probe in form measurement. Proc. SPIE,2003,5190:221~231
    [146]Hao-Bo Cheng, Zhi-Jing Feng, Kai Cheng, et al. Design of a six-axis high precision machine tool and its application in machining aspherical optical mirrors. Machine Tools & Manufacture,2005,1085~1094
    [147]Wei Gao, Yoshikazu Arai, Atsushi Shibuya, et al.Measurement of multi-degree-of-freedom error motions of a precision linear air-bearing stage. Precision Engineering,2006,30:96-103
    [148]Ho-Soon Yang, Sug-Whan Kim, David Walker. Novel laser datum system for nanometric profilometry for large optical surfaces. Optics Express,2003,11(6): 624~631
    [149]David Walker, Ho-Soon Yang, Sug-Whan Kim. Novel hybrid stylus for nanometric profilometry for large optical surfaces. Optics Express,2003, 11 (15):1793~1798
    [150]宁延平刘战锋.国内外高精度直线度测量技术的研究现状..现代制造工程,2005,6:82~84
    [151]尹自强.超精密直线度测量及表面微观形貌分析研究:博士学位论文.长沙:国防科技大学,2003
    [152]洪迈生,魏元雷,李自军等.形状误差分离技术的统一理论—同源、统一的各种直线形状误差分离方法评述.宇航计测技术,2001,21(6):1-12
    [153]李圣怡,尹自强.超精密工件在线直线度多传感器测量方法.纳米技术与精密工程,2004,3(1):71~75
    [154]苏恒,洪迈生,魏元雷等.机床直行部件运动误差的在线测量.机械工程学报,2003,39(3):8-12
    [155]王宪平,李圣怡.直线度误差分离方法的误差分析.国防科技大学学报,2000,22(3):100~104
    [156]YIN Ziqiang, LI Shengyi. High accuracy error separation technique for on-machine measuring straightness. Precision Engineering,2006 (30):192~200
    [157]YIN Ziqiang, LI Shengyi. Exact straightness reconstruction for on-machine measuring precision workpiece. Precision Engineering,2005(29):456~466
    [158]ARAI Yoshikazu, GAO Wei, SHI MIZU Hiroki, et al. On-machine measurement of aspherical surface profile. Nanotechnology and Precision Engineering, 2004,2(3):210~216
    [159]H.J.Pahk, J.S.Park, I. Yeo.Development of straightness measurement technique using the profile matching method.Int. J. Mach. Tools Manufact,1997,37(2):135-147
    [160]Dave Baiocchi, J.H.Burge.Radius of curvature metrology for segmented mirrors. Proc.SPIE,2000,4093:58~67
    [161]仇谷烽,郭培基,懈滨等.接触式非球面轮廓测量的数据处理模型.光学精密工程,2007,15(4):492~498
    [162]贾立德,郑子文,李圣怡等.基于柱面坐标系的新型光学坐标测量机的研制.光学精密工程,2006,14(5):551~555
    [163]张星祥,任建岳.非球面镜检测误差的逆向求解法.航空精密制造技术,2003,39(6):26~29
    [164]贾立德,郑子文,李圣怡等.光学非球面坐标测量中位姿误差的分离与优化.光学精密工程,2007,15(8):1229~1234
    [165]胡东明,段广洪,张伯鹏.非定位、欠定位加工中的三维自由曲面定位算法研究.中国机械工程,1997,8(1):77—79
    [166]王权陡.计算机控制离轴非球面制造技术研究.博士学位论文.长春光机所,2001
    [167]刘元朋,刘晶,张力宁等.复杂曲面测量数据最佳匹配问题研究.中国机械工程,2005,16(12):1080~1082
    [168]熊有伦.精密测量中的数学方法.北京:中国计量出版社,1989
    [169]谭久彬.精密测量中的误差补偿技术.北京:科学技术出版社,1999
    [170]国家质量技术监督局.JJF1059-1999测量不确定度评定与表示.北京:中国计量出版社,1997
    [171]国际标准.ISO10110.Optics and optical instruments-preparation of drawings for optical elements and systems.
    [172]蔡萍.微纳米检测技术的研究进展.上海计量测试,2002,29(6):4~7
    [173]Chang-Xue Feng, Anthony L.Saal, James G.Salsbury. et al. Design and analysis of experiments in CMM measurement uncertainty study. Precision Engineering, 2007,31:94-101
    [174]Toshiyuki Takatsuji, Sonko Osawa, Tomizo Kurosawa.Uncertainty analysis of calibration of geometrical gauges. Precision Engineering,2002,26:24-29
    [175]A.Weckenmann, M. Knauner, T. Killmaier. Uncertainty of coordinate measurements on sheet-metal parts in the automotive industry. Materials Processing Technology,2001,115:9-13
    [176]V.Giniotis, K.T.V.Grattna, M.Rybokas, et al.Uncertainty and indeterminacy of measurement data. Measurement,2004,36:195~202
    [177]王选择,郭军,谢铁邦.大量程杠杆式光学轮廓仪的非线性分析与补偿.传感器技术,2003,22(8):38~41
    [178]Atsushi Shibuya, Wei Gao, Yasuo Yoshikawa, et al.Profile measurements of micro-aspheric surfaces using an air-bearing stylus with a microprobe. International Journal of Precision Engineering and Manufacturing,2007,8:26~31
    [179]Sei Moriyasu.Ultraprecision Wide-angle Profile Measurement with Air-bearing Cylinder Slant Probes. Measurement,2004,36:71~76
    [180]http://www.heidenhain.de
    [181]http://www.biupe.com.cn
    [182]段广云,王建华,李平.接触式测微仪测头动态性能分析.西安工业学院学报,2004(24),11~14
    [183]Pawel Pawlus,Miroslaw Smieszek.The influence of stylus flight on change of surface topography parameters. Precision Engineering,2005,29:272~280

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700