纳米流体辐射特性机理研究及其在太阳能电热联用系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源是人类社会发展的原动力,也是人类赖以生存的基础。然而,随着近一个世纪来人类社会的快速发展,世界能源不断紧缺,全球环境也面临着前所未有的压力。开发新能源、发展新能源技术,成为了全球各国寻求可持续发展之路必须面临的问题和挑战。
     太阳能作为一种可再生的清洁能源蕴藏着巨大能量,太阳辐射到达地球表面的能量高达4×1015MW,约为全球能耗的2000倍,太阳能利用、太阳能材料相关技术的开发在世界范围内引起了重视。纳米材料作为一种新型的能源材料,由于纳米颗粒粒子尺寸与传导电子德布罗意波长以及超导态的相干波长物理尺寸相当甚至更小,其周期性边界条件受到破坏,同时粒径的变小表面效应急剧增大,纳米颗粒体现出了对辐射波的强吸收与选择性吸收特性。随着上世纪80年代研究者对纳米流体直接吸收太阳辐射技术(DAC)的提出,利用纳米颗粒的辐射特性,将纳米流体技术应用于太阳能利用中成为了新的热点能源技术。
     在对纳米流体辐射、纳米流体太阳能直接吸收利用技术、以及太阳能光热光电利用技术综述的基础上,本论文围绕纳米流体的辐射特性展开研究,并基于DAC技术将纳米流体应用于太阳能电热联用系统进行应用研究。纳米流体中颗粒的均匀和稳定分散是研究所有纳米流体问题的基础,本文首先从纳米流体的制备方法入手,采用一步法即化学法制备了不同粒径分布的球型单分散纳米流体,与二步法利用高压微射流制备了非单分散的纳米流体,并且分析不同方法制备的纳米流体的稳定特性,以及纳米颗粒与团聚体大小,为分析纳米流体辐射特性奠定基础条件。
     本文研究了纳米流体的体系辐射与纳米颗粒辐射。对比分析了辐射传递模型和有效介质模型,并且结合试验测试,采用不同的有效介质模型对纳米流体的有效光学参数进行了模拟计算,验证了对于纳米流体在不同粒径分布下不同有效介质模型的适用性。对于纳米流体中颗粒辐射特性,本文建立了消光、散射测试试验台,并且提出了“最值比方法”,该方法有效的避免了理论研究中对于测试系统中纳米颗粒数目的严重依赖性,建立起了试验测试与理论分析之间的桥梁,为分析纳米颗粒辐射特性提供了重要的有效途径。本文进而研究了纳米颗粒在两个不同的极限粒径下,纳米颗粒的自由电子相以及内部束缚电子相对于纳米颗粒辐射特性的影响,得到了金纳米颗粒在两个极限粒径下的辐射性能。
     针对辐射研究中常遇到的实际问题和工程需要,本文建立起了对于物质和物质体系辐射的反问题研究模型。该模型基于弥散理论的振动模型,利用PIKAIA遗传算法,计算结果自动满足Kramers-Kronig关系,确保了结果的物理真实性和高效性。该模型可以以期望的辐射性能出发反向计算,在工程应用中对反向寻找物质以及物质的辐射特性具有了重要的作用,这对太阳能热系统设计等应用研究有着重要的指导意义。
     本文利用纳米流体对于太阳能辐射直接吸收的技术(DAC),采用分光分波段利用太阳能辐射的思路设计了新型的太阳能电热联用系统,在该系统中光热单元利用纳米流体直接吸收太阳辐射红外波段能量进行光热转换,系统光电单元仅主要接收太阳辐射可见光波段能量完成光电转换。该系统中光热单元与光电单元分离,光热单元的热量不再依赖于光电单元,光热单元温度不再受到光电单元工作温度的限制,可以在确保光电效率的同时产生高温热能,同时避免传统电热联用系统中加工技术瓶颈问题。
     本文利用建立的辐射特性反问题研究模型,对设计的新型太阳能电热联用系统的纳米流体工质进行了反向计算,得到了纳米流体工质的有效光学常数,并且提出了利用现有纳米颗粒与基液的优化拟核方法,进而确定了在该太阳能电热联用系统中光热单元与光电单元的太阳光谱吸收率与平均吸收率。在此基础上本文建立了太阳能电热联用系统的辐射传递模型和能量平衡模型,对系统在非聚光与聚光条件下的性能进行了综合分析,分析包括了系统光电单元工作温度、系统光热单元产热温度、系统光电效率、系统光热效率、以及系统有效输出能效率。研究证明该新型太阳能电热联用系统由于采用了分光分波段直接利用太阳辐射能的设计思路,避免了传统电热联用系统五种局限,确保了系统具有高的光热效率光电效率以及有效输出能效率。
Energy plays an important role in the development of human society. However, over the past century, the fast development of human society leads to the shortage of global energy and the serious environmental pollution. All countries of the world have to explore new energy sources and develop new energy technologies to find the rode to sustainable development.
     Solar energy as the renewable and environmental friendly energy, it has produced energy for billions of years. Solar energy that reaches the earth is around 4×1015MW, it is 2000 times as large as the global energy consumption. Thus the utilization of solar energy and the technologies of solar energy materials attract much more attention. Nano-materials as a new energy material, since its particle size is the same as or smaller than the wavelength of de Broglie wave and coherent wave. Particles'cyclical boundary condition is changed. Additionally, as the particle diameter decreases, the surface effect of nanoparticle increases sharply. Therefore, nanoparticle becomes to strongly absorb and selectively absorb incident radiation. Researchers present the direct solar radiation absorption collection (DAC) system concepts 1980s. Based on the radiation properties of nanoparticle, the utilization of nanofluids in solar thermal system becomes the new study hotspot.
     Based on the review of nanofluids radiation, direct absorption collection systems and solar energy utilizations, first the thesis discussed the ratiative heat transfer of nanofluids, then designed and analyzed the new Photovoltaic/Thermal system using the DAC technology. Because the premise of nanofluids research is even distribution and no sedimentation of nanofluids, in the thesis we used the one-step method to produce even distribution nanofluids, and two-step method to produce nonhomogeneous distribution nanofluids by the M-110S Microfluidizer Processor. The stability of nanofluis and the size of nanoparticle and aggregate were also studied, which lays the foundation for the nanofluid radiation research.
     The thesis studied the radiation properties of nanofluids system and nanopartcles, and compared the radiation transfer equation (RTE) and the effective medium theories. The effective optical constant of nanofluids was simulated by different effective medium models. The validity of these models for various nanofluids were analyzed in combination with the experiments. As for the radiation of nanoparticles, the extinction and scattering experiments bench were set up, and the "Maximum Ratio Method" was proposed first time. The method avoids the dependence of the number of experimental nanoparticles for the simulation. It can be as the bridge between experiment and simulation, and provide an easy way to study the nanoparticles radiation. Based on the method, the effects of free electron term and interband or bound electron term on the nanoparticles radiation properties were investigated.
     Aiming to solve the practical problems, the thesis innovatively developed an inverse method for radiation. Since, the method is based on the classical dispersion theory, and adopted the PIKAIA genetic algorithm, the retrieved results of optical constant automatically satisfy the Kramers-Kronig relation, and the retrieving process is robust and fast. The method can be started from the desired radiation properties such as desired reflectivity and absorptance et al. The method can be also used to determine the complex index of refraction, and it can serve as a guideline for designing solar thermal systems.
     Moreover, the thesis innovatively expands the DAC nanofluids technology to the Photovoltaic/Thermal system, and presents a new Photovoltaic/Thermal system. The new system separately utilizes the solar radiation to produce thermal energy and electricity, thanks to the working fluid absorbing infrared solar radiation and the transmitted visible radiation by the solar cell. Furthermore, the system consists of a thermal unit placed above a PV module and separated by an air gap of arbitrary thickness. Thus, the thermal unit is no longer extracting heat from the PV module, and has no temperature limitation of the PV module. The PV module need not glued to the thermal unit to avoid delamination concerns. In addition, the system can produce high temperature thermal energy with high electricity efficiency.
     Using the inverse method, the effective complex index of refraction of working fluid in the system was retrieved and optimized based on the effective medium model. The absorptance and average absorptance of the thermal unit and PV module were also calculated. Furthermore, the working temperature of thermal unit and PV module, the electrical and thermal efficiencies and the exergetic efficiency were studied based on the radiation transfer and energy conservation equations. The results indicated that the new Photovoltaic/Thermal system separately using the infrared and visible light to avoid the five limitations of traditional systems, the system has high electricity and thermal efficiencies and exergetic efficiency.
引文
[1]Yoshihisa S. and Member, Energy consumption:an environmental problem [J], Transactions on Electrical and Electronic Engineering,2007,1:12-16.
    [2]冯世良.我国新能源发展现状与开发前景[J].中国石油和化工经济分析,2007,16:26-31.
    [3]EIA and IEA, http://timeforchange.org/prediction-of-energy-consumption,2007.
    [4]BP, Statistical Review of World Energy June 2008, BP Corp.2008.
    [5]BP, http://www.bp.com/sectiongenericarticle.do?categoryId=9023753&contentId=7044109. 2008.
    [6]周凤起,周大地,中国长期能源战略[M],中国宏观经济丛书中国计划出版社,中国,北京,1999,22-50.
    [7]中国环境与发展国际合作委员会,能源战略技术[M],中国环境科学出版社,中国,北京,1998.
    [8]Mackowski D.W., Altenkirch R.A., Mengu c M.P., Internal absorption cross sections in a stratified sphere [J], Applied Optics 1990 (29):1551-1559.
    [9]Leonid A. and Dombrovsky., Heat transfer by radiation from a hot particle to ambient water through the vapor layer [J], International Journal of Heat and Mass Transfer,2000, (43): 2405-2414.
    [10]张玉龙,李长德,张银生,唐迪,梁民宪,陈京生,王喜梅,张以河,纳米技术与纳米塑料[M],中国轻工业出版社,2002,8-21.
    [11]Wang S. M., Hu L. G., Lu Z. D., Zhao D. M., Peng T. Z., Zeng Y. W., Yang D. R., Zhao Y, Sha J. and Niu J. J., White and bright radiation from nanostructured carbon [J], Journal of Optoelectronics Laser,2003,14.
    [12]Bohren C. F. and Huffman D. R., Absorption and Scattering of Light by Small Particles [M]. New York:Wiley,1983.
    [13]Takuya I. and Hajime I., Radiation force induced by resonant light:from atom to nanoparticle [J], Journal of Luminescence,2004,108:351-354.
    [14]Cecilia N., Surface plasmons on metal nanoparticles:the influence of shape and physical environment [J], Journal of Physical Chemistry C,2007,111:3806-3819.
    [15]Hee J. J., Seong C. L., Keun S. K., Young H. L., Edge effect on the field emission properties from vertically aligned carbon nanotube arrays [J], Letters to the Editor/Carbon 2004, (42): 3003-3042.
    [16]Zhao J. F., Luo Z. Y., Shou C. H., Studies of radiated characteristic of nanofluids and window-type heat collector [C], International conference of renewable energy scale-up development and the third energy technical forum in far-yangtze river triangle area,2006,63-68.
    [17]江泽民,对中国能源问题的思考[J],上海交通大学学报,2008,42(3):5-11.
    [18]赵利勇,太阳能利用技术与发展[J],能源与环境,2007,04:55-58.
    [19]冯世良,我国新能源发展现状与开发前景[J],中国石油和化工经济分析,2007,16:26-31.
    [20]罗运俊,何梓年,王常贵,太阳能利用技术[M],北京:化学工业出版社,2005.
    [21]Mohamed S., Mohammed J. A. and Abdulhamid M, Validation of CFD simulation for flat plate solar energy collector [J], Renewable Energy,2008,33:383-387.
    [22]Bergmann R. B., Crystalline Si thin-film solar cells:a review [J], Applied Physics A,1999, 69:187-194.
    [23]David M. R., Paul P. H., Jesus G. H., Yuri V. V. and Peter N. G., Photovoltaic solar cells performance at elevated temperatures [J], Solar Energy,2005,78:243-250.
    [24]Mills D., Advances in solar thermal electricity technology [J], Solar Energy,2004,76:19-31.
    [25]Charalambous P. G., Maidment G. G., Kalogirou S. A. and Yiakoumetti K., Photowoltaic thermal (PV/T) collectors:A view [J], Applied Thermal Engineering,2007,27:275-286.
    [26]Fraas L. and Minkin L., TPV history from 1990 to present & future trends,2005.
    [27]Choi S. U. S., Enhancing thermal conductivity of fluids with nanoparticles [C], in:D.A. Siginer, H.P. Wang (Eds.), Development and Applications of Non-Newtonian Flows,FED-Vol. 231/MD-Vol.66, ASME, New York,1995,99-105.
    [28]张立德等,纳米材料和纳米结构[M],科学出版社,2002:99-102.
    [29]彭小飞,俞小莉,夏立峰,钟勋,纳米流体悬浮稳定性影响因素[J],浙江大学学报,2007,41:577-580.
    [30]王补宣,李春辉,彭晓峰.纳米颗粒悬浮液稳定性分析[J],应用基础与工程科学学报,2003.6:167-173.
    [31]Lee S., Choi U. S., Li S., Eastman J. A., Measuring thermal conductivity of fluids containing oxide nanoparticles [J], Journal of.Heat Transferm,1999,121:280-289.
    [32]Nandy P., et al., Natural convection of nano-fluids [J], Heat and Mass Transfer,2003,39: 775-784.
    [33]Yatsuya S., et. al. Preparation of extremely fine particles by vacuum evaporation onto a running oil substrate [J]. Journal of Crystal Growth.1978,45:490-494.
    [34]Hai-tao Z. et. al., A novel one-step chemical method for preparation of copper nanofluids [J], Journal of Colloid and Interface Science,2004,277:100-103.
    [35]郭顺松,纳米流体的热物理特性研究[D],浙江大学,2006.
    [36]Xie H. Wang J. Xi T., Liu Y., Ai F., and Wu Q., Thermal conductivity enhancement of containing oxide nanoparticles [J], Journal of Physics,2002,91,4568-4572.
    [37]Eastman J. A., Choi U. S. Li S., Yu W. and Thompson L. J., Anomalously increased effective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles [J], Applied Physics Letters,2001,78 (6):718-720.
    [38]Patel H. E. Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids:manifestation of anomalous enhancement and chemical effects [J]. Applied Physics Letters,2003,83(14):2931-2933
    [39]Masuda H., Ebata A., Teramae K., Hishinuma N., Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of A12O3, SiO2, and TiO2 ultra-fine particles) [J], Netsu Bussei(Japan),1993,4:227-233.
    [40]Eastman J.A., Choi U.S., Li S., Yu W., Thompson L.J., Anomalously increased effective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles [J], Applied Physics Letters,2001,78(6):718-720.
    [41]Wang X.W., et al., Thermal Conductivity of Nanoparticle-Fluid Mixture [J], Journal of Thermophysics and Heat Transfer,1999,13:474-479.
    [42]周乐平,王补宣,准稳态法测量纳米颗粒悬浮液热物性[J],工程热物理学报,2003,24(6):1037-1039.
    [43]宣益民,李强,纳米流体强化传热研究[J],工程热物理学报,2000,21(4):466-470.
    [44]李强,宣益民,纳米流体热导率的测量[J],化工学报,2003,54:4246.
    [45]Assael M. J., et al. In Thermal Conductivity 27/Thermal Expansion 15:Proc.27th Int. Thermal Conductivity Conf. and 15th Int. Thermal Expansion Symp., Wang, H., and Porter, W. D., (eds.) DEStech Publications, Lancaster, PA, (2005),153.
    [46]Biercuk M.J. et al., Carbon nanotube composites for thermal management [J], Applied Physics Letters,2002,80(15):2767-2769.
    [47]Maxwell J.C., A Treatise on Electricity and Magnetism [M],2nd Edition, Oxford Univ. Press, Cambridge,1904,435-441.
    [48]Bruggema D. A.G., Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen, I. Dielektriziatskonstanten und Leitfahigkeiten der Mischkorper aus Isotropen Substanzen [J], Annalen der Physik.Leipzig 1935,24:636-679.
    [49]Eastman J. A., Choi S. U. S., Li S., Soyez G., Thompson L. J., DiMelfi R. J., Novel thermal properties of nanostructured materials [C], International Symposium on Metastable Mechanically Alloyed, and Nanocrystalline Material,1999, Forum.312-314:629-634.
    [50]Xuan Y, Li Q., Investigation on convective heat transfer and flow features of nanofluids [J], Journal of Heat Transfer,2003,125:151-155.
    [51]Bock C. P., Young I. C., Hydrodynamic and Heat Transfer study of dispersed fluids with submicron metallic oxide particles [J], Experimental Heat Transfer,1998,11:151-170.
    [52]Putra N, Roetzel W., Das S. K., Natural convection of nano-fluids [J], Heat and Mass Transfer,2003,39:775-784.
    [53]Xue L.et al. Effect of liquid layering at the liquid-solid interface on thermal transport [J], International Journal of Heat and Mass Transfer 2004,47,4277-4284
    [54]Hua Q.X. et al., Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture [J], International Journal of Heat and Mass Transfer,2005,48, 2926-2932.
    [55]M.Quinn Brewster, Thermal Radiative Transfer and Properties [M], John Wiley & Sons. Inc., 1992.
    [56]M. F. Modest, Radiative Heat Transfer [M], McGraw-Hill, Inc.,1993.
    [57]C. L. Tien and B. L. Drolen, Thermal Radiation of Particulate Media with Dependent and Independent Scattering, In Annual Review of Numerical Fluid Mechanics and Heat Transfer, New York,1987.
    [58]M. T. Othman, J. A. Lubguban, A. A. Lubguban and S. Gangopadhyay et al.. Characterization of porous low-k films using variable angle spectroscopic ellipsometry [J], Journal of Applied Physics,2006,99,083503.
    [59]A. Garahan, L. Pilon and J. Yin, Effective optical properties of absorbing nanoporous and nanocomposite thin films [J], Journal of Applied Physics,2007,101:014320.
    [60]C. Himcinschi, M. Friedrich, C. Murray and I. Streiter et al.. Characterization of silica xerogel films by variable-angle spectroscopic ellipsometry and infrared spectroscopy [J], Semiconductor Science and Technology,2001,16(11):806-811.
    [61]J. A. del Rio and S. Whitaker, Maxwell's equations in two-phase systems I:Local electrodynamic equilibrium [J], Transport in Porous Media,2000,39:159-186.
    [62]C. Y. Tsai, S. Y. Tam, Y. Lu and J. C. Brinker, Dual-layer asymmetric microporous silica membranes [J], Journal of Membrane Science,2000,169:255-268.
    [63]M. M. Braun and Laurent Pilon, Effective optical properties of non-absorbing nanoporous thin films [J], Thin Solid Films,2006 (496):505-514.
    [64]J. J. Si, H. Ono, K. Uchida, S. Nozaki and H. Morisaki, Correlation between the dielectric constant and porosity of nanoporous silica thin films deposited by the gas evaporation technique [J], Applied Physics Letters,2001 (79):3140-3142.
    [65]S. Labbe-Lavigne, S. Barret, F. Garet, L. Duvillaret and J. L. Coutaz [J], Journal of Applied Physics,1998 (83):6007-6010.
    [66]G. Grimvall, Thermophysical Properties of Materials [M], North-Holland Physics Publishing, 1986.
    [67]E. Kondoh, M. R. Baklanov, E. Lin, D. Gidley and A. Nakashima, Comparative study of pore size of low-dielectric-constant porous spin-on-glass films using different methods of nondestructive instrumentation [J], Japanese Journal of Applied Physics,2001 (40):L323-L326.
    [68]尹荔松、沈辉、张进修,纳米TiO2粉晶的光学特性研究[J].电子学报,2002.
    [69]王永昌等,金/银合金纳米颗粒的制备及光学吸收特性[J],功能材料与器件学报,2005,11(3):269-283.
    [70]袁吉仁等,纳米ZnO的光吸收特性研究[J],南昌大学学报,2006,28(4):229-234.
    [71]王泽敏,γ2Fe2O3纳米粉末的光谱吸收特性研究[J],功能材料,2006,37(2):284-300.
    [72]Yiincii H., Paykoc E. and Yener Y., Solar Energy Utilization [M], Kluwer Academic, Boston, MA,1987.
    [73]R.West, D. Gibbs, L.Tsang, and A.K.Fung, J,Opt. Soc. Am,11,1854(1994).
    [74]Ravi S. Prasher. Modeling of radiative and optical behavior of nanofluids based on multiple and dependent scattering therories [J], Proceeding of IMECE2005.
    [75]Juan Yin and Laurent Pilon. Efficiency factors and radiation characteristics of spherical scatterers in an absorbing medium [J], J.Opt.Soc.Am.A,23(11):2784-2793.
    [76]Meas Y., Quintana J., Aamano A. and Fernandez A., Black liquid-a new way to collector solar energy [C], Proceeding of the Annual meeting of the America Section International Solar Energy Society,1981,231-234.
    [77]Landstrom D. K., Stickford G. H., Talbert S. G. and Hess R. E., Development of a low-temperature, low-cost, Solar collector using black-liquid concept [C], Proceeding of the Annual meeting of the America Section International Solar Energy Society,1981,228-234.
    [78]Drotning W. D., Optical properties of solar-absorbing oxide particles suspended in a molten salt heat transfer fluid [J], Solar Energy,1978, (20):313-319.
    [79]Arai N., Itaya Y and Hasatani M., Development of a volume heat trap type solar collector using a fine-particle semitransparent liguid suspension (FPSS) as a heat vehicle and heat storage medium [J], Solar Energy,1984, (32):49-56.
    [80]Cobble M. H., Irradiation into semitransparent solids and the solar trap effect [J], Journal of the Franklin Institute,1964, (278):383-393.
    [81]Arai N., Itaya Y. and Hasatani M., Development of a volume heat trap type solar collector using a fine-particle semitransparent liguid suspension (FPSS) as a heat vehicle and heat storage medium [J], Solar Energy,1984, (32):49-56.
    [82]Beard J. T., Iachetta F. A., Lillelehlt L. U., Huckstep F. L. and May W. B. Jr., Design and operation influences on thermal performance of "Solaris" solar collector [J], Journal of Engineering for Power,1978, (100):494-502.
    [83]Peng C. P. and Howell J. R., Analysis of open inclined surface solar regenerators for absorption cooling application-comparison between numerical and analytical models [J], Solar Energy,1982, (28):265-268.
    [84]Hull P. G. and Hunt A. J., A reciprocating solar-heated engine utilizing direct absorption by small particles [J], Journal of Solar Energy Engineering,1984, (106):29-34.
    [85]Minardi J. E. and Chuang H. N., Performance of a black liquid flat-plate solar collector [J], Solar Energy,1975,(17):179-183.
    [86]Huang B. J., wung T. Y. and Nuh S., Thermal analysis of black liquid cylindrical parabolic collector [J], Solar Energy,1979, (22):221-224.
    [87]Copeland R, Leach J. and Stein C., High temperature molten salt solar thermal system [C], Proceedings of 17th Intersociety Energy Conversion Engineering Conference, IEEE, New York, 1982,2032-2036.
    [88]Falcone P. K., Noring J. E. and Hackett C. E., Evaluation and application of solid thermal energy carriers in a high temperature solar central receiver system [C], Proceedings of 17th Intersociety Energy Conversion Engineering Conference, IEEE, New York,1982,1498-1503.
    [89]West R. E., Direct Absorption Receiver System for High Temperature, Solar Energy Utilization:Fundamentals and Applications [M], Martinus Ni jhoff Publishers, The Netherlands, 1987.
    [90]Charalambous P. G., Maidment G. G., Kalogirou S. A. and Yiakoumetti K., Photowoltaic thermal (PV/T) collectors:A view [J], Applied Thermal Engineering,2007, (27):275-286.
    [91]Ji J., Lu J. P., Chow T. T., He W. and Pei G., A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation [J], Applied Energy,2007, (84): 222-237.
    [92]Charalambous P. G., Maidment G. G., Kalogirou S. A. and Yiakoumetti K., Photowoltaic thermal (PV/T) collectors:A view [J], Applied Thermal Engineering,2007, (27):275-286.
    [93]Zondag H A, de Vries D W, van Helden W G I, van Zolingen R J C and van Steenhoven A. A., The yield of different combined PV-thermal collector designs [J], Solar Energy,2003, (74): 253-269.
    [94]Hegzy A. A., Comparative study of the performance of four photocoltaic/thermal solar air collectors [J], Energy Conversion & Management,2000, (41):861-881.
    [95]Hendrie S. D, Photovoltaic/thermal collector development program-final report, Report MIT. Lincoln laboratory,1982.
    [96]Raghuraman P., Analytical Predictions of liquid and air photovoltaic/thermal, flat-plate collector performance [J], Journal of Solar Energy Engineering,1981, (103):291-298.
    [97]Cox Ⅲ, C. H., Raghuraman P., Design considerations for flat-platephotovoltaic/thermal collectors [J], Solar Energy,1985, (35):227-241.
    [98]Loferski J. J., Ahmad J. M., Pandey A., Performance of photovoltaic cells incorporated into unique hybrid photovoltaic/thermal panels of a 2.8 KW residential solar energy conversion system [A], In:Proceedings of 1988 Annual Meeting [C], American Solar Energy Society, Cambridge, Massachusetts, USA,1988,427-432.
    [99]Sopian K., Liu H. T., Yigit K. S., Kakac, S., Veziroglu, T.N., Perfromance analysis of photovoltaic thermal air heaters [J], Energy Conversion and Management,1996, (37):1657-1670.
    [100]Garg H. P., Adhikari R. S., Conventional hybrid photovoltaic/thermal (PV/T) air heating collectors:Steady-state simulation [J], Renewable Energy,1997, (11):363-385.
    [101]Prakash J., Transient analysis of a photovoltaic-thermal solar collector for co-generation of electricity and hot air/water [J], Energy Conversion and Management,1994, (35):972-976.
    [102]Garg H. P., Agarwal P. K., Some aspects of a PV/T collector/forced circulation flat plate solar water heater with solar cells [J], Energy Conversion and Management,1995, (36):87-99.
    [103]Bergene T., L(?)vvik O. M., Model calculations on a flat-plate solar heat collector with integrated solar cells [J], Solar Energy,1995, (55):453-462.
    [104]Platz R., Fischer D., Zufferey M. A., Anna Selvan J. A., Haller A., Shah, A., Hybrid collectors using thin-film technology [A], In:Proceedings of 26th IEEE Photovoltaic Specialists Conference [C], Anaheim,1997.
    [105]Affolter P., Haller A., Ruoss D. and Toggweiler P., A new generation of hybrid solar collectors-absorption and high temperature behavior evaluation of amorphous modules [A], In: Proceedings of 16th European Photovoltaic Solar Energy Conference, Glasgow, UK,2000.
    [106]Rockendorf G., Sillman R., Podlowski L., Litzenburger B., PV-hybrid and thermo-electric-collectors [A], In:Proceedings of ISES 1999 Solar World Congress[C], July 4-9, Jerusalem, Israel,1999.
    [107]S(?)rensen B., Modelling of hybrid PV-thermal systems [A], In:Proceedings of 17th European Photovoltaic Solar Energy Conference [C], October 22-26, Munich, Germany,2001.
    [108]Tripanagnostopoulos Y., Cost effective designs of building integrated PV/T solar systems [A], In:Proceedings of 21st European PV Solar Energy Conference, Dresden, Germany, 2006.
    [109]Zontag H., Bakker M., Van Hlden W. G. J., Affolter P., Eisenmann W., Fechner H., Rommel M., Schaap A., Sorensen H. and Tripanagnostopoulos Y., PVT roadmap:a European guide for the development and market introduction of PVT technology [A], In:Proceedings of 20th European Photovoltaic Solar Energy Conference, Barcelona, Spain,2005.
    [110]Affolter P., Eisenmann W., Fechner H., Rommel M., Schaap A., Sorensen H., Tripanagnostopoulos Y., Zontag H., PVT roadmap, Edition of ECN, Netherlands, www. pvtforum.org,2006.
    [111]Guiavarch A. and Peuportier B., Photovoltaic collectors efficiency according to their integration in buildings [J], Solar Energy,2006, (80):65-77.
    [112]霍玉秋,翟玉春.醇盐水解沉淀法制备二氧化硅纳米粉[J],微纳电子技术,2003(9):26-28.
    [113]Brinker C J. Hydrolysis and condensation of silicates:effects on structure[J], J Non-Cryst Solids,1988, (100):31.
    [114]Becher P. Emulsions:Theory and Practice,2nd ed [M]. Beijing:Science Press, 1978:77-150.
    [115]张清岑,黄苏萍,水性体系分散剂应用新进展[J],中国粉体技术.2000,6(4):32-35.
    [116]沈钟,王国庭.胶体与表面化学[M],北京:化学工业出版社,1997.
    [117]曹雪琴,钱国坻,娄颖.zeta电位与分散染料的分散稳定性[J],印染助剂,1998,15(6):9-13.
    [118]蔡洁聪,纳米流体对太阳能辐射选择吸收特性的研究[D],浙江大学,2008.
    [119]Scaffardi L. B. and Tocho J.O., Size dependence of refractive index of gold nanoparticles [J], Nanotechnology,2006, (17):1309-1315.
    [120]Scaffardi L. B., Pellegri N., O. de Sanctis and Tocho J.O., Sizing gold nanoparticles by optical extinction spectroscopy [J], Nanotechnology,2005, (16):158-163.
    [121]Alvarez M. M., Khoury J. I., Schaaff T. G., Shafigullin M. N., Vezmar I. and Whetten R. L., Optical absorption spectra of nanocrystal gold molecules [J], Journal of Physical Chemistry B, 1997,101,3706-3712.
    [122]http://www.nanoed.org/concepts_apps_materials/compu_anime/Au_Colloid_Course_12 0606.swf.
    [123]Kelly K. L., Coronado E., Zhao L. L. and Schatz G. C., The optical properties of metal nanoparticles:the influence of size, shape, and dielectric environment [J], Journal of Physical Chemistry B,2003,107,668-677.
    [124]Kumar S. S., Kumar C. S., Mathiyarasu J. and Phani K. L., Stabilized gold nanoparticles by reduction using 3,4-ethylenedioxythiophene in aqueous solutions:nanocomposite formation, stability, and application in catalysis, Langmuir,2007,23,3401-3408.
    [125]Hao E., Bailey R. C., Schatz G. C., Hupp J. T. and Li S. Y., Synthesis and optical properties of "branched" gold nanocrystals, Nano Letter,2004,4,327-330.
    [126]Bohren C. F. and Huffman D. R, Absorption and Scattering of Light by Small Particles [M], John Willey & Sons,1983.
    [127]Doremus R., kao S. and Garcia R., Optical absorption of small copper particles and the optical properties of copper [J], Applied Optics,1992,31,5773-5778.
    [128]Doremus R h, Optical properties of small silver particles [J], Journal of Chemical Physics,1965,42,414-417.
    [129]Louis G., Maxime T., Grancois M., Review of utilization of genetic algorithms in heat transfer problems [J], International Journal of Heat and Mass Transfer,2009,52,2169-2188.
    [130]Jones M.R., Brewster M.Q. and Yamada Y, Application of a genetic algorithm to the optical characterization of propellant smoke [J], Journal of Thermophysics and Heat Transfer 1996 10,(2):372-377.
    [131]Li H.Y. and Yang C.Y., A genetic algorithm for inverse radiation problems [J], International Journal of Heat and Mass Transfer 1997,40(7):1545-1549.
    [132]Deiveegan M., Balaji C. and Venkateshan S.P., Comparison of various methods for simultaneous retrieval of surface emissivities and gas properties in gray participating media[M], Journal of Heat Transfer-Transactions of the ASME,2006 128 (8):829-837.
    [133]Zijlstra A A, Gesicki K and Acker A, Planetary nebulae with emission-line central stars [J], Astronomy & Astrophysics Manuscript,2007 (30):1-14.
    [134]Charbonneau, ESSL's High Altitude Observatory, http://www. hao.ucar.edu/Public/ models/pikaia/pikaia.html,2002.
    [135]Hwang J. Y., Park C., Huang M., Anderson T., Numerical procedure to extract physical properties from raman scattering data in a flow reactor [J], Journal of The Electrochemical Society, 2005,152(5):C334-C339.
    [136]Travis S. M. and Paul C., Stellar structure modeling using a parallel genetic algorithm for objective global optimization [J], Journal of Computational Physics,2003,185 (1):176-193.
    [137]Garg H. P., Agarwal R. K., Bhargava A. K., The effect of plane booster reflectors on the performance of a solar air heater with solar cells suitable for a solar dryer [J], Energy Conversion and Manage,1991, (35):543-54.
    [138]Tripanagnostopoulos Y., Aspects and improvements of hybrid photovoltaic/thermal solar energy systems [J], Solar Energy,2007, (81):1117-1131.
    [139]Garg H P and Adhikari R S, Performance analysis of a hybrid Photovoltaic/Thermal (PV/T) collector with intergrated CPC troughs [J], International Journal of Energy Research,1999, (23):1295-1304.
    [140]Rosell J I, Vallverdu X, Lechon M A and Ibanez, Design and simulation of a low concentrating photovoltaic/thermal system [J], Energy Conversion and Management,2005, (46): 3034-3046.
    [141]Mittelman G, Kribus A and Dayan A, Solar cooling with concentrating photovoltaic/thermal (CPV/T) systems [J], Energy Conversion and Management,2007, (48): 2481-2490.
    [142]Wang K. Y. and Copeland R. J. Heat transfer in a solar radiation absorbing molten salt film flowing over an insulated substrate [A], ASME paper,1984,22.
    [143]Bohn M. S., Green H. J., Yeagle G. Siebarth J., Asbell O. D. and Brown C. T., Direct absorption receiver experiments and concept feasibility [R], SERI Report, February,1986.
    [144]Houf W. G. and Greif R., Radiative transfer in a solar absorbing particle laden flow [A], Radiation Heat Transfer, ed. Armaly B. F. and Emery A. F., ASME, New York,1985,9-14.
    [145]Burke A. R., Etter C. R., Hudgens C. J., Wiedenheft C. and Withenberg J. L., Thermal and photochemical studies of solar energy absobers dissolved in heat transfer fluids [J], Solar Energy Materials,1982,6,481-490.
    [146]Drotning W. D., Optical properties of solar-absorbing oxide particles suspended in a molten salt heat transfer fluid [J], Solar Energy,1978,20,313-319.
    [147]Partain L. D., Solar Cells and Their Applications [M], John Wiley and Sons Inc., Palo Altom, CA,1995.
    [148]Honsberg C. and Bowden S., Photovoltaics:devices [R], systems and application. CD Rom, Key Centre for Photovoltaic Engineering, University of New South Wales, Australia,1999.
    [149]Rohsenow W. M., Handbook of Heat Transfer Fundamentals [M], McGraw-Hill, New York, NY,1985.
    [150]Duffie J. A. and Beckman W. A., Solar Engineering of Thermal Processes [M], John Wiley, New York,1991.
    [151]Sharples S. and Charlesworth P. S, Full-scale measurements of wind-induced convective heat transfer from a roofmounted flat plate solar collector [J], Solar Energy,1998, (62):69-77.
    [152]Assoa Y. B., Menezo C., Fraisse G., Yezou R. and Brau J., Study of a new concept of photovoltaic-thermal hybrid collector [J], Solar Energy,2007, (81):1132-1143.
    [153]卢智恒,姚强,平板式太阳能电热联产面板[J].太阳能学报,2006,27(6):545-553.
    [154]Toru F. and Tatsuo T, Annual exergy evaluation on photovoltaic-thermal hybrid collector [J], Solar Energy Materials and Solar Cells,1997,47,135-148.
    [155]Yasushi M., Toru F., and Tatsuo T., Moment performance of photovoltaic/thermal hybrid panel (numerical analysis and exergetic evaluation) [J], Electrical Engineering in Japan,2000,133 (2):43-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700