强噪声背景下滚动轴承故障诊断的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋转机械工况监测是系统维护和自动化生产中的一个重要环节,滚动轴承故障是造成旋转机械损坏最主要因素之一,有时还会带来灾难性的生产事故。因此,开展滚动轴承故障诊断,尤其是对早期故障诊断研究具有重要的理论价值和实际意义。实践表明:对于具有调制现象的滚动轴承故障诊断,基于Hilbert变换的包络解调方法是一种可靠的诊断方法。本文以强噪声背景下滚动轴承故障诊断为目标,针对故障特征提取的问题提出了几种包络解调的新方法,’主要研究工作如下:
     在滚动轴承的故障机理方面,完善了现有滚动轴承振动模型,建立了综合考虑轴承元件表面波纹度、局部损伤、径向游隙等因素的轴承振动模型。由于生产工艺的原因,轴承元件表面不可避免的存在波纹度,为使模型更符合滚动轴承的实际工作情况,在模拟轴承损伤故障振动信号时必须考虑波纹度等其它因素的影响。通过实验分析模拟轴承的振动特性,证明该模型是有效的。
     从信号分析角度看,Morlet小波和Harmonic小波是复解析带通滤器,常用于振动信号的包络解调。但是,它们在时域或频域都存在自身的不足,为此,构造了一种复解析带通滤波器,不但克服了Harmonic小波Gibbs的现象,还具有几乎“盒形”的频谱特征、时域衰减较快的特性,综合性能优于二者。在此基础上,提出了一种基于组合复解析带通滤波器的梳状包络解调方法,实现了信号梳状滤波和包络解调的统一。实验结果表明该方法具有抗噪声、容错能力强的优点,可获得信号的简明解调谱特征。
     S变换(S-Transform, ST)是短时Fourier变换和小波变换的一种延伸和扩展,可用于提取信号的包络。为了更有效的分析具有周期性调幅特征的轴承损伤振动信号,提出了多分辨率ST包络谱的概念,并给出了其计算方法。为了进一步抑制带内噪声,采用了一种基于多分辨率ST包络谱和奇异值比谱的方法,自动提取、重构调制信号包络的主周期分量,由于采用了改进的相空间矩阵重构方法,使获取的主周期分量频率更准确。实验结果证明,该方法可以很好的降低噪声,有效地提取信号中的周期成分,在不同强度背景噪声下,实现了轴承故障特征频率的提取。
     与各种抑制噪声方法相比,随机共振能够利用噪声来增强信号,使其在微弱信号的增强和检测方面有着独特的优势。在随机共振系统的数值解法方面,提出了一种改进的数值解法以增强共振效果;在系统参数优化方面,设计了一种基于遗传算法同时优化系统参数和噪声强度的自适应随机共振方法;针对经典的绝热近似小参数随机共振难以满足实际工程大参数条件下的微弱信号检测问题,深入研究了变尺度、移频—变尺度等大参数信号随机共振实现方法,提出了一种更适用于调幅信号的大参数随机共振系统,即S变换—变尺度随机共振。实验结果证明,该方法对于微弱周期调制信号的解调分析效果明显优于FFT谱分析和常用解调方法,可用于强噪声背景下提取轴承故障特征。
     通过对模拟和实测轴承故障振动信号的实验分析,证明了以上所提出包络解调新方法的有效性以及某些方面独特的优越性。有理由相信,这些方法在滚动轴承故障诊断方面有着良好的应用前景。
The condition monitoring of rotating machinery is important in terms of system maintenance and process automation. Rolling element bearing failure is one of the foremost causes of breakdown in rotating machinery. Such bearing failure can be catastrophic in certain situations such as in automatic processing machines. So it is very significant to research on bearing condition monitoring and fault diagnosis techniques, especially for bearing incipient fault. The practice shows that the envelope demodulation method based on Hilbert transformation offers a reliable method for the bearing fault diagnosis with modulation phenomenon. Aiming to address bearing fault diagnosis in heavy noise, new envelope demodulation methods were explored in this dissertation. The main contributions are described as follows:
     In terms of fault mechanism of bearing, dynamic behaviors of rolling element bearings with surface waviness, local defects, radial clearances and other factors considered were further perfected based on some existing models. Since any bearing has surface waviness to a certain degree due to the manufacturing process, surface waviness and other factors should be taken into account in simulating bearing local defects vibration signals, and this was well coincide with the. real-life situations. The accordance of vibration properties obtained from the mathematical model with those from the experimental data verified the validity of the proposed model.
     In the viewpoint of signal analysis, Morlet wavelet and Harmonic wavelet, in nature, belong to the complex analytical band-pass filter, and are usually used to extract vibration signal envelopes. Aiming at the insufficiency on Morlet wavelet and Harmonic wavelet, a novel complex analytical band-pass filter was constructed with the Gibbs phenomenon occurring slightly, the characteristics of nearly box on frequency domain, and rapid decay on time domain. On this basis, a comb-filter and envelope-demodulator method based on combining complex analytical band-pass filters was proposed. This technique integrates comb-filtering and envelope-demodulating. The experiment results show that a clear, noiseproof and fault-tolerant envelope spectrum could be obtained with the proposed method.
     The S-transform (ST), as extension to the ideas of the short time Fourier transform and the wavelet transform, could be applied in the envelope demodulation. Multi-resolution ST envelope spectrum was proposed to analyze bearing vibration signal with cycle-modulating feature efficiently, and the calculation method was presented correspondingly. In order to restrain noise within pass-band, the novel method for detection, enhancement and reconstruction of principal periodic component in envelope based on Multi-resolution ST envelope spectrum and singular value ratio (SVR) spectrum was adopted. Owing to the improved approach was employed in reconstructing the matrix of singular value decomposition (SVD), the precision frequency determination was enhanced. It was shown that the new de-noising method could reduce the noise and extract the period of the signal effectively, and could be effectively applied in the vibration envelope extraction for a roller bearing system in different noise level.
     In comparison with other suppression noise methods, because signals could be strengthened by noise in stochastic resonance (SR) system, the SR effect has particular advantages on enhancing and detecting weak signals. In terms of numerical solution for a SR model, an improved solution based on a fourth order Runge-Kutta algorithm was presented to enhance the resonance effect. However, the optimization of system parameter and noise intensity is complicated and difficult in a SR system. A novel genetic adaptive SR algorithm, used to optimize system parameter and noise intensity, was presented here. Aiming at traditional adiabatic elimination SR in small parameters is not adapt to engineering weak signal detection in large parameters, based on the researches of re-scaling, frequency-shifted and re-scaling methods, a method based on the S-transform and rescaling was presented for amplitude modulated signal detection. The effectiveness of the proposed method was demonstrated on both simulation signals and real vibration signals of bearing. It was shown to be superior to the spectrum analysis and the common envelope demodulation analysis. The method could extract bearing fault feature in heavy noise.
     It was shown that the proposed envelope-demodulation methods in this dissertation were demonstrated on their validity and superiority to the common envelope demodulation methods. It's worth reling that they would have a promising application for the fault diagnosis of rolling element bearings.
引文
[1]钟秉林,黄仁.机械故障诊断学[M].北京:机械工业出版社,2007.
    [2]窦唯.旋转机械振动故障诊断的图形识别方法研究[D].哈尔滨:哈尔滨工业大学,2009.
    [3]周福昌.基于循环平稳信号处理的滚动轴承故障诊断方法研究[D].上海:上海交通大学,2006.
    [4]徐敏,黄昭毅等.设备故障诊断手册[M].西安:西安交通大学出版社,1998.
    [5]黄文虎,夏松波,刘瑞岩等.设备故障诊断原理、技术及应用[M].北京:科学出版社,1996.
    [6]吴云鹏,张文平,孙立红.滚动轴承力学模型的研究及其发展趋势[J].轴承,2004,(07):44-46.
    [7]Palmgren R. Ball and Roller Bearing Engineering[M]. Burbank,philadephia,1959.
    [8]Jones AB. Ball Motion and Sltiding Friction in Ball Bearing[J]. Trans ASME,Journal of Basic Engineering,1959,(81):1-2.
    [9]Harris TA. An analytical Method to Predict Skidding in High Speed Roller Bearing[J]. Trans ASME,1966,93:17-24.
    [10]Walters CT. The Dynamics of Ball Bearings[J]. Trans ASME,Journal of Lubrication Technology,1971,(93):1-10.
    [11]Gupta PK. Advanced dynamics of rolling elements[M]. Berlin:Springer-Verlag,1984.
    [12]Harris TA, Kotzalas MN. Rolling Bearing Analysis-Essential Concepts of Bearing Technology[M]. New York:CRC Press,Taylor & Francis Group,2007.
    [13]赵联春,马家驹.球轴承的弹性接触振动[J].机械工程学报,2003,39(05):60-64.
    [14]罗继伟.滚动轴承受力分析及其进展[J].轴承,2001,(09):28-31.
    [15]李朝峰,孙伟,王得刚,et al.两类转子-轴承系统模型非线性特性研究[J].中国机械工程,2009,20(02):218-222.
    [16]张乐乐,谭南林,樊莉.滚动轴承故障的显式动力学仿真与分析[J].上海交通大学学报,2007,41(09):1506-1509.
    [17]张伟刚,高尚晗,龙新华,et al.机床主轴-滚动轴承系统非线性动力学分析[J].振动与冲击,2008,27(09):72-75.
    [18]McFadden PD, J.D. S. Model for the vibration produced by a single point defect in a rolling element bearing[J]. Journal of Sound and Vibration,1984,96(1):69-82.
    [19]张耀强,陈建军,邓四二,et al.考虑表面波纹度的滚动轴承-转子系统非线性动力特性[J].航空动力学报,2008,23(09):1731-1736.
    [20]Bai CQ, Xu QY. Dynamic model of ball bearings with internal clearance and waviness[J]. Journal of Sound and Vibration,2006,294(1-2):23-48.
    [21]ONO K, OKADA Y. Analysis of ball bearing vibrations caused by outer race waviness[J]. ASME Journal of Vibration and Acoustics,1998,120:901-908.
    [22]Harsha SP, Sandeep K, Prakash R. Non-linear dynamic behaviors of rolling element bearings due to surface waviness[J]. Journal of Sound and Vibration,2004,272(3-5): 557-580.
    [23]Jang G, Jeong SW. Vibration analysis of a rotating system due to the effect of ball bearing waviness[J]. Journal of Sound and Vibration,2004,269(3-5):709-726.
    [24]张文平,吴云鹏.基于表面特征的滚动轴承振动模型研究[J].哈尔滨工程大学学报,2007,28(05):528-531.
    [25]Harsha SP. Nonlinear dynamic response of a balanced rotor supported by rolling element bearings due to radial internal clearance effect[J]. Mechanism and Machine Theory, 2006,41(6):688-706.
    [26]Kiral Z, Karagulle H. Vibration analysis of rolling element bearings with various defects under the action of an unbalanced force[J]. Mechanical Systems and Signal Processing, 2006,20(8):1967-1991.
    [27]Choudhury A, Tandon N. Vibration response of rolling element bearings in a rotor bearing system to a local defect under radial load[J]. Journal of Tribology-Transactions of the Asme, 2006,128(2):252-261.
    [28]Rafsanjani A, Abbasion S, Farshidianfar A, et al. Nonlinear dynamic modeling of surface defects in rolling element bearing systems[J]. Journal of Sound and Vibration, 2009,319(3-5):1150-1174.
    [29]杨将新,曹冲锋,曹衍龙,et al.内圈局部损伤滚动轴承系统动态特性建模及仿真[J].浙江大学学报(工学版),2007,44(04):552-555.
    [30]何正嘉,訾艳阳,孟庆丰.机械设备非平稳信号的故障诊断原理及应用[M].北京:高等教育出版社,2001.
    [31]McFadden P, Smith J. Vibration monitoring of rolling element bearings by the high-frequency resonance technique--a review[J]. Tribology International,1984,17(1): 3-10.
    [32]丁康,钟舜聪.通用的离散频谱相位差校正方法[J].电子学报,2003,31(01):142-145.
    [33]丁康,潘成灏,李巍华.ZFFT与Chirp-Z变换细化选带的频谱分析对比[J].振动与冲击,2006,25(06):9-13.
    [34]李辉,郑海起,唐力伟.阶次倒谱在轴承故障诊断中的应用[J].数据采集与处理,2006,21(04):454-458.
    [35]田昊,唐力伟,陈红,et al.基于瞬态声与阶次倒谱的齿轮箱故障诊断[J].振动、测试与诊断,2009,29(02):136-140.
    [36]Ho D, Randall RB. Optimisation of bearing diagnostic techniques using simulated and actual bearing fault signals[J]. Mechanical Systems and Signal Processing,2000,14(5): 763-788.
    [37]丁康,谢明,张彼德,et al.复解析带通滤波器及其在解调分析中的应用[J].振动工程学报,2000,13(03):385-392.
    [38]Sheen YT. A complex filter for vibration signal demodulation in bearing defect diagnosis[J]. Journal of Sound and Vibration,2004,276(1-2):105-119.
    [39]胡晓依,何庆复,王华胜.基于SVD降噪和STFT解调方法的轴承故障检测[J].中国铁道科学,2008,29(03):95-100.
    [40]胡晓依,何庆复,王华胜,et al.基于STFT的振动信号解调方法及其在轴承故障检测中的应用[J].振动与冲击,2008,27(02):82-86.
    [41]来五星,轩建平,史铁林,et al. Wigner-Ville时频分布研究及其在齿轮故障诊断中的应用[J].振动工程学报,2003,16(02):247-250.
    [42]刘卫兵,李志农,蒋静.基于局域均值分解和Wigner高阶矩谱的机械故障诊断方法的研究[J].振动与冲击,2010,29(06):170-173.
    [43]李志农,何永勇,褚福磊.基于Wigner高阶谱的机械故障诊断的研究[J].机械工程学报,2005,41(04):119-122.
    [44]Dishan H. A WAVELET-BASED ALGORITHM FOR THE HILBERT TRANSFORM [J]. Mechanical Systems and Signal Processing,1996,10(2):125-134.
    [45]张绪省,朱贻盛,成晓雄,et al.信号包络提取方法——从希尔伯特变换到小波变换[J].电子与信息学报,1997,19(01):120-123.
    [46]樊可清,王玲,陈保平.基于小波分析的工程信号调制解调方法及其应用[J].电子与信息学报,2001,23(08):758-763.
    [47]梁霖,徐光华.基于自适应复平移Morlet小波的轴承包络解调分析方法[J].机械工程学报,2006,42(10):151-155.
    [48]史东锋,鲍明,屈梁生.小波包络分析在滚动轴承诊断中的应用[J].中国机械工程,2000,11(12):1382-1386.
    [49]刘刚,屈梁生.应用连续小波变换提取机械故障的特征[J].西安交通大学学报,2000,34(11):74-77.
    [50]刘崇春,裘正定.一种基于Morlet小波的振动信号包络提取方法[J].电路与系统学报,2000,5(1):68-71.
    [51]何岭松,李巍华.用Morlet小波进行包络检波分析[J].振动工程学报,2002,15(01):119-122.
    [52]王志刚,李友荣,吕勇.基于谐波小波变换的共振解调法[J].振动与冲击,2006,25(04):159-161.
    [53]李瑰贤,周铭,韩继光,et al.改进谐波小波及其在振动信号时频分析中的应用[J].振动工程学报,2001,14(04):388-391.
    [54]张家凡.振动信号的包络解调分析方法研究及应用[D].武汉:武汉理工大学,2008.
    [55]李志勇,危韧勇,张涛.基于Morlet组合小波的梳状滤波与包络检波方法[J].中南大学学报(自然科学版),2006,37(02):336-340.
    [56]赵俊龙,郭正刚,张志新,et al.梳状滤波器在滚动轴承早期故障诊断中的应用[J].振动与冲击,2008,27(12):171-174.
    [57]林京,屈梁生.基于连续小波变换的奇异性检测与故障诊断[J].振动工程学报,2000,13(04):523-530.
    [58]庞茂,周晓军,胡宏伟,et al.基于解析小波变换的奇异性检测和特征提取[J].浙江大学学报(工学版),2006,40(11):1994-1997.
    [59]袁静,何正嘉,訾艳阳.基于提升多小波的机电设备复合故障分离和提取[J].机械工程学报,2010,46(01):79-85.
    [60]段晨东,何正嘉.基于提升模式的特征小波构造及其应用[J].振动工程学报,2007,20(01):85-90.
    [61]段晨东,何正嘉.一种基于提升小波变换的故障特征提取方法及其应用[J].振动与冲击,2007,26(02):10-13.
    [62]万书亭,吕路勇,何玉灵.基于提升模式非抽样小波变换的滚动轴承故障诊断方法研究[J].振动与冲击,2009,28(01):170-173.
    [63]梁霖,徐光华,侯成刚.基于奇异值分解的连续小波消噪方法[J].西安交通大学学报,2004,38(09):904-907.
    [64]李军伟,韩捷,李志农,et al.小波变换域双谱分析及其在滚动轴承故障诊断中的应用[J].振动与冲击,2006,25(05):92-95.
    [65]R.G. Stockwell, L. Mansinha, R.P. Lowe. Localization of the complex spectrum:the S transform[J]. Signal Processing, IEEE Transactions on,1996,44(4):998-1001
    [66]R.G Stockwell. S-Transform Analysis of Gravity Wave Activity from a Small Scale Network of Airglow Imagers[D]. London, Ontario:The University of Western Ontario, 1999.
    [67]P. D. McFadden, J. G Cook, L. M. Forster. Decomposition of gear vibration signals by the generalised S transform[J]. Mechanical Systems and Signal Processing,1999,13(5): 691-707
    [68]Mallat SG, Zhang Z. Matching pursuits with time-frequency dictionaries [J]. Ieee Transactions on Signal Processing,1993,41(12):3397-3415
    [69]Donoho DL. Compressed sensing[J]. Ieee Transactions on Information Theory,2006,52(4): 1289-1306.
    [70]Candes E, Romberg J, Tao T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J]. Ieee Transactions on Information Theory, 2006,52(2):489-509.
    [71]Baraniuk RG Compressive sensing[J]. Ieee Signal Processing Magazine,2007,24(4): 118-124.
    [72]Daubechies I. Time-frequency localization operators:a geometric phase space approach[J]. Ieee Transactions on Information Theory,1988,34(4):605-612.
    [73]Coifman RR, Wickerhauser MV. Entropy-based algorithms for best basis selection [J]. Ieee Transactions on Information Theory,1992,38(2).
    [74]Chen SS. Basis Pursuit[D]. Palo Alto:Stanford University,1995.
    [75]Pati YC, Rezaiifar R, Krishnaprasad PS. Orthogonal matching pursuit:Recursive function approximation with applications to wavelet decomposition:proceedings of the Twenty-Seventh Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA 01 Nov-03 Nov [C].1993.
    [76]Liu B, Ling SF, Gribonval R. Bearing failure detection using matching pursuit[J]. Ndt & E International,2002,35(4):255-262.
    [77]Yang HY, Mathew J, Ma L. Fault diagnosis of rolling element bearings using basis pursuit[J]. Mechanical Systems and Signal Processing,2005,19(2):341-356.
    [78]郑海波,陈心昭,李志远.基追踪降噪及在齿轮故障诊断中的应用[J].振动、测试与诊断,2003,23(02):128-130.
    [79]冯志鹏,刘立,张文明,et al.基于小波时频框架分解方法的滚动轴承故障诊断[J].振动与冲击,2008,27(02):110-114.
    [80]Feng ZP, Chu FL. Application of atomic decomposition to gear damage detection[J]. Journal of Sound and Vibration,2007,302(1-2):138-151.
    [81]Huang N, Shen Z, Long S, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [C]. Proceedings of the Royal Society of London Series A, London,1998:903-995.
    [82]Yu DJ, Cheng JS, Yang Y Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings[J]. Mechanical Systems and Signal Processing,2005,19(2): 259-270.
    [83]Du QH, Yang SN. Application of the EMD method in the vibration analysis of ball bearings[J]. Mechanical Systems and Signal Processing,2007,21(6):2634-2644.
    [84]钟晓平,荆建平,王玉花,et al.利用小波分析和EMD的机械故障特征提取[J].噪声与振动控制,2009,(04):60-63.
    [85]杨宇,于德介,程军圣.基于EMD的奇异值分解技术在滚动轴承故障诊断中的应用[J].振动与冲击,2005,24(02):12-15.
    [86]沈路,杨富春,周晓军,et al.基于改进EMD与形态滤波的齿轮故障特征提取[J].振动与冲击,2010,29(03):154-157.
    [87]汤宝平,蒋永华,张详春.基于形态奇异值分解和经验模态分解的滚动轴承故障特征提取方法[J].机械工程学报,2010,46(05):37-42.
    [88]张琳,黄敏.基于EMD与切片双谱的轴承故障诊断方法[J].北京航空航天大学学报,2010,36(03):287-291.
    [89]程军圣,于德介,杨宇.基于内禀模态奇异值分解和支持向量机的故障诊断方法[J].自动化学报,2006,32(03):475-480.
    [90]李兵,张培林,任国全,et al.运用EMD和GA-SVM的齿轮故障特征提取与选择[J].振动、测试与诊断,2009,29(04):446-448.
    [91]Yu Y, YuDejie, Cheng JS. A roller bearing fault diagnosis method based on EMD energy entropy and ANN[J]. Journal of Sound and Vibration,2006,294(1-2):269-277.
    [92]Zvokelj M, Zupan S, Prebil I. Multivariate and multiscale monitoring of large-size low-speed bearings using Ensemble Empirical Mode Decomposition method combined with Principal Component Analysis[J]. Mechanical Systems and Signal Processing, 2010,24(4):1049-1067.
    [93]裘焱,吴亚锋,杨永峰,et al. Volterra模型预测在EMD端点延拓中的应用[J].振动、测试与诊断,2010,30(01):71-74.
    [94]邵晨曦,王剑,范金锋,et al.一种自适应的EMD端点延拓方法[J].电子学报,2007,35(10):1944-1948.
    [95]沈路,周晓军,张志刚,et al. Hilbert-Huang变换中的一种端点延拓方法[J].振动与冲击,2009,29(08):168-174.
    [96]窦东阳,赵英凯.利用ARIMA改进HHT端点效应的方法[J].振动测试与诊断,2010,30(03):249-253.
    [97]Benzi R, Sutera A, Vulpiani A. The mechanism of stochastic resonance[J]. Journal of Physics A:mathematical and general,1981,14:L453-L457.
    [98]Fauve S, Heslot F. Stochastic resonance in a bistable system[J]. Physics Letters A,1983,97: 5-7.
    [99]邓学欣,王太勇,冷永刚,et al.自适应扫频随机共振方法的研究[J].西安交通大学学报,2005,39(01):108-110.
    [100]王晶,张庆,梁霖,et al.采用遗传算法的白适应随机共振系统弱信号检测方法研究[J].西安交通大学学报,2010,59(03):3001-3006.
    [101]Zhefei H, Jie Y, Yunpeng W, et al. Weak signal detection based on stochastic resonance combining with genetic algorithm [C]. proceedings of the 11th IEEE Singapore International Conference on Communication Systems (ICCS 2008), Guangzhou,2008: 484-488.
    [102]冷永刚,王太勇.二次采样用于随机共振从强噪声中提取弱信号的数值研究[J].物理学报,2003,52(10):2432-2437.
    [103]冷永刚,王太勇,秦旭达,et al.二次采样随机共振频谱研究与应用初探[J].物理学报,2004,53(03):718-723.
    [104]Li Q, Wang TY, Leng YG, et al. Engineering signal processing based on adaptive step-changed stochastic resonance[J]. Mechanical Systems and Signal Processing,2007,21: 2267-2279.
    [105]Tan JY, Chen XF, Wang JY, et al. Study of frequency-shifted and re-scaling stochastic resonance and its application to fault diagnosis [J]. Mechanical Systems and Signal Processing,2009,23(3):811-822.
    [106]谭继勇,陈雪峰,雷亚国,et al.自适应移频变尺度随机共振在故障诊断中的应用[J].西安交通大学学报,2009,43(07):69-72.
    [107]杨定新,胡茑庆,杨银刚,et al.随机共振技术在齿轮箱故障检测中的应用[J].振动工程学报,2004,17(02):201-204.
    [108]张家凡,黄之初.基于随机共振理论的低速重载设备故障诊断[J].煤炭学报,2007,32(10):1098-1101.
    [109]林敏,黄咏梅.调制与解调用于随机共振的微弱周期信号检测[J].物理学报,2006,55(07):3277-3282.
    [110]林敏,黄咏梅.基于调制随机共振的转子故障早期检测[J].中国电机工程学报,2006,26(08):129-130.
    [111]秦光戎,龚德纯,胡岗,et al.随机共振的模拟实验[J].物理学报,1992,41(03):360-369.
    [112]杨定新,胡茑庆.基于随机共振电路模拟的微弱周期信号检测[J].电路与系统学报,2004,9(06):135-138.
    [113]朱光起,丁珂,张宇,et al.基于随机共振进行弱信号探测的实验研究[J].物理学报,2010,59(05):3001-3006.
    [114]邓辉,冷永刚,王太勇,et al.嵌入式变尺度级联随机共振系统的实现[J].哈尔滨工程大学学报,2009,30(11):1279-1284.
    [115]Al-Raheem KF, Roy A, Ramachandran KP, et al. Application of the laplace-wavelet combined with ANN for rolling bearing fault diagnosis[J]. Journal of Vibration and Acoustics-Transactions of the Asme,2008,130(5):051007.
    [116]张邦基,于德介,杨胜.基于小波变换与粗集理论的滚动轴承故障诊断[J].中国机械工程,2008,19(15):1973-1975.
    [117]Xu ZB, Xuan JP, Shi TL, et al. A novel fault diagnosis method of bearing based on improved fuzzy ARTMAP and modified distance discriminant technique[J]. Expert Systems with Applications,2009,36(9):11801-11807.
    [118]冈本纯三(著),黄志强(译).球轴承的设计计算[M].北京:机械工业出版社,2002.
    [119]赵联春.球轴承振动的研究[D].杭州:浙江大学,2003.
    [120]Jang GH, Jeong SW. Vibration analysis of a rotating system due to the effect of ball bearing waviness[J]. Journal of Sound and Vibration,2004,269(3-5):709-726.
    [121]赵凌燕.滚动轴承—转子系统的非线性动力学研究[D].西安:西北工业大学,2003.
    [122]唐云冰,高德平,罗贵火.滚动轴承非线性轴承力及其对轴承系统振动特性的影响[J].航空动力学报,2006,21(02):366-373.
    [123]Ocak H, Loparo KA. Estimation of the running speed and bearing defect frequencies of an induction motor from vibration data[J]. Mechanical Systems and Signal Processing, 2004,18(3):515-533.
    [124]Lou X. Fault detection and diagnosis for rolling element bearing[D]. Cleveland:Case Western Reserve University,2000.
    [125]The Case Western Reserve University Bearing Data Center Website, Bearing Data Center Seeded Fault Test Data[EB/OL]. [2007-11-27]. http://www.eecs.case.edu/laboratory/bearing
    [126]曹冲锋,宋京伟,王秋红.滚动轴承外圈局部故障的动态特性及计算机仿真[J].华东交通大学学报,2005,22(02):123-126.
    [127]Ruqiang Y, Robert X G. Multi-scale enveloping spectrogram for vibration analysis in bearing defect diagnosis[J]. Tribology International,2009,42:293-302.
    [128]Nikolaou NG, Antoniadis IA. Demodulation of vibration signals generated by defects in rolling element bearings using complex shifted Morlet wavelets[J]. Mechanical Systems and Signal Processing,2002,16(4):677-694.
    [129]Newland DE. Wavelet Analysis of Vibration:part 1-Theory[J]. Journal of Vibration and Acoustics,1994,116:409-416.
    [130]Newland DE. Wavelet Analysis of Vibration:Part 2-Wavelet Maps[J]. Journal of Vibration and Acoustics,1994,116(4):417-425.
    [131]Cohen L, Lee C. Instantaneous frequency and time-frequency distributions:proceedings of the Circuits and Systems, IEEE International Symposium on, Portland, OR,, [C].1989.
    [132]刘本永.非平稳信号分析导论[M].北京:国防工业出版社,2006.
    [133]吕志民,张武军,徐金梧,et al.基于奇异谱的降噪方法及其在故障诊断技术中的应用[J].机械工程学报,1999,35(03):85-88.
    [134]Kanjilal P, Palit S. The singular value decomposition-Applied in the modelling and prediction of quasiperiodic processes[J]. Signal Processing,1994,35(3):257-267.
    [135]Kanjilal P, Palit S. On multiple pattern extraction using singular value decomposition[J]. Ieee Transactions on Signal Processing,1995,43(6):1536-1540.
    [136]关晓勇.基于奇异值分解的状态监测与故障诊断方法研究[D].大连:大连理工大学,2005.
    [137]李建,刘红星,屈梁生.探测信号中周期性冲击分量的奇异值分解技术[J].振动工程学报,2002,15(04):415-418.
    [138]刘红星,姜澄宇,左洪福.基于矩阵奇异值分解的信号非周期性程度指标[J].南京航空航天大学学报,2000,32(01):114-118.
    [139]Zhang W, Xiang BR. A new single-well potential stochastic resonance algorithm to detect the weak signal[J]. Talanta,2006,70(2):267-271.
    [140]Gammaitoni L, Marchesoni F, Menichella-Saetta E, et al. Stochastic resonance in bistable systems[J]. Physical review letters,1989,62(4):349-352.
    [141]Anishchenko V, Safonova M. Stochastic resonance in Chua's circuit driven by amplitude or frequency modulated signals [J]. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering,1994,4(2):441-446.
    [142]杨定新.微弱特征信号检测的随机共振方法与应用研究[D].长沙:国防科学技术大学,2004.
    [143]Xu BH, Duan FB, Bao RH, et al. Stochastic resonance with tuning system parameters:the application of bistable systems in signal processing[J]. Chaos Solitons & Fractals, 2002,13(4):633-644.
    [144]陈敏,胡茑庆,秦国军,et al.参数调节随机共振在机械系统早期故障检测中的应用[J].机械工程学报,2009,45(04):131-135.
    [145]Holland J. Adaptation in natural and artificial systems[M]. Ann Arbor:University of Michigan Press,1975.
    [146]杨定新,胡茑庆,温熙森.一种非线性振子的电路模拟及其在微弱信号提取中的应用[J].兵工学报,2006,27(02):351-354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700