聚酰亚胺/SiO_2-Al_2O_3纳米杂化薄膜的制备、表征与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,人们已将聚酰亚胺(PI)与SiO_2、TiO_2和蒙脱土等单组分无机物制成杂化材料,并且表现出优异的物理化学性能,但是将两种组分同时掺入PI基体中,由于工艺、制备等因素的复杂性,该方面的报道较少。本文用正交试验设计法,研究了聚酰胺酸固体含量、反应温度、加料间隔时间和反应时间对聚酰胺酸分子量及其分布的影响,采用凝胶渗透色谱仪测试了不同反应条件下合成的聚酰胺酸的分子量,确定了合成最高分子量聚酰胺酸的反应条件,该反应条件为反应温度:15℃;固体含量:8wt%;加料间隔时间:9min;反应时间:3h。
     用超声-机械共混法制备了PI/SiO_2、PI/Al_2O_3和PI/SiO_2-Al_2O_3杂化薄膜。采用红外光谱仪、原子力显微镜表征了杂化薄膜的结构和形貌,测试了杂化薄膜的热稳定性、紫外-可见光透过率、力学性能和耐电晕性。红外光谱分析表明杂化薄膜亚胺化不完全;原子力显微镜分析表明超声波对无机纳米粒子的分散作用明显,使纳米SiO_2粒子较均匀地分散在PI基体中,平均粒径70nm左右。杂化薄膜的耐电晕性比纯PI薄膜有所提高,且随着纳米粒子含量的增加有上升趋势,但提高不太明显,耐电晕时间最长提高4倍左右。杂化薄膜与纯PI薄膜相比,热稳定性稍有下降;拉伸强度和断裂伸长率稍有提高;紫外-可见光透过率降低。
     采用溶胶-凝胶法制备了PI/SiO_2、PI/Al_2O_3和PI/SiO_2-Al_2O_3杂化薄膜。探讨了无机含量、无机组分重量比、杂化工艺和亚胺化工艺对无机相形态结构、尺寸、均匀性、分散性以及杂化薄膜的热稳定性、电击穿场强、介电性能、耐电晕性、紫外-可见光透过率和力学性能的影响。
     通过红外光谱仪、原子力显微镜、紫外-可见分光光度计和示差扫描量热仪,分析了聚酰胺酸的亚胺化反应。结果表明随亚胺化温度的升高,无机相尺寸和紫外-可见光透过率先增大后减小,在140℃时出现峰值。混合溶胶使聚酰胺酸的反应热降低,加速了聚酰胺酸的亚胺化反应。
     在溶胶-凝胶法中,根据加入溶胶的方法不同进行一系列实验。首先,在合成聚酰胺酸后加入不同的溶胶。由傅立叶红外光谱谱图可以看出PI杂化薄膜已完全亚胺化,在硅铝共杂化的薄膜中,存在Si-O-Si、Al-O-Al结构,且PI基体与纳米粒子之间有一定键合,并有Si-O-Al结构形成。扫描电镜结果表明在硅铝共杂化的薄膜中存在球形和短纤维形两种无机相形貌,通过点元素分析某一无机颗粒处既存在硅元素又存在铝元素,进一步说明有Si-O-Al结构形成。其次,在合成聚酰胺酸过程中加入溶胶,并对中间加入溶胶是否使用超声波两种不同加胶方法进行比较。扫描电镜和原子力显微镜结果表明采用中间加入溶胶的方法制备的聚酰亚胺/无机杂化薄膜,其无机粒子的粒径为纳米级,溶胶在反应过程中加入比在合成聚酰胺酸后加入有利于无机纳米粒子的均匀分散,且粒子尺寸更小。溶胶在反应过程中加入时,使用超声更有益于无机纳米粒子的均匀分散。
     X-射线衍射实验结果表明未掺杂溶胶的PI薄膜具有一定有序度,而杂化薄膜中无机组分为非晶态,无机组分的加入破坏了PI薄膜有序度,加入偶联剂或改变亚胺化工艺可以改变杂化薄膜的有序度。偶联剂DB-550的加入改变了杂化薄膜的分子结构。
     各项性能测试结果表明无机含量和无机组分重量比影响杂化薄膜的紫外-可见光透过率、热稳定性、电击穿场强、耐电晕性、介电性能和力学性能。用超声溶胶并在合成聚酰胺酸过程中加入法所制备的薄膜,在紫外-可见光透过率、热稳定性、电击穿场强、耐电晕性和力学性能上,比其它溶胶加入方法好。硅铝共杂化薄膜,在性能上比SiO_2或Al_2O_3的杂化薄膜好。双无机组分与单无机组分掺杂的杂化薄膜相比,有可能实现某些性能在更宽范围内的调整。
     当杂化薄膜中的无机含量为4wt%,SiO_2与Al_2O_3的重量比为4:1,且加入一定量的偶联剂DB-550时,其综合性能最为优异。其热分解温度比纯膜提高了18℃左右;电击穿场强比纯膜提高了近20%,耐电晕时间是纯膜的16倍;拉伸强度比纯膜提高了近50%,断裂伸长率比纯膜提高了近136%。杂化薄膜的介电常数和介电损耗与频率的关系,符合德拜松弛极化机理。纳米无机氧化物对杂化薄膜的介电常数、介电损耗的影响是复杂和反常的,这些影响因素的因果关系有待进一步探讨。
At present, fillers such as TiO_2, SiO_2 and montmorillonite have been hybridized with polyimide matrix. Moreover some of the favorable results have been obtained. But previous studies about polyimide/inorganic hybrids were concentrated on the binary systems, in which exists a sort of inorganic portion. Due to the key challenge for complicated techniques and preraration ,there were few reports about ternary systems.
     In this paper it investigates the influencing factors ,such as solid content, reaction temperature and time, time interval of adding material , which affect the molecular weight and its distribution of poly (amic acid) in virtue of orthogonal design method. Molecular weight of poly (amic acid) on different raction conditions is tested by gel permeation chromatography. The results indicates the condition for synthesizing the maximal molecular weight poly (amic acid) is that solid content is 8wt%, reaction temperature is 15℃; time interval is 9 minutes ; reaction time is 3 hours.
     Polyimide/silica(PI/SiO_2),polyimide/alumina(PI/Al_2O_3)and polyimide/silica- alumina (PI/SiO_2-Al_2O_3) hybrid films are prepared by ultrasonic-mechanical method. Struture and morphology of hybride films are characterized by Fourier transform infrared apparatus and atomic force microscope. Thermal stability, transmittance of UV-Vis, mechanical properties and corona-resistance of polyimide hybrid films are tested. Fourier transform infrared spectra analysis show imidization of hybrid films is incomplete. It is effective for the dispersion of nano-SiO_2 particles to use ultrasonic. Nanoparticles distribute uniformly in the polyimide matrix and the average diameter of the particles is about 70 nm. Compare with pure polyimide films ,corona-resistance time of the hybrid films is longer, moreover with the increasing of the content of nanoparticles it reveals aggrandizement, but the increased range is unconspicuous.The longest corona-resistance time of hybrid films reaches four times than pure polyimide films.Compare with pure polyimide films, thermal stability of hybrid ones show degressive trend, tensile strength and elongation of them are slightly enhanced, transmittance of UV-Vis spectra are decline.
     PI/SiO_2, PI/Al_2O_3 and PI/SiO_2-Al_2O_3 hybrid films are prepared by sol-gel method. It discusses that morphology characterization and properties ,including struture and morphology , uniformity and dispersity of inorganic phase as well as thermal stability , breakdown strength ,corona-resistance and dielectric properties, transmittance of UV-Vis spectra ,mechanical properties of polyimide hybrid films ,are affected by some factors .And influencing factors are composed of the contents and weight ratio of inorganic components ,hybridized technology as well as imidization process.
     Imidization process is analysed by Fourier transform infrared spectra, UV-Vis spectrophotometer, atomic force microscope, differential scanning calorimeter and so on .It reveales that with the increasing of imidization temperature inorganic phase size and transmittance was increases at first, then decreases. Nevertheless it appeares peak value at about 140℃. Mixed sol makes reaction heat of poly (amic acid) reduce. At the same time imidization process is accelerated.
     In sol-gel method according to different modes charged sol ,a series of experiments are done. Firstly,after preparation of poly (amic acid) different sols are added in poly (amic acid) solution.As has been seen from Fourier transform infrared spectra,it indicates complete imidization of hybrid flims. Si-O-Si and Al-O-Al bonds exsiste in the films hybridized with silica and alumina sols.There are linkages between polyimide matrix and nanoparticles. Also this suggestes the existence of Si-O-Al bonds.In response to the results of scanning electron microscope there are spherical shaped and club shaped particles in the films hybridized with silica and alumina sols.Analysis of spot element reveales there are silicon and aluminium element in this point, which proves the form of Si-O-Al bond ulteriorly.
     Secondly, during preparation of poly (amic acid) different sols are added in poly (amic acid) solution,and the method using ultrasonic-mechanical method compared with nonuse of it. On the base of atomic force microscope and scanning electron microscope, it reveales the average diameter of the particles are nanometer in the hybrid films which sols are added in during the reaction. Also size of nanoparticles is much smaller. However making use of ultrasonic-mechanical method is beneficial to uniform distribution of inorganic nanoparticles.
     As has been seen from X-ray diffracition spectra results, it shows crystallinity exsisted in pure polyimide film. Inorganic phase is amorphous phase. Furthermore crystallinity of pure polyimide film is damaged by inorganic components. Coupling agents or the variety of imidization techonolgy may change crystallinity of polyimide film. Coupling agents DB-550 changes the structure of hybrid films.
     Results of diversified test indicate inorganic contents and weight proportion of inorganic components influences UV-Vis transmittance , thermal stability , breakdown strength, corona-resistance and dielectric properties , mechanical properties. All kinds of properties of hybrid films using ultrasonic-mechanical method during preparation of poly (amic acid) mixe solution are better than in other methods.The properties of ternary systems precedes that of binary systems. In comparision with the binary systems, some properties will be probably regulated in the ternary systems.
     When the inorganic content of the hybrid films added coupling agents DB-550 is 4wt% for SiO_2/Al_2O_3 (4/1), its integrated property is the most outstanding. In comparison with pure polyimide films, decomposition temperature of the hybrid film increases about 18℃; Breakdown strength of it increases percent 20; Corona-resistance time is 16 times than pure polyimide film;Tensile strength increases percent 50.
     Relation of dielectric constant and dielectric loss angle with frequency in the hybrid films accordes with Debye relaxation polarization mechanism. In comparison with plain polyimide films, the change of dielectric constant and dielectric loss angle of hybrid films is anomalistic. Effect factors of dielectric constant and dielectric loss angle of hybrid films will be discussed ulteriorly.
引文
1 何天白, 胡汉杰. 功能高分子与新技术.化学工业出版社, 2001, 274
    2 S.Nagaoka, K.Ashiba, H.Kawakami. Interaction Between Biocomponents and Surface Modified Fluorinated Polyimide. Materials Science and Engineering, 2002, C 20: 181~185
    3 M.Kanno, H.Hawakami, S.Nagaoka,et al. Biocompatibility of Fluorinated Polyimide. Journal of Biomedical Materials Research, 2002, (60): 53~60
    4 张雯, 张露, 李家利等. 国外聚酰亚胺薄膜概况及其应用进展. 绝缘材料, 2001, (2): 21~23
    5 W.Yin. Failure Mechanism of Winding Insulations in Inverter-fed Motors. IEEE Electrical Insulation Magazine, 1997, (6): 18~23
    6 M.Kaufhold, H.Auinger, M.Berth, et al. Electrial Stress and Failure Mechanism of the Winding Insulation in PWM-inverter-fed Low Voltage Induction on Motors. IEEE Transaction on Industrial Electronics, 2000, (2): 396~402
    7 M.Kaufhold, G.Borner, M.Eberhardt, et al. Failure Mechanism of the Interturn Insulation of Low Voltage Electric Machines Fed by Pulse-controlled Inverters. IEEE Electrical Insulation Magazine, 1996, (5): 9~16
    8 A.H.Bonnet. Comparison Between Insulation System Available for PWM-inverter-fed Motors. IEEE Transaction on Industrial Applications, 1997, (5): 1331~1334
    9 Don-Ha.Hwang, Doh-Young, Yong-Joo Kim, et al. Analysis of Insulation Characteristics of PWM Inverter-fed Induction Motors. 2001 IEEE International Symposium on Industrial Electronics(IEEE ISIE-2001), Pusan, Korea, 2001: 477~481
    10 G.C.Stone, S.R.Campbell, S.Tetreault. Inverter-fed Drives: Which Motor stators are at risk. IEEE Industrial Applications Magazine, 2000, (9): 17~22
    11 C.Hudon, J-N.Seguin, N.Amyot, et al. Turn Insulation Aging of Motors Exposed to Fast Pulses of Inverter Drives. Elect. Insul. Conf, Chicago USA, 1997: 413~417
    12 J.P.Bellomo, et al. Electrical Aging of Stat or Insulation of Low Voltage Rotating Machines Supplied by Inverters. Conference Record of IEEE International Symposium on Electrical Insulation, 1996: 210~213
    13 W.Yin, K.Bultemeier, D.Barta, et al. Critical Factors for Early Faliure of Magnet Wires in Inverter-fed Motors. Conference on Electrial Insulation and Dielectric Phenomena, Annual Report, 1995: 258~261
    14 Paul Arthur Meloni. High Temperature Polymeric Materials Containing Corona Resistant Composite Filler and Methods Relating Thereto. US 2004/0249041 AL, 2004-12-9
    15 Draper, Robert Edward, Jones, et al. Sandwich Insulation for Increased Corona Resistance. US 5989702, 1999:11~23
    16 Hake, et al. Method of Coating Electrical Conductors With Corona Resistant Multi-layer Insulation. US 6056995, 2000-05-02
    17 李鸿岩, 郭磊, 刘斌等. 聚酰亚胺/纳米氧化钛复合薄膜的介电性能研究. 绝缘材料, 2005, (6): 30~33
    18 丁孟贤, 何天白. 聚酰亚胺新型材料. 科学出版社, 1998: 2~4
    19 王彦, 史国芳. 聚酰亚胺的发展及应用. 航空材料导报, 1994, 14(1): 56~62
    20 黄锐, 王旭, 李忠明. 纳米塑料-聚合物/纳米无机复合材料的研制、应用与进展. 中国轻工业出版社, 2002: 21~25
    21 徐庆玉, 范和平, 井强山. 聚酰亚胺无机纳米杂化材料的制备、结构和性能. 功能高分子学报, 2002, 15(2): 207~218
    22 Z.Ahmad, M.I.Sarwar, J.E Mark. Preparation and Roperties of Hybrid Organic-inorganic Composites Prepared from Poly(phenylene terephthalamide) and Titania. Mater. Chem. , 1997, (7): 259~263
    23 T.Lan, T.J.Pinnavaia. Synthesis, Characterization and Mechanical Properties of Epoxy-clay Nanocomposites. Chem. Mater, 1994, (6): 2216~2219
    24 C.Sanchez, B.Alonso, F. Chapusot, et al. Molecular Design of Hybrid Organic-inorganic Materials with Electronic Properties,Sol-gel Sci&Tech. Chem Soc, 1994, (2): 161~166
    25 官建国, 袁润章. 光学透明材料的现状和研究进展:有机-无机纳米复合光学透明材料. 武汉工业大学学报, 1998, 20(3): 11~13
    26 曹峰, 朱子康, 印杰. 新型光敏聚酰亚胺/SiO2 杂化材料的制备与性能研究. 功能高分子学报, 2000, 13(3): 325~328
    27 S.M.Jones, S.E.Friberg, J.Sloblom. Bioactive Composite Material Produced by the Sol-gel Method. Mater Sci, 1994, (29): 4075~4080
    28 M. Nandi, J.A.Conklin, Lawrence Salvati, et al. Molecular Level Ceramic/polymer Composites. 1. Synthesis of Polymer-trapped Oxide Nanoclusters of Chromium and Iron. Chem. Mater., 1990, (2) :772~776
    29 M.Nandi, J.A.Conklin, Lawrence Salvati, et al. Molecular Level Ceramic/ polymer Composites. 2. Synthesis of Polymer-trapped Silica and Titania Nanoclusters. Chem. Mater., 1991, (3) :201~206
    30 A.Morikawa, Y.Iyoku, M.Kakimoto. Preparation of a New Class of Polyimide-Silica Hybrid Films by Sol-Gel Process. Polym. Jour., 1992, 24(1): 107~113
    31 P.Sysel, Rulee, M.Maryska. Polyimide-Silica Hybrid Materials Based on p-Aminophenyltrimethoxysilane Terminated Poly(amic acid)s. Polym.Jour., 1997, 29(7): 607~610
    32 Y.Kim, W.K.Lee, WJ Cho, et al. Morphology of Organic-Inorganic Hybrid Composites in Thin Films as Multichip Packaging Material. Polym. Inter.,1997, 43(2): 129~136
    33 Yi-He Zhang, Yan Li. Synthesis and Cryogenic Properties of Polyimide-silica Hybrid Films by sol-gel Process. Polymer, 2005, (46): 8373~8378
    34 Yu-Wen Wang, Cheng-Tyng Yen. Photosensitive Polyimide/Silica Hybrid Optical Materials: Synthesis, Properties and Patterning. Polymer, 2005, (46): 6959~6967
    35 P.Musto, L.Mascia. Diffusion of Water and Ammonia Through Polyimide-Silica Biocontiinuous Nanocomposites: Interactions and Reactions. Polymer, 2005,(46): 4492~4503
    36 Shun-He Zhong, Chuan-Feng Li, Xiu-Fen Xiao. Preparation and Characterization of Polyimide-Silica Hybrid Membranes on Kieselguhr-Mullite Supports. Journal of Membrane Science, 2002, (199): 53~58
    37 Cheng-Tyng Yen, Wen-Chang Chen. Synthesis and Properties of New Polyimide-Silica Hybrid Films Through Both Intrachain and Interchain Bonding. Polymer, 2003, (44): 7079~7087
    38 Zheng-dao Wang, Jian-Jun Lu. Studies on Thermal and Mechanical Properties of PI/SiO2 Nanocomposite Films at Low Temperature. Composites: Part A, 2005: 1~6
    39 Pellegrino Musto, Giuseppe Ragosta. Toughness Enhancement of Polyimides by In Situ Generation of Silica Particles. Polymer, 2004, (45): 4265~4274
    40 Cheol Park, G Joseph, Jr Smith. Polyimide/Silica Hybrid-Clay Nanocomposites. Polymer, 2005, (46): 9694~9701
    41 Pellegrino Musto, Giuseppe Ragosta. Polyimide-silica Nanocmposites: Spectroscopic, Morphological and Mechanical Investigations. Polymer, 2004, (45): 1697~1706
    42 杨勇, 朱子康, 漆宗能. 溶胶-凝胶法制备可溶性聚酰亚胺/二氧化硅纳米复合材料的研究Ⅰ.溶胶-凝胶转变过程和反映机理的研究. 功能材料, 1999, 30(1): 78~81
    43 李艳, 付绍云, 林大杰等. 二氧化硅/聚酰亚胺纳米杂化薄膜室温及低温力学性能. 复合材料学报, 2005, 22(2): 11~15
    44 李元庆, 张以河, 李明等. PI/ T-SiO2 杂化膜的制备及偶联剂的影响. 加工与应用. 2004, 21(5): 61~64
    45 姜立忠, 刘久贵, 冯玉仲等. Sol-Gel 法制备 PI/SiO2 纳米复合薄膜及结构与性能. 北京化工大学学报, 2005, 32(1): 59~61
    46 李传峰, 钟顺和. 聚酰亚胺/二氧化硅杂化膜的制备与表征. 催化学报, 2001, 22(5) :449~452
    47 李晓波, 张冶文, 夏钟福. 聚酰亚胺/ SiO2 粉末复合薄膜的制备及其驻极体性能. 功能材料(增刊), 2001, (10): 846~848, 864
    48 王玉玲, 张传卫, 凌文凯等. 聚酰亚胺/二氧化硅纳米复合材料的制备及渗透汽化性能. 高分子材料科学与工程, 2003, 19(5): 180~182
    49 崔冬梅, 宋昌颖, 金晶. 聚酰亚胺/二氧化硅纳米杂化材料制备. 吉林工学院学报, 2001, 22(4): 21~23
    50 赵斌, 饶保林. 聚酰亚胺/纳米二氧化硅复合薄膜的研究. 绝缘材料, 2004, (5): 7~9
    51 王正道, 蒋少卿, 李艳等. 纳米 SiO2/PI 复合薄膜低温热膨胀系数的实验研究. 北京交通大学学报, 2005, 29(1): 44~47
    52 徐一琨, 詹茂盛. 纳米二氧化硅目标杂化聚酰亚胺复合材料膜的制备与性能表征. 航空材料学报, 2003, 23(2): 33~38
    53 尚修勇, 朱子康, 印杰等. 偶联剂对 PI/SiO2 纳米复合材料形态结构及性能的影响——Ⅰ. 复合材料学报, 2000, 17(4): 15~19
    54 浦鸿汀, 侯继斅, 杨正龙等. 杂多酸掺杂聚酰亚胺/二氧化硅复合质子交换膜的制备和性能研究. 功能材料, 2005, 36(12):1923~1926
    55 朱子康, 尚修勇, 印杰. 可溶性 PI/SiO2 纳米复合材料的研究. 塑料, 2000,29(2): 9~12
    56 Z.K.Zhu, Y.Yang, J.Yin, et al. Preparation and Properties of Organosoluble Polyimide/silica Hybrid Materials by Sol-gel Process. J. App. Polym. Sci., 1999, (73): 2977~2984
    57 尚修勇, 朱子康, 印杰. 偶联剂对 PI/SiO_2 纳米复合材料形态结构及性能的影响. 复合材料学报, 2000, 17(4): 15~19
    58 佘希林, 宋国君, 王俊霞. 插层法制备聚合物粘土纳米复合材料及其应用进展. 高分子材料科学与工程, 2003, 19(1): 32~35
    59 王德生, 吴俊涛, 胡爱军等. 蒙脱土/聚酰亚胺复合薄膜的电击穿破坏特性.绝缘材料, 2005, (50): 31~34
    60 雷勇, 刘宇锋, 江璐霞等. 聚酰亚胺/蒙脱土纳米复合薄膜的制备和性能研究.绝缘材料, 2001, (1): 5~8
    61 李桂英, 张其震, 杨文泓. 聚酰亚胺/蒙脱土纳米复合材料的制备与表征. 山东大学学报, 2003, 38(5): 105~108
    62 Hsueh-Shih Chen, Chien-Ming Chen. Study on Nanodispersion of PI/clay Nanocomposite by Temporal Analyses. Material Chemistry and Physics, 2005, (19): 304~310
    63 Rathanawan Magaraphan, Wittaya Lilayuthalert. Preparation, Structure, Properties and Thermal Behavior of Rigid-rod Polyimide/montmorillonite Nanocomposites. Composites Science and Technology, 2001, (1): 1253~1264
    64 Hong-Wen Wang, Rui-Xuan Dong. Improvements on the Synthesis and Properties of Fluorinated Polyimide-clay Nanocomposites by Using Double-swelling Agents. Materials Chemistry and Physics, 2005, (94): 42~51
    65 D.M.Delozier, R.A.Orwoll. Polyimide Nanocomposites Prepared from High-temperature, Reduced Charge Organoclays. Polymer, 2003, (44): 2231~2241
    66 D.M.Delozier, R.A.Orwoll. Preparation and Characterization of Polyimide/organo-clay Nanocomposites. Polymer, 2002, (43): 813~822
    67 Changwoon Nah, Sang Hyub Han, Joong-Hee Lee, et al. Intercalation Behavior of Polyimide/organoclay Nanocompsites During Thermal Imidization. Composites, 2004, (35): 125~131
    68 Rathanawan Magaraphan, Wittaya Lilayuthalert, Anuvat Sirivat, et al. Preparation, Structure, Properties and Thermal Behavior of Rigid-rod Polyimide-montmorillonite Nanocmposites. Composites Science and Thchnology, 2001, (61):1253~1264
    69 Yi-He Zhang, Jun-Tao Wu. Studies on Characterization and Cryogenic Mechanical Properties of Polyimide-layered Silicate Nanocomposite Films. Polymer, 2004, (45): 7579~7587
    70 刘丽, 路庆华, 印杰. 溶胶-凝胶法制备聚酰亚胺/二氧化钛感光杂化材料. 高等学校化学学报, 2001, 22(11): 1943~1944
    71 王建伟, 钟顺和. 负载型 TiO_2-聚酰亚胺亲水复合膜的制备与分离性能. 催化学报, 1997, 18(4): 306~309
    72 李传峰, 钟顺和. 溶胶凝胶法合成聚酰亚胺二氧化钛杂化膜. 高分子学报, 2002, (3): 25~30
    73 杜宏伟, 孔英, 史德青. PI/TiO_2 纳米复合膜的 H_2/CH_4 和 H_2/N_2 分离性能. 石油大学学报, 2003, 27(3): 98~101
    74 杜宏伟, 孔瑛, 商洪涛. PI/TiO_2 纳米复合膜的气体分离性能.高分子材料科学与工程, 2004, 20(4): 111~114
    75 郭玉花, 王军, 李晓云等. PI/TiO_2 纳米复合材料的制备及其热稳定性. 塑料, 2005, 34(6): 24~27
    76 樊友兵, 李鸿岩, 周升等,聚酰亚胺/纳米二氧化钛复合物的合成与性能研究. 绝缘材料, 2004, (3): 22~25
    77 童跃进, 李秀茹, 陈守正等. 聚酰亚胺/无机物纳米杂化材料的研究. 福建师范大学学报(自然科学版), 1999, 15(3): 42~45
    78 Pei-Chun Chiang, Wha-Tzong Whang. The Synthesis and Morphology Characteristic Study of BAO-ODPA Polyimide/TiO_2 Nano Hybrid Films. Polymer, 2003, (44): 2249~2254
    79 H.Chon, K.E.Gonsalves. Synthesis and Properties of an Aluminum nitride/Polyimide Nanocomposite Prepared by a Nonaqueous Suspension Process. Mater. Res., 2002, (12): 1274~1286
    80 黄丽, 徐定宇, 程红原. 改性聚酰亚胺摩擦磨损性能的研究. 复合材料学报, 1999, 16(1): 63~66
    81 邵怀启, 钟顺和. 负载型聚酰亚胺-二氧化硅-银杂化膜的制备和表征. 高分子学报, 2005, (4): 513~518
    82 朱宝库, 谢曙辉, 徐又一等. 高介电常数聚酰亚胺/钛酸钡复合膜的制备与性能研究. 功能材料, 2005, 36(4): 546~548
    83 张艳芳, 吴战鹏, 齐胜利等. 聚酰亚胺/银复合膜的制备及其亚微相态与性能研究. 复合材料学报, 2005, 22(4): 30~34
    84 赵斌 , 饶保林 . 聚酰亚胺 /纳米氧化铝复合薄膜的研究 . 绝缘材料 , 2005,(6): 23~26
    85 郭俊宝, 钟顺和. 负载型聚酰亚胺-ZrO_2 杂化膜的制备、表征与应用. 催化学报, 2004, 25(10): 793~796
    86 杨田林, 杨光德. 聚酰亚胺衬底掺 Sb 的 SnO_2 透明导电膜的制备. 电子元件与材料, 2002, 21(7): 5~7
    87 张浴晖, 齐宏进. 聚酰亚胺基纳米氟碳膜的结构和性能研究. 青岛大学学报, 2003, 18(4): 63~66
    88 许小村, 董丽华. 聚酰亚胺与金刚石复合研磨膜的研制. 工程塑料应用, 2002, 30(9): 28~30
    89 林保平, 钱鹰, 王娟等. 含硅聚酰亚胺/纳米钛酸钡杂化膜的热机械性能研究.功能材料, 2004, 增刊 (35): 2952~2955
    90 王廷梅, 邵鑫, 王齐华等. 聚酰亚胺/二硫化钼插层复合材料的制备及其摩擦磨损性能研究. 摩擦学学报, 2005, 25(4): 323~329
    91 李元庆, 付绍云. 聚酰亚胺纳米杂化薄膜绝缘材料 77K 下的电击穿性能研究. 绝缘材料, 2005, (5): 27~30
    92 郑建邦, 汪远, 任驹等. 气相沉积法制备含酞菁铜聚酰亚胺薄膜的光电性能.半导体光电, 2005, 26(4): 345~349
    93 王金伟, 杨槐. 溶液混合与界面渗透法制备聚噻吩衍生物 P 聚酰亚胺导电复合材料的研究. 材料科学与工程学报, 2005, 23(4): 484~486
    94 谭昌会, 苏丽红, 薛鹏冲等. 三价铕掺杂的聚酰亚胺纳米复合物的制备. 福建师范大学学报(自然科学版), 2005, 21(2): 72~75
    95 Yi-He Zhang, Shao-Yun Fu. Investigation of Polyimide-mica Hybrid Films for Cryogenic Applications. Composites Science and Thchnology, 2005, (65):1743~1748
    96 Xiaowen Jiang, Yuezhen Bin, Masaru Matsuo. Electrical and Mechanical Properties of Polyimide-carbon Nanotubes Composites Fabricated by In Situ Polymerization. Polymer, 2005, (46): 7418~7424
    97 Osamu Ohtani, Yasutomo Goto. Synthesis of Self-standing Mesostructured Phenylene-silica-polyimide Hybrid Films. Materials Letters, 2006, (60): 177~179
    98 Shu-Hui Xie, Bao-Ku Zhu. Preparation and Properties of Polyimide/LTNOComposite Films with High Dielectric Constant. Materials Letters, 2005, (59): 2403~2407
    99 Yuan-Jyh Lee, Jieh-Ming Huang. Low-dielectric, Nanoporous Polyimide Films Prepared From PEO-POSS Nanoparticles. Polymer, 2005, (46): 10056~10065
    100 Craig.M.Thompson, Helen.M..Herring, Thomas.S, et al. Preparation and Characteri-zation of Metal Oxide/Polyimide Nanocomposites. Composites Science and Technology, 2003, (63): 1591~1598
    101 唐传林, 季承钧, 单书发. 绝缘材料工艺原理. 机械工业出版社, 1993: 209, 213,207
    102 N. A.阿德洛瓦. 聚酰亚胺. 北京: 机械工业出版社, 1981: 15~26
    103 GM.Bower, L.W.Frost. Aromatic Polyimides. Journal of Polymer Science: Part A: Polymer Chemistry, 1963, 1(10): 3135~3150
    104 L.W.Frost,I.Kesse.Spontaneous Degradeation of Aromatic Polypromellitamic Acids. Journal of Applied Polymer Science, 1964, 8(3): 1039~1051
    105 Y.J.Kim, T.E.Glass, G.D.Lyle, et al. McGrath. Kinetic An Mechanistic Investigations of The Formation of Polyimides Under Homogeneous Conditions. Macromolecules, 1993, 26(6): 1344~1358
    106 M.L.Bender, Y.L.Chow, F.J.Chloupek. Imtramolecula Catalysis of Hydrolytie ReactionsⅡ: The Hydrolysis of Phthalamic Acid. Am. Chem. Soc., 1958, 80(20): 5380~5384
    107 马寒冰. 纳米复合绝缘材料设计、制备及耐变频性研究. 上海大学博士学位论文, 2003:12~18
    108 曾文明, 陈念贻, 归林华等. 无机盐制备氧化铝纳米粉及其物理化学的研究. 无机材料学报, 1998, 13(6): 887~892
    109 程志林, 晁自胜, 万惠霖. 发泡法合成纳米氧化铝. 应用化学, 2002, 19(11): 1032~1036
    110 王宏志, 高濂, 李炜群等. 高分子网络凝胶法制备纳米α- Al_2O_3 粉体. 无机材料学报, 2000, 15(2): 356~360
    111 Popp U, Herbig R, Mickel G, et al. Properties of Nanocrystalline Ceramic Powders Prepared by Laser Evaporation and Recondensation. Journal of the European Ceramic Society, 1998, 18(9):1153~1160
    112 Yi-quan Wu, Yu-feng Zhang, Xiao-xian Huang, et al. Preparation of PlatelikeNanoalpha Alumina Particles. Ceramic International, 2001, 27(3): 265~268
    113 陈雪梅, 陈彩风, 陈志刚. 超声沉淀法制备纳米 Al_2O_3 粉体. 中国有色金属学报, 2003, 13(1): 122~126
    114 付高峰, 毕诗文, 杨毅宏等. 异丙醇铝水解法制备高纯超细α- Al_2O_3 的研究. 轻金属, 1999, (3): 14~38
    115 张勤俭, 张建华, 李敏等. 无机盐先驱体溶胶-凝胶法制备 Al_2O_3 薄膜的研究. 机械工程材料, 2002, 26(3): 17~19
    116 Zhongjun Li, Xiaoqing Shen, Hongchang Yao, et al. Preparation of Ultrafine Silica Powders. Journal of Materials Science Letters, 2002, 21(13): 995~997
    117 王玲玲, 唐芳琼, 唐小龙等. 单分散二氧化硅超细颗粒的制备过程. 工程学报, 2001, 1 (2): 167~172
    118 贾宏, 郭锴, 郭奋等. 用超重力法制备纳米二氧化硅. 材料研究学报, 2001, 15(1): 120~124
    119 刘立泉, 何永, 张崇等. 纳米二氧化硅粉体的制备. 电子元件与材料, 2000, 19(4): 28, 32
    120 唐电, 王永康, 李永胜等. 纳米二氧化硅制备的初步研究. 氯碱工业, 1997, (5): 25~27
    121 余锡宾, 吴虹. 正硅酸乙酯的水解、缩合过程研究. 无机材料学报, 1996, 11(4): 703~707
    122 林健. 溶胶-凝胶法制备高表面性能二氧化硅凝胶材料. 建筑材料学报, 1998, 1(2): 155~159
    123 庞雪蕾, 唐芳琼. 不同酸对介孔二氧化硅球表面形貌和介相结构的影响. 无机化学学报, 2004, 20(8): 895~900
    124 马青松, 简料, 陈朝辉等. 溶胶-凝胶法合成氯化铝-氧化硅纳米粉. 国防科技大学学报, 2002, 24(4): 25~28
    125 靳喜海, 高濂, 郭景昆等. 溶胶-凝胶法制备莫来石粉体. 无机材料学报, 2001, 16(3): 555~558
    126 何文, 张旭东, 韩丽等. Al_2O_3/SiO_2 气凝胶纳米粉的制备和表征. 中国陶瓷, 2000, 36(6) :4~6
    127 Nan Yao, Guoxing Xiong, King Lun Yeung. Ultrasonic Synthesis of Slica-Alumina Nanomaterials with Controlled Mesopore Distribution without Using Surfactants. Langmuir, 2002, (18): 4111~4117
    128 朱爱萍, 张明, 常海. 无皂乳液聚合改性硅铝氯烷溶胶粒子的分散稳定性. 扬州大学学报, 1999, 2(4): 17~20
    129 徐明霞, 冯荣秀. Al_2O_3-SiO_2 系透明溶胶的制备及溶胶特性. 天津大学学报, 1996, 29(2): 278~282
    130 W.T.Richards. The Chemical Effect of High Frequency Sound Waves, Ⅱ. A Study of Emusifying Action. Journ. Amer. Chem. Soc., 1929,(51): 1724~1731
    131 H.B.Bull, K.Sollner, Uber Quecksilber emulsionen, et al. Ultrashallwellen hergestellt sind. Kolloid, 1932, (60): 263~270
    132 R.W.Wood, A.L.Loomis. The Physiical and Biological Effects of High-frequency Sound Waves of Great Intensity. Phil.Mag., 2001,4(7): 417~426
    133 李茂琼, 项金钟, 胡永茂等.纳米 SiO_2 的制备及性能研究.云南大学学报, 2002, 24(6): 445~448
    134 谢征芳, 肖加余, 陈朝辉等.溶胶-凝胶法制备复合材料用氧化铝基体及涂层研究.宇航材料工艺,1999,(2): 30~37
    135 Y.J.Tong, X.D.Huang , T.S.Chung. A New Strategy To PrepareRodik/ Flexible Polyimide Blends through Poly(amic acid) Amine Salt Precursors, Macromolecules, 2001, 34(17): 5748~5751
    136 Atsushi Morikawa, Yoshitake Iyoku, M.K. Synthesis of Alumina Silicon Dioxide Nanopowers via Sol-gel Progress. Polym, 1992, 20(1): 103~107
    137 Wu-lin Qiu, Yun-jun Luo, Fu-tai Chen, et al. Morphology and Size Control of Inorganic Particles in Polyimide Hybrids by Using SiO_2-TiO_2 Mixed Oxide. Polymer, 2003, (44): 5821~5826
    138 何平笙, 周悦, 金邦坤等. 聚酰亚胺 LB 膜研究 Ⅱ.聚酰胺酸 N,N-二甲基十八铵盐 LB 膜的表征和热分解性能. 功能高分子学报, 1999, 12(1): 23~27
    139 黄惠忠等. 纳米材料分析. 化学工业出版社, 2003, 3: 40~72
    140 E.Pretsch, P.Bühlmann, C.Affolter.波谱数据表—有机化合物的结构解析. 荣国斌译. 华东理工大学出版社, 2002: 245~304
    141 M.Kozako, N.Euse,Y.Ohki, et al. Surface Degradation of Polyamide Nano-composites Caused by Dischargee Using IEC(b) Electrodes. IEEE, TDEI., 2004, 11(5): 833~839
    142 C.Brosseau, P.Talbst. Effective Permittivity of Nanocomposite PowderCompact, IEEE, TDEI, 2004, 11(5): 819,932
    143 徐国财, 张立德. 纳米复合材料. 北京:化学工业出版社, 2002: 39~50
    144 M.Katz, R.J.Theis. New High Temperature Polyimide Insulation for Partion Discharge Resistance in Environments, IEEE, EI-Magazine, 1977, 13(4): 24~30
    145 T. J.Lewis. Nanometric Dielectrics, IEEE, TDEI, 1994, 1(5): 812~825
    146 T.J.Lewis. Interface are the Dominant Feature of Dielectrics at the Nano-metric Level, IEEE, TDEI, 2004, 11(5): 739~753
    147 P.H.Zhang, Y.Fan, F.C.Wang, et al. Conduction Current Characteristics and Carrier Mobility of Both Original and Corona-Resistant Polyimide Films, Chin. Phy. Lett, 2005, 22(5): 1253~1255
    148 T.Tanaka, G.C.Montanari, R.M й llhaupt. Polymer Nanocomposites as Dielectrics and Electrial Insulation-Perspective for Processing Technologies. Materials Characterization and Future Applications, IEEE, TDEI, 2004, 11(5): 763~784
    149 何恩广, 刘庆峰, 尚文宇. 纳米界面性能在电介质科学中的应用. 绝缘材料通讯, 2000, 4: 34~37
    150 雷清泉. 高聚物的结构与电性能. 华中理工大学出版社, 1990: 138~177, 214~269
    151 陈季丹, 刘子玉. 电介质物理学. 机械工业出版社. 1982: 138~178, 269~281, 312~315, 326~332
    152 陆宝琦. 交流变频电击的绝缘. 绝缘材料, 2001, 3: 29~34
    153 何曼君, 陈维孝, 董西侠. 高分子物理. 复旦大学出版社, 1982: 270~280, 48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700